• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 13
  • 12
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 149
  • 24
  • 19
  • 19
  • 17
  • 17
  • 16
  • 15
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Vibro-acoustic monitoring for in-flight spacecraft

Villlalba Corbacho, Víctor Manuel January 2017 (has links)
The concept of using the vibration transmitted through the structure of space systems whilst they are in flight for monitoring purposes is proposed and analysed.The performed patent review seems to indicate that this technique is not currently used despite being, in principle, a good way to obtain valuable knowledge about the spacecraft’s condition. Potential sources of vibration were listed and some of them were down-selected via a trade-off analysis for implementation in a numerical model of a CubeSat structure. Models were proposed for the sources chosen and implemented in the Ansys Workbench software, along with a simplified structure designed to be representative of a generic picosatellite mission.The results confirmed very different amplitude and frequency ranges for the sources of interest, which would make it difficult to monitor them with one type of sensor.Basic system requirements for accelerometer operating under space conditions were derived and commercial sources were identified as already having the technologies needed.The conclusion was a positive evaluation of the overall concept, although revising negatively the initial expectations for its performance due to the diversity encountered in the sources.
112

Structural testing of an ultralight UAV composite wing and fuselage

Simsiriwong, Jutima 02 May 2009 (has links)
The details of an experimental investigation focusing on obtaining the static and vibration characteristics of a full-scale carbon composite wing and fuselage structural assemblies of an ultralight unmanned aerial vehicle (UAV) are presented. The UAV has a total empty weight of 155-lb and an overall length of approximately 20.6t. A three-tier whiffletree system and the tail fixture were designed and used to load the wing and the fuselage in a manner consistent with a high-g flight condition. A shaker-table approach was used for the wing vibration testing, whereas the modal characteristics of the fuselage structure were determined for a freeree configuration. The static responses of the both structures under simulated loading conditions as well as their dynamic properties such as the natural frequency, damping coefficient and associated mode shapes were obtained. The design and implementation of the static and vibration tests along with the experimental results are presented in this thesis.
113

Effect of Physical Education on Daily Physical Activity Levels in 4th and 5th Graders

Lincourt, Melissa 16 August 2011 (has links)
No description available.
114

A Review of Methods and Challenges Involved in Biomanufacturing & Evaluating the Validity of Wrist Worn Pedometers

Gretzinger, Sean W. 26 August 2014 (has links)
No description available.
115

A STUDY OF MODAL TESTING MEASUREMENT ERRORS, SENSOR PLACEMENT AND MODAL COMPLEXITY ON THE PROCESS OF FINITE ELEMENT CORRELATION

PUREKAR, DHANESH MADHUKAR January 2005 (has links)
No description available.
116

Design and implementation of vibration data acquisition in Goodwin Hall for structural health monitoring, human motion, and energy harvesting research

Hamilton, Joseph Marshall 17 June 2015 (has links)
From 2012 - 2015 a foundation for future research in Goodwin Hall was designed, tested,developed, and implemented through an instrumentation project supported by the College of Engineering at Virginia Polytechnic Institute and State University. This required the design and implementation of a distributed, networked, and synchronized data acquisition system along with supporting hardware and software capable of measuring 227 accelerometers placed in 129 locations throughout the building. This system will provide a platform for research into a variety of topics, including structural health monitoring, building dynamics, human motion, and energy harvesting. Additionally, the system will be incorporated into the education curriculum by providing real-world data and hardware for students to interact with. This thesis covers the contributions of the author to the project. / Master of Science
117

The analysis and comparison of cardiac time intervals via seismocardiography.

