• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

Akhmadaliev, Chavkat 31 March 2010 (has links) (PDF)
The rapid growth of the microelectronics industry in the last decades made it possible to produce structures in the sub-micrometer scale on silicon chips and to reach an integration scale under 100 nm. Decreasing the size and increasing the complexity of these structures make a control of quality and defects investigation more difficult. During a long time ultrasound devices are being used for nondestructive investigation of materials, like ultrasound microscopes, scanning photo-acoustic microscopes or scanning electron-acoustic microscopes, where acoustic waves are generated by acoustic transducers, focused laser or electron beams, respectively. The aim of this work is to investigate more precisely the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. The FIB spot size in modern systems is comparable with that of a focused electron beam and the penetration depth of ions with energy of 20-60 keV is lower than 100 nm. This makes it possible to reach a sub-micrometer resolution of a scanning ion acoustic microscope. On the other hand side a FIB with energy of 20-60 keV is a good tool which can be used for the fabrication of nanostructures using ion milling, implantation or ion beam assisted deposition techniques. The bulk ultrasound emission in a solid was investigated using a pulsed high energy ion beam focused on aluminum, copper, iron and silicon samples. Oxygen, silicon and gold ion beams were applied in charge states from 1+ to 4+ with the pulse duration of 0.5 - 4 µs and an energy of 1.5 - 10 MeV. Intensity of the detected acoustic waves shows a linear dependence on the energy of the incident ions, on the ion flux as well as on the pulse duration. No influence of the ion charge and ion mass to the emission of acoustic waves was observed. The ion acoustic effect was applied for a nondestructive material inspection using intensity modulated FIB providing by the IMSA-100 FIB system with an accelerating potential of 30-35 kV. The achieved lateral resolution of this scanning ion acoustic microscope is in the micrometer range depending on the sample material and the beam modulation frequency. The resolution can be improved by increasing the frequency. The maximal modulation frequency which was obtained at IMSA-100 is about 2 MHz corresponding to lateral resolution of 4-5 µm on silicon. Using this microscope, some images of integrated microstructures on a silicon chip were obtained using the lock-in technique for filtering of the signal from the noise and increasing of the total imaging time. The possibility to visualize near sub-surface structure was demonstrated. Due to the strong sputtering effect and the long time of irradiation the imaged structures were significantly damaged. Si2+, Ge2+, Ga+ and Au+ ions were used. All these ions are quite heavy and have high sputtering coefficients. Long-time imaging improves the quality of acoustic images, i. e. the signal-to-noise ratio is reduced with the square root from the pixel time, but leads to significant erosion of the imaged structure.
12

The structural and functional effects of corneal collagen cross-linking on human corneal tissue

Beshtawi, Ithar January 2013 (has links)
The aim of this project was to analyse the cellular and biomechanical changes after collagen cross-linking (CXL) treatment on postmortem eye-banked human corneas using different UVA intensities and repeated treatments, and to explore the effects of standard collagen cross-linking on keratoconic corneal buttons, in-vitro. Preliminary studies were conducted to assess the feasibility of using eye-banked corneas to assess the effects of collagen cross-linking, and the possibility of applying scanning acoustic microscopy (SAM) to measure the speed of sound/elasticity of corneal tissue. Eye-banked human corneas were successfully cross-linked allowing the effects of CXL to be studied in-vitro and SAM was used effectively to determine the mechanical properties of corneal tissue at different depths. The results of two experiments comparing UVA intensity suggested that no statistically significant difference was found in the histological changes or in the induced stiffness after applying low and high intensity cross-linking on normal human corneas. However, the number of apoptotic cells was found to be significantly less but deeper into the posterior stroma in the high intensity cross-linked corneas. Collectively, these results confirmed the safety and efficacy of both techniques with the advantage of reducing the treatment time using the higher-intensity treatment. In another in-vitro study, keratoconic corneal tissue was used. Different histological and biomechanical outcomes were found between the cross-linked and control keratoconic tissue. The effects of cross-linking were found to penetrate deeper in the keratoconic tissue compared to in the normal corneal tissue found in previous studies. This could be due to the altered collagens and extracellular matrix of the keratoconic corneas, as they were taken from patients in advanced stages of the disease. This study confirmed the importance of having corneal thickness of at least 400μm after epithelial debriding to maintain the endothelial cell density and integrity. Finally, further cross-links were induced when collagen cross-linking treatment was repeated. However, repeating cross-linking three times a deeper cell death close to the endothelium was noticed which suggests that multiple treatments could be unsafe. Additionally, lower speed of sound than the cross-linking twice. This could be due to elimination of the induced cross-links by longer exposure to UVA irradiation. In conclusion, eye-banked human corneas were successfully used to evaluate the effects of cross-linking treatment and repeated treatment. Additionally, keratoconic corneal buttons were used to study the effects of collagen cross-linking in-vitro. This model of using eye-banked human corneas and keratoconic corneal tissue enabled us to study the effects of cross-linking treatment using different protocols and the effects of repeated treatment, and it could ultimately be used to compare the results with in-vivo studies.
13