Mann, Aysha Jenea 10 May 2024 (has links) (PDF)
Cardiac time intervals (CTIs) are vital indicators of cardiac health and can be estimated using a combination of electrocardiography (ECG) and seismocardiography (SCG). This study investigates the impact of SCG sensor location across the sternum on CTI estimations and heart rate variability parameters. Signal processing algorithms were developed to detect the opening and closure of heart valves on SCG for CTI calculation. A novel ECG-independent method was also developed based on template matching to determine similar parameters solely based on SCG. Comparative analysis with gold-standard methods were conducted on the SCG fiducial points, evaluating accuracy and performance. Results indicate a high overall average F1 score and correlation for all fiducial point detections. The p values revealed significant differences in SCG-derived CTI estimations across the sensor locations, highlighting the importance of sensor placement for accurate assessments. This finding underscores a fundamental step toward precise evaluation of cardiac health.
118

A Mixed-Signal Low-Noise Sigma-Delta Interface IC for Integrated Sub-Micro-Gravity Capacitive SOI Accelerometers

Vakili-Amini, Babak 12 January 2006 (has links)
This dissertation presents the design and development of a mixed-signal low noise second-order integrated circuit (IC) for the open-loop and closed-loop operation of integrated capacitive micro- and nano-gravity accelerometers. The micromechanical accelerometers are fabricated in thick (less than 100 m) silicon-on-insulator (SOI) substrates. The IC provides the 1-bit digital output stream and has the versatility of interfacing sensors with different sensitivities while maintaining minimum power consumption (less than 5 mW) and maximum dynamic range (90 dB). A fully-differential sampled-data scheme is deployed with the ability of low-frequency noise reduction through the use of correlated double sampling (CDS) scheme. In this work, the measured resolution of the closed-loop CMOS-SOI accelerometer system, in the presence of high background accelerations, is in the micro-g (g: gravity) range. In this design, a second-order SC modulator is cascaded with the accelerometer and the front-end amplifier. The accelerometer operates in air and is designed for non-peaking response with a BW-3dB of 500 Hz. A 22 dB improvement in noise and hence dynamic range is achieved with a sampling clock of 40 kHz corresponding to a low oversampling ratio (OSR) of 40. The interface IC consumed a current of 1.5 mA from a supply of 3 V.
119

Methodologies for Assessment of Impact Dynamic Responses

Ranadive, Gauri Satishchandra January 2014 (has links) (PDF)
Evaluation of the performance of a product and its components under impact loading is one of the key considerations in design. In order to assess resistance to damage or ability to absorb energy through plastic deformation of a structural component, impact testing is often carried out to obtain the 'Force - Displacement' response of the deformed component. In this context, it may be noted that load cells and accelerometers are commonly used as sensors for capturing impact responses. A drop-weight impact testing set-up consisting of a moving impactor head with a lightweight piezoresistive accelerometer and a strain gage based compression load cell mounted on it is used to carry out the impact tests. The basic objective of the present study is to assess the accuracy of responses recorded by the said transducers, when these are mounted on a moving impactor head. In the present work, a novel approach of theoretically evaluating the responses obtained from this drop-weight impact testing set-up for different axially loaded specimen has been executed with the formulation of an equivalent lumped parameter model (LPM) of the test set-up. For the most common configuration of a moving impactor head mounted load cell system in which dynamic load is transferred from the impactor head to the load cell, a quantitative assessment is made of the possible discrepancy that can result in load cell response. Initially, a 3-DOF (degrees-of-freedom) LPM is considered to represent a given impact testing set-up with the test specimen represented with a nonlinear spring. Both the load cell and the accelerometer are represented with linear springs, while the impacting unit comprising an impactor head (hammer) and a main body with the load cell in between are modelled as rigid masses. An experimentally obtained force-displacement response is assumed to be a nearly true behaviour of a specimen. By specifying an impact velocity to the rigid masses as an initial condition, numerical solution of the governing differential equations is obtained using Implicit (Newmark-beta) and Explicit (Central difference) time integration techniques. It can be seen that the model accurately reproduces the input load-displacement behaviour of the nonlinear spring corresponding to the tested component, ensuring the accuracy of these numerical methods. The nonlinear spring representing the test specimen is approximated in a piecewise linear manner and the solution strategy adopted and implemented in the form of a MATLAB script is shown to yield excellent reproduction of the assumed load-displacement behaviour of the test specimen. This prediction also establishes the accuracy of the numerical approach employed in solving the LPM system. However, the spring representing the load cell yields a response that qualitatively matches the assumed input load-displacement response of the test specimen with a lower magnitude of peak load. The accelerometer, it appears, may be capable of predicting more closely the load experienced by a specimen provided an appropriate mass of the impactor system i.e. impacting unit, is chosen as the multiplier for the acceleration response. Error between input and computed (simulated) responses is quantified in terms of root mean square error (RMSE). The present study additionally throws light on the dependence of time step of integration on numerical results. For obtaining consistent results, estimation of critical time step (increment) is crucial in conditionally stable central difference method. The effect of the parameters of the impact testing set-up on the accuracy of the predicted responses has been studied for different combinations of main impactor mass and load cell stiffness. It has been found that the load cell response is oscillatory in nature which points out to the need for suitable filtering for obtaining the necessary smooth variation of axial impact load with respect to time as well as deformation. Accelerometer response also shows undulations which can similarly be observed in the experimental results as well. An appropriate standard SAE-J211 filter which is a low-pass Butterworth filter has been used to remove oscillations from the computed responses. A load cell is quite capable of predicting the nature of transient response of an impacted specimen when it is part of the impacting unit, but it may substantially under-predict the magnitudes of peak loads. All the above mentioned analysis for a 3 DOF model have been performed for thin-walled tubular specimens made of mild steel (hat-section), an aluminium alloy (square cross-section) and a glass fibre-reinforced composite (circular cross-section), thus confirming the generality of the inferences drawn on the computed responses. Further, results obtained using explicit and implicit methodologies are compared for three specimens, to find the effect, if any, on numerical solution procedure on the conclusions drawn. The present study has been further used for investigating the effects of input parameters (i.e. stiffness and mass of the system components, and impact velocity) on the computed results of transducers. Such an investigation can be beneficial in designing an impact testing set-up as well as transducers for recording impact responses. Next, the previous 3 DOF model representing the impact testing set-up has been extended to a 5 DOF model to show that additional refinement of the original 3 DOF model does not substantially alter the inferences drawn based on it. In the end, oscillations observed in computed load cell responses are analysed by computing natural frequencies for the 3 DOF lumped parameter model. To conclude the present study, a 2 DOF LPM of the given impact testing set-up with no load cell has been investigated and the frequency of oscillations in the accelerometer response is seen to increase corresponding to the mounting resonance frequency of the accelerometer. In order to explore the merits of alternative impact testing set-ups, LPMs have been formulated to idealize test configurations in which the load cell is arranged to come into direct contact with the specimen under impact, although the accelerometer is still mounted on the moving impactor head. One such arrangement is to have the load cell mounted stationary on the base under the specimen and another is to mount the load cell on the moving impactor head such that the load cell directly impacts the specimen. It is once again observed that both these models accurately reproduce the input load-displacement behaviour of the nonlinear spring corresponding to the tested component confirming the validity of the model. In contrast to the previous set-up which included a moving load cell not coming into contact with the specimen, the spring representing the load cell in these present cases yields a response that more closely matches the assumed input load-displacement response of a test specimen suggesting that the load cell coming into direct contact with the specimen can result in a more reliable measurement of the actual dynamic response. However, in practice, direct contact of the load cell with the specimen under impact loading is likely to damage the transducer, and hence needs to be mounted on the moving head, resulting in a loss of accuracy, which can be theoretically estimated and corrected by the methodology investigated in this work.
120

Détection des augmentations de 5 et de 10% de la dépense énergétique totale : comparaison des estimations de deux accéléromètres