Investigation of acoustic waves generated in an elastic solid by a pulsed ion beam and their application in a FIB based scanning ion acoustic microscope

Akhmadaliev, Chavkat January 2004 (has links)
The rapid growth of the microelectronics industry in the last decades made it possible to produce structures in the sub-micrometer scale on silicon chips and to reach an integration scale under 100 nm. Decreasing the size and increasing the complexity of these structures make a control of quality and defects investigation more difficult. During a long time ultrasound devices are being used for nondestructive investigation of materials, like ultrasound microscopes, scanning photo-acoustic microscopes or scanning electron-acoustic microscopes, where acoustic waves are generated by acoustic transducers, focused laser or electron beams, respectively. The aim of this work is to investigate more precisely the acoustic wave generation by pulsed and periodically modulated ion beams in different solid materials depending on the beam parameters and to demonstrate the possibility to apply an intensity modulated focused ion beam (FIB) for acoustic emission and for nondestructive investigation of the internal structure of materials on a microscopic scale. The combination of a FIB and an ultrasound microscope in one device can provide the opportunity of nondestructive investigation, production and modification of micro- and nanostructures simultaneously. The FIB spot size in modern systems is comparable with that of a focused electron beam and the penetration depth of ions with energy of 20-60 keV is lower than 100 nm. This makes it possible to reach a sub-micrometer resolution of a scanning ion acoustic microscope. On the other hand side a FIB with energy of 20-60 keV is a good tool which can be used for the fabrication of nanostructures using ion milling, implantation or ion beam assisted deposition techniques. The bulk ultrasound emission in a solid was investigated using a pulsed high energy ion beam focused on aluminum, copper, iron and silicon samples. Oxygen, silicon and gold ion beams were applied in charge states from 1+ to 4+ with the pulse duration of 0.5 - 4 µs and an energy of 1.5 - 10 MeV. Intensity of the detected acoustic waves shows a linear dependence on the energy of the incident ions, on the ion flux as well as on the pulse duration. No influence of the ion charge and ion mass to the emission of acoustic waves was observed. The ion acoustic effect was applied for a nondestructive material inspection using intensity modulated FIB providing by the IMSA-100 FIB system with an accelerating potential of 30-35 kV. The achieved lateral resolution of this scanning ion acoustic microscope is in the micrometer range depending on the sample material and the beam modulation frequency. The resolution can be improved by increasing the frequency. The maximal modulation frequency which was obtained at IMSA-100 is about 2 MHz corresponding to lateral resolution of 4-5 µm on silicon. Using this microscope, some images of integrated microstructures on a silicon chip were obtained using the lock-in technique for filtering of the signal from the noise and increasing of the total imaging time. The possibility to visualize near sub-surface structure was demonstrated. Due to the strong sputtering effect and the long time of irradiation the imaged structures were significantly damaged. Si2+, Ge2+, Ga+ and Au+ ions were used. All these ions are quite heavy and have high sputtering coefficients. Long-time imaging improves the quality of acoustic images, i. e. the signal-to-noise ratio is reduced with the square root from the pixel time, but leads to significant erosion of the imaged structure.
14

Predicting mechanical performance of adhesively bonded joints based on acousto-ultrasonic evaluation and geometric weighting

Karhnak, Stephen J. 02 May 2009 (has links)
Prediction of the performance of adhesively bonded joints is essential to the acceptance of this mode of fastening. In ideal situations where the bonding is uniform throughout the joint the stress distribution depends on the material properties and the joint geometry. Knowledge of the bond properties and the stress distribution and magnitude can then be used to determine failure initiation, damage growth, subsequent stress distributions, and final failure. However, few bonds can be characterized as "ideal", as the bonding is generally not uniform throughout the joint and even the properties of the adhesive may vary. This paper describes work that addresses this situation. Acoustic microscopy has been used to provide a detailed image of the bonded joint, while acousto-ultrasonic measurements have been used to evaluate the stress transfer capability of modified lap shear joints. Knowledge of the stress distribution in the joint has provided a means of identifying critical areas of interest in the joint. The adhesively bonded composite specimens were mechanically tested and performance correlated with NDE results. Wave mode filtering is offered as a phenomena describing the basis for the correlation. / Master of Science
15

Imagerie par microscopie acoustique haute résolution en profondeur de la surface interne d'une gaine de crayon combustible de type REP / In depth high resolution acoustic microscopy of the internal face of a PWR fuel rod

Saikouk, Hajar 23 November 2018 (has links)
Les crayons combustibles au sein des Réacteurs à Eau Pressurisée (REP) sont constitués de pastilles de céramique (UO2 ou (U-Pu)O2) empilées dans des gaines en alliage de zirconium, le Zircaloy. Avant l'irradiation, il existe un jeu de fabrication entre les pastilles et la gaine de l'ordre d'une centaine de microns. Au cours de l'irradiation, ce jeu est rapidement réduit ou totalement rattrapé du fait des différentes déformations que subissent les pastilles et la gaine. La connaissance de la nature de ce contact pastille-gaine à chaud, nécessaire pour comprendre les phénomènes et valider les modélisations de l'évolution de l'état de l’interface en fonction du taux de combustion, est accessible aujourd’hui exclusivement à partir de mesures destructives effectuées en laboratoire de haute activité, après retour à froid des combustibles. Pour obtenir un plus grand nombre d’informations sur des zones d’intérêt étendues, ou sur un tronçon de crayon avant refabrication pour ré-irradiation en réacteur expérimental, un moyen de caractérisation non destructif de l’interface pastille-gaine est nécessaire. C'est dans ce contexte que l'Institut d'Electronique et des Systèmes UMR CNRS 5214 de l'Université de Montpellier développe, dans le cadre d'une collaboration avec le Commissariat à l'Energie Atomique et aux Energies Alternatives, et en partenariat avec EDF et Framatome, un microscope acoustique adapté aux géométries cylindriques. Le travail mené au cours de cette thèse inclut la conception et l’adaptation d’une tête de mesure sur un banc prototype et la démonstration de la faisabilité de l’acquisition d’images haute résolution (quelques dizaines de microns) sur tubes de gaine, l’enjeu étant de conserver la focalisation sur l’ensemble des zones imagées sur un même tube de diamètre externe de l’ordre de 10 mm et de longueur de 100 à 500 mm. La difficulté à reproduire les conditions de contact pastille-gaine en laboratoire ont orienté le choix des échantillons simulants, élaborés à partir de tubes de gaine avec ou sans zircone et chargés localement de colle. Les acquisitions réalisées sur ces échantillons simulants montrent la capacité de la méthode à détecter les changements de structure de la surface interne de la gaine. La mesure est ainsi sensible à la présence d’une couche de zircone interne d’épaisseur de 10 $mu$m, et à la présence de matériau adhérent à l’intérieur du tube. Ces résultats montrent l’intérêt de poursuivre ces études, pour améliorer grâce à du traitement du signal l’interprétation des images avec pour objectif final l’adaptation de la méthode et sa qualification sur un banc sur crayon irradié. / Pressurized Water Reactor (PWR) fuel rods are made of ceramic pellets (UO2,(U,Pu)O2 or gadolinium fuel) assembled in a zirconium alloy cladding tube. By design, an initial gap, filled with helium, exists between these two elements. However during irradiation this gap decreases gradually, on the one hand, owing to a variation in cladding diameter, due to creepdown caused by pressure from the coolant, and, on the other hand, increased pellet diameter, due to thermal expansion, and swelling. In hot conditions, during the second or third cycle of irradiation, the pellet/cladding gap is closed. However, during the return to cooler conditions, the gap can reopen. At a high burnup (generally beyond the 3rd cycle of irradiation) an inner zirconia layer of the order of 10 to 15 $mu$m is developed by oxidation leading to a chemical bonding between the pellet and the cladding. This bonding layer may contribute to a non-reopening of the pellet-cladding gap.Currently, only destructive examinations, after cutting fuel rods, allow the visualization of this area, however, they require a preliminary preparation of the samples in a hot cell. This limits the number of tests and measurements on the fuel rods. In this context, the Institute of Electronic and Systems of Montpellier University (IES - UMR CNRS 5214), in collaboration with the Alternative Energies and Atomic Energy Commission (CEA), Electricité de France (EDF) and Framatome, is developing a high frequency acoustic microscope adapted to the control and imaging of the pellet/cladding interface by taking into account the complexity of the structure's cladding which has a tubular form. Because the geometrical, chemical and mechanical nature of the contact interface is neither axially nor radially homogeneous, the ultrasonic system must allow the acquisition of 2D images of this interface by means of controlled displacements of the sample rod along both its axis and its circumference. The final objective of the designed acoustic microscope is to be introduced in hot cells.
16