Pompilus, Roseline 08 1900 (has links)
L’obésité et la sédentarité sont considérées comme des problèmes importants de santé publique. L’augmentation de l’activité physique est une des stratégies recommandées pour obtenir un bilan énergétique positif dans les interventions de perte de poids. Deux accéléromètres, le Sensewear Armband (SWA) et l’Actical (ACT), sont des outils simples à utiliser en recherche clinique, mais à notre connaissance, aucune étude n’a évalué leur capacité à détecter des hausses de la dépense énergétique. De plus, très peu d’études, avec des résultats par ailleurs contradictoires, ont été effectuées afin de déterminer la fiabilité de ces accéléromètres pour la mesure de la dépense énergétique au repos et au cours d’une activité physique au vélo stationnaire. Ainsi, les objectifs de cette étude étaient: 1) évaluer, pendant 3 journées consécutives, la reproductibilité des valeurs de la dépense énergétique obtenues avec le SWA et l’ACT, au repos et au cours d’une activité physique de 45 minutes sur un vélo stationnaire, 2) déterminer la capacité de ces accéléromètres à détecter des hausses de 5% et 10 % de la dépense énergétique totale (DET) au moyen de la modification d’une activité physique au tapis roulant pendant 45 minutes. Cette étude transversale effectuée auprès de 20 sujets en santé, âgés de 20 à 32 ans et avec un IMC moyen de 23 kg/m2, consistait en 5 visites à la clinique. Les 3 dernières visites, sous supervision directe pendant 10 heures, comportaient des activités programmées sur le vélo stationnaire et la marche sur tapis roulant pendant 45 minutes. Les résultats montrent que le SWA et l’ACT donnent des valeurs reproductibles pour estimer la dépense énergétique au repos et la dépense énergétique au vélo (corrélations intra classe, p<0,001). Par contre, pour des hausses préétablies de la DET de 5% et 10%, les estimations respectives obtenues étaient de 1,4% et 7,8% avec le SWA et de 3,4% et 13,1% avec l’ACT. Le SWA sous-estime les hausses de 5% et de 10% et l’ACT sous-estime la hausse de 5% et surestime la hausse de 10% de la DET. Plus de recherches sont nécessaires avant de confirmer l’usage du SWA et de l’ACT dans l’estimation des hausses de la dépense énergétique totale. / Obesity and physical inactivity are considered significant public health problems. Increasing physical activity is one strategy recommended to induce a positive energy balance in weight loss interventions. Two accelerometers, the Sensewear Armband (SWA) and Actical (ACT), are simple tools to use in research, but to our knowledge, no studies have assessed their capacity to detect increases in energy expenditure. Moreover, very few studies, and with conflicting results, have been conducted to determine the reliability of these accelerometers for the measurement of resting energy expenditure and physical activity energy expenditure on a stationary bicycle. Thus the objectives of this study were as follows : 1) evaluate, during 3 consecutive days, the reproducibility of values of energy expenditure obtained with the SWA and the ACT, at rest and during physical activity for 45 minutes on a stationary bicycle, 2) determine the capacity of these accelerometers to detect increases of 5% and 10% in total energy expenditure (TEE) obtained by modifying an activity on a treadmill for 45 minutes. This cross-sectional study conducted with 20 healthy subjects, aged 20-32 years with an average BMI of 23 kg/m2, consisted of 5 visits to the clinic. The last 3 visits, under direct supervision for 10 hours, included programmed physical activities on a stationary bicycle and on a treadmill for 45 minutes. The results show that the SWA and the ACT provide values which are reproducible for estimating resting energy expenditure and physical activity energy expenditure on the stationary bicycle (intra-class correlations, p<0,001). However, for pre-established increases in TEE of 5% and 10%, corresponding estimations obtained were 1.4% and 7.8% with the SWA and 3.4% and 13.1% with the ACT. The SWA underestimates increases of 5% and 10% and the ACT underestimates increases of 5% and overestimates increases of 10% of TEE. More research is needed before confirming the use of the SWA and the ACT in the estimation of increases in total energy expenditure.

Page generated in 0.0611 seconds