Confined Mesoscopic Fluid-like Films Analyzed with Frequency Modulation and Acoustic Detection

Fernandez Rodriguez, Rodolfo 21 November 2014 (has links)
Complete understanding of the physics underlying the changes in viscoelasticity, relaxation time, and phase transitions that mesoscopic fluid-like systems undergo at solid-liquid interfaces or under confinement remains one of the major challenges in condensed matter physics. Moreover, studies of confined mesoscopic fluid films are relevant to technological areas like adhesion, wetting processes and nanotribology. This thesis addresses the interaction between two sliding solids interfaces separated by a nanometer sized gap, with emphasis on the role of the mesoscopic fluid film trapped between them. For this purpose we integrated two acoustic techniques, recently introduced by our group, into a sub-nanometer precision and thermal drift corrected scanning probe microscope (SPM): the shear-force/acoustic near-field Microscope (SANM) and the whispering gallery acoustic sensing (WGAS). The SANM monitors the sound waves originating in the probe-layer interaction while the motion of the probe is monitored by the WGAS. Additionally, we decouple the interaction forces by using frequency modulation and measure the local tunneling current to help establish the location of the substrate. Our results show a strong correlation between the elastic component of the probe's interaction and the SANM amplitude, as well as between the phase lag response of the fluid relative to the probe's excitation (represented by the SANM phase) and the onset of the probe-sample contact region. Frequency modulation SANM-WGAS brings a new acoustic sensing mechanism to the challenging characterization of fluid-like physical systems at the nanometer scale.
17

Etude de la réponse acoustique des collages directs et temporaires / Acoustic response study of direct bonding

Dekious, Ali 12 December 2016 (has links)
Le collage direct est maintenant utilisé par un nombre croissant d'applications en microélectronique (Elaboration de SOI, technologie imager Back Side Illumination, technologies 3D...). C'est une technique d'assemblage permettant de coller deux surfaces sans apport de matière adhésive. Principalement utilisée pour le collage de wafers, elle vient en complément de techniques telles que l'épitaxie ou le dépôt de couches minces. Ce collage s'effectue sous certaines conditions : il faut que les surfaces soient suffisamment propres, planes et lisses pour qu'il y ait une adhésion spontanée à température et pression ambiante. Enfin, un traitement thermique est appliqué pour augmenter l'énergie d'adhérence. Pendant le processus de fabrication, il peut apparaître des défauts de collage qui sont essentiellement dus à un piégeage de particules. Ces défauts se présentent sous la forme de bulles d'air. Finalement, les défauts de collage et l'énergie de collage sont les deux caractéristiques à partir desquelles est déduite une qualité de collage.Aujourd'hui, la technique utilisée pour la mesure d'énergie de collage est le clivage au coin. C'est une technique qui consiste dans un premier temps à séparer partiellement deux wafers par une lame, et dans un second temps, à calculer l'énergie de collage à partir d'une équation comportementale qui intègre la longueur de décollement. Mis à part le fait qu'elle permette la mesure d'énergie seulement sur quelques points, il se trouve que c'est une technique destructive. Un contrôle non destructif serait très intéressant pour l'industrie microélectronique et spécialement pour les lignes d'inspection. De plus, les procédés de fabrication microélectronique n'étant pas uniforme, avoir la possibilité d'obtenir une cartographie d'énergie de collage serait un atout majeur. A ce jour, aucune technique respectant ces deux exigences n'est connue. L'objectif de cette étude est d'utiliser la microscopie acoustique pour mesurer l'énergie de collage.Dans cette étude, un modèle inspiré de la "méthode des matrices hybrides" a été développé afin de modéliser des collages de différentes qualités. Le résultat de la modélisation montrera que le coefficient de réflexion acoustique de la structure collée est influencé par la qualité d'interface. En se plaçant dans des conditions précises, une méthode expérimentale est alors réalisée pour la mesure de la qualité d'interface. En parallèle, des wafers de Silicium réalisés par collage direct ont été spécialement conçus pour valider la méthode. Sur ce principe, des cartographies bidimensionnelles d'énergie de collage sont réalisées.Dans un second temps, la technique est améliorée afin d'augmenter la résolution latérale. Pour cela, un transducteur ayant une lentille est utilisé pour focalisé les ondes ultrasonores en points du collage. Une étude théorique est tout d'abord menée en utilisant le modèle du "spectre angulaire" afin de simuler la diffraction par la lentille. Enfin, des cartographies expérimentales confirmeront la faisabilité de mesures d'énergie de collage hautes résolutions. / Direct bonding is used for many applications in microelectronics (SOI Silicon-On-Insulator technology, imager back side illumination technology, 3D technology...). It is a processes that consists in an assembly of two surfaces without any adhesive material. It is primarily used to bond silicon wafers and it is complementary with other microelectronics technique such as epitaxy, thin film deposition... Bonding requires special wafer surface conditions and preparations. The surfaces have to be clean, flat and smooth to obtain a spontaneous adhesion at ambient temperature and atmospheric pressure. A heat treatment is applied to increase the adherence energy. During the manufacturing process, bonding defects may appear which are due to trapping of particles. These bonding defects are essentially formed of air. Finally, bonding defects and bonding energy are the two main characteristics from which is deduced the bonding quality.Nowadays, the main technique that is used to measure the direct bonding energy is the double cantilever beam (DCB). The method consists in firstly partially separating the two wafers by a blade, and secondly calculating the bonding energy from an equation that integrates the debonding lenght. The major disadvantage of this technique is its destructiveness. Furthermore it is only possible to make measurements on few points.Thus a non-destructive characterisation could be very interesting especially for an industrial in-line inspection. Moreover, having the possibility to obtain a mapping of the bonding energy could lead to interesting development. Up to know, no technique can reach the both requirements. The aim of this work is to use the acoustic microscopy to measure the direct bonding energy.In this study, a model based on "hybrid matrix method" has been developed to model bonding with different qualities. The results of the modelling show that the acoustic reflection coefficient of the bonded structure is influenced by the quality of the interface. From these results, an experimental method is proposed to perform quality of the interface measurements from the reflection coefficients acquired under normal incidence. In parallel, silicon wafers have been bonded to validate the method. Finally, once the method validated, two-dimensional mappings of the interface quality are realised.Secondly, the technique is improved to increase the lateral resolution. For this, a transducer having a lens is used to focus the ultrasonic waves on the bonded structure. A theoretical study is conducted using the model of the "angular spectrum" to simulate the diffraction lens. Finally, experimental mapping confirm the feasibility of measuring bonding energy of high resolutions.
18

Elastic properties characterization of nuclear fuels under extreme conditions / Propriétés élastiques des combustibles nucléaires sous conditions extrêmes

Marchetti, Mara 27 November 2017 (has links)
Ce travail de recherche vise à étudier les propriétés élastiques par microscopie acoustique du combustible nucléaire dans trois situations particulières: combustible en utilisation normale en réacteur nucléaire, combustible stocké après la période d’irradiation et combustible en conditions extrêmes suite à un accident nucléaire. Les mesures réalisées sur les échantillons irradiés ont conduit à plusieurs résultats majeurs: validation d’une loi corrélant la vitesse des ondes de Rayleigh à la densité du dioxyde d’uranium irradié ou frais; détermination de la porosité dans le combustible irradié; évaluation du gonflement de la matrice en fonction du taux de combustion dans la gamme 0-100 GWdt-1M; développement d'un modèle empirique capable de prévoir la variation de module de Young en fonction du taux de combustion en prenant même en compte la teneur en dopants (Gd2O3, CeO2) ; quantification de l’évolution du module de Young du combustible suite à l'endommagement en stockage ; premières mesures sur du corium. Enfin, grâce au lien entre les propriétés thermiques et élastiques, différentes propriétés thermiques de l'UO2 ont été calculées en mesurant la vitesse de l'onde de surface de Rayleigh seule. / The focus of the present thesis is the determination of the elastic properties of nuclear fuel using high frequency acoustic microscopy. The nuclear fuel is considered under three different conditions: during its normal life in reactor, after its discharge and disposal in interim or long-term storage and subsequently to its severe degradation caused by a nuclear accident. Measurements performed on irradiated fuels allowed to validate a law between the density of fresh and irradiated fuel and the Rayleigh wave velocity; the determination of the irradiated fuel porosity and matrix swelling in the broad burnup range 0-100 GWdt-1M; the development of an empirical model capable of predicting the evolution of Young's modulus versus burnup correcting also for the additives content (Gd2O3, CeO2); Young's modulus evolution due to alpha-decay damage as in-storage condition; first corium measurements. Moreover, several UO2 thermal parameters were calculated only by means of the Rayleigh wave velocity thanks to the link between thermal and elastic properties.
19

Capteur ultrasonore multiélément dédié à la caractérisation quantitative haute résolution / Multielement ultrasound sensor dedicated to high resolution quantitative characterisation

Meignen, Pierre-Antoine 05 December 2016 (has links)
Les travaux présentés dans cette thèse s’appliquent à la caractérisation de propriétés mécaniques par la microscopie acoustique. Ils décrivent un capteur focalisé innovant qui autorise à la fois une topographie et une imagerie quantitative d’un matériau élastique. L’innovation consiste en la séparation des différents modes de propagation d’un matériau excité par une sonde focalisée multiélément. La mesure par temps de vol de la vitesse de propagation des modes de surfaces de matériaux élastiques et anisotropes offre une possibilité de quantification du module caractérisant l’élasticité : le module de Young. Le dimensionnement de la sonde multiélément qui est décrit ici est rendu possible grâce au développement d’un modèle de champs acoustiques permettant d’anticiper le champ rayonné par chaque élément. Un deuxième modèle traitant de l’étude temporel des signaux reçus par la sonde focalisée est aussi présenté pour vérifier le comportement discriminant de la sonde des différentes ondes pouvant se propager. La mesure de propriétés mécaniques par la sonde focalisée est appliquée à différents échantillons et propose des résultats cohérents avec une grande sensibilité. La possibilité de réaliser des images de propriétés mécaniques est ainsi démontrée. D’abord adaptée pour des fréquences de l’ordre de la trentaine de mégahertz, cette sonde possède un nombre limité d’éléments pour assurer une simplicité de conception et de fabrication permettant par la suite une miniaturisation du capteur pour atteindre des fréquences proches du gigahertz. / The work presented in this thesis is applied to the characterization of mechanical properties by acoustic microscopy. It describes an innovative focused sensor that enables both topography and quantitative imaging of an elastic material. The innovation consists in the separation of the different propagation modes of a material excited by a focused multielement probe. Measuring the surface mode propagation velocity of elastic and anisotropic materials thanks to their time of flight provides a possibility of quantifying the module characterizing the elasticity: the Young's modulus. The dimensions of the multielement probe are described here and rely on an acoustic field model developed to anticipate the field radiated by each element. A second model studies the temporal behaviour of the focused probe and also verifies the discrimination of the different waves that propagate. The measurement of mechanical properties by the multielement probe is applied to different samples and provides consistent results with high sensitivity. The ability to produce images of mechanical properties is thus demonstrated. First suitable for frequencies near thirty megahertz, this sensor has a limited number of elements to ensure a simplicity of design and manufacture for a subsequent miniaturization of the sensor to achieve frequencies near the gigahertz.
20

Investigation of anisotropic properties of musculoskeletal tissues by high frequency ultrasound

Sannachi, Lakshmanan 03 March 2012 (has links)
Knochen und Muskel sind die wichtigsten Gewebe im muskuloskelettalen System welche dem Körper die Bewegungen möglich machen. Beide Gewebetypen sind hochgradig strukturierter Extrazellulärmatrix zugrundegelegt, welche die mechanischen und biologischen Funktionen bestimmen. In dieser Studie wurden die räumliche Verteilung der anisotropen elastischen Eigenschaften und der Gewebemineralisation im humanen kortikalen Femur untersucht mit akustischer Mikroskopie und Synchrotron-µCT. Die homogenisierten elastischen Eigenschaften wurden aus einer Kombination der Porosität und der Gewebeelastizitätsmatrix mit Hilfe eines asymptotischen Homogenisierungsmodells ermittelt. Der Einfluss der Gewebemineralisierung und der Strukturparameter auf die mikroskopischen und mesoskopischen elastischen Koeffizienten wurde unter Berücksichtigung der anatomischen Position des Femurschaftes untersucht. Es wurde ein Modell entwickelt, mit welchem der intramuskuläre Fettgehalt des porcinen musculus longissimus nichtinvasiv mittels quantitativem Ultraschall und dessen spektraler Analyze des Echosignals bestimmt werden kann. Muskelspezifische Parameter wie Dämpfung, spectral slope, midband fit, apparent integrated backscatter und cepstrale Paramter wurden aus den RF-Signalen extrahiert. Die Einflüsse der Muskelkomposition und Strukturparameter auf die spektralen Ultraschallparameter wurden untersucht. Die akustischer Parameter werden durch die Muskelfaserorientierung beeinflusst und weisen höhere Werte parallel zur Faserlängsrichtung als senkrecht zur Faserorientierung auf. Die in dieser Studie gewonnenen detaillierten und lokal bestimmten Knochendaten können möglicherweise als Eingabeparameter für numerische 3D FE-Simulationen. Darüber hinaus kann die Untersuchung von Veränderungen der lokalen Gewebeanisotropie neue Einsichten in Studien über Knochenumbildung geben. Diese auf Gewebeebene bestimmten Daten von Muskelgewebe können in numerischen Simulationen von akustischer Rückstreuung genutzt werden um diagnostische Methoden und Geräte zu verbessern. / Bone and muscle are the most important tissues in the musculoskeletal system that gives the ability to move the body. Both tissues have the highly oriented underlying extracellular matrix structure for performing mechanical and biological functions. In this study, the spatial distribution of anisotropic elastic properties and tissue mineralization within a human femoral cortical bone shaft were investigated using scanning acoustic microscopy and synchrotron radiation µCT. The homogenized meoscopic elastic properties were determined by a combination of porosity and tissue elastic matrix using a asymptotic homogenization model. The impact on tissue mineralization and structural parameters of the microscopic and mesocopic elastic coefficients was analyzed with respect to the anatomical location of the femoral shaft. A model was developed to estimate intramuscular fat of porcine musculus longissimus non-invasively using a quantitative ultrasonic device by spectral analysis of ultrasonic echo signals. Muscle specific acoustic parameters, i.e. attenuation, spectral slope, midband fit, apparent integrated backscatter, and cepstral parameters were extracted from the measured RF echoes. The impact of muscle composition and structural properties on ultrasonic spectral parameters was analyzed. The ultrasound propagating parameters were affected by the muscle fiber orientation. The most dominant direction dependency was found for the attenuation. The detailed locally assessed bone data in this study may serve as a real-life input for numerical 3D FE simulation models. Moreover, the assessment of changes of local tissue anisotropy may provide new insights into the bone remodelling studies. The data provided at tissue level and investigated ultrasound backscattering from muscle tissue, can be used in numerical simulation FE models for acoustical backscattering from muscle for the further improvement of diagnostic methods and equipment.

Page generated in 2.0083 seconds