• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 29
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Biological control of clubroot (Plasmodiophora brassicae) by an endophytic fungus (Acremonium alternatum) / Biologische Kontrolles der Kohlhernie (Klumpfusskrankheit; Plasmodiophora brassicae) durch einen endophytischen Pilz (Acremonium alternatum)

Auer, Susann 18 September 2015 (has links) (PDF)
The biological control of plant pests with beneficial microbes has become increasingly important over the last decades. Soil microbes such as fungi and bacteria colonise the roots of plants and promote their growth. Some beneficial microbes can trigger a weak plant defence response that enhances the immune response of the plant at subsequent pathogen attacks and therefore increase the resistance of the plant to other invaders. This mechanism is called “priming”. While biocontrol agents are applied against a variety of plant pests fundamental knowledge of the molecular mechanisms of plant-microbe interactions is still lacking. Especially molecular studies on the role of resistance genes in the interaction of plants with beneficial endophytic fungi are rare. In this study it was investigated how the fungal biocontrol agent Acremonium alternatum affects the development of the clubroot pathogen Plasmodiophora brassicae within the plant host Arabidopsis thaliana. Clubroot is a devastating disease in crop plants such as cabbage and rapeseed and causes abnormal root growth that leads to so called “club roots”. P. brassicae develops within the plant roots and forms resting spores that are very durable and stay infective in soils for up to 2 decades. The control of clubroot by chemical means is difficult and the disease continues to spread on all continents and was also found in Saxony, Germany in recent years. In 2 preliminary studies the co-inoculation of clubroot plants with the fungus A. alternatum resulted in reduced clubroot symptoms in Chinese cabbage and Arabidopsis. It was therefore hypothesised that A. alternatum induces resistance mechanisms in the plant and thus enhances immunity. The focus of this study was to test this hypothesis by carrying out expression analyses on root tissue of infected Arabidopsis plants. For this the plants were inoculated with spores of P. brassicae and A. alternatum before RNA was extracted from the roots, followed by cDNA synthesis and quantitative Reverse Transcriptase Polymerase Chain Reaction (RT-qPCR). A microarray of root tissue of infected Arabidopsis plants was carried out to depict the events at the stage of initial root hair infection with the clubroot pathogen. The findings from the gene expression analyses were verified for 2 genes with Arabidopsis mutants that are defective in the respective gene and with 2 overexpressor lines. Clubroot symptoms were assessed by rating the root galls according to their stage of development. The overall plant health was further evaluated by recording the developmental stage of the plants (generative vs. vegetative), stem lengths and plant biomass. In addition, 2 local varieties of the economically important crop plant rapeseed (Brassica napus var. Ability and var. Visby) were investigated with qRT-PCR and by recording the disease parameters just described. A second goal of this study was to assess the general biocontrol potential of the yet relatively unknown endophyte A. alternatum in terms of enzymatic activity and competitive behaviour against other phytopathogenic fungi. The potential of this fungus for the use in integrative pest management was investigated. The results presented here are novel findings for this fungus and have not been studied before. The microarray from Arabidopsis roots revealed that the clubroot pathogen P. brassicae suppresses its recognition by pathogen receptors of the plant and thus prevents the host to induce resistance mechanisms. The fungus A. alternatum boosted the level of the pathogen recognition-related genes BAK1 and FLS2 and thus helped to establish early plant defence responses. PCR analyses confirmed that these early responses led to salicylic acid-dependent resistance in the plants which was maintained for several days as shown by elevated levels of the PATHOGENESIS-RELATED gene PR1. Marker genes for an alternative resistance pathway that is mediated over the plant signals jasmonate and ethylene were not activated in Arabidopsis. The co-inoculation of Arabidopsis plants with the endophyte A. alternatum resulted in a significant reduction of clubroot symptoms by up to 24%. In rapeseed the reduction of disease symptoms was 19% and 28% when the plants were treated with a crude cell wall extract of A. alternatum before inoculation with the clubroot pathogen. PCR analyses from Arabidopsis showed a strong response of pathogen recognition genes to the cell wall extract and spores of the endophytic fungus. In rapeseed all of the investigated pathogen recognition genes were upregulated after the endophyte treatment but not with the clubroot pathogen. Together with the PCR results from the microarray these findings suggest that A. alternatum primes its host plant and enhances the resistance of the plant towards P. brassicae. In addition, the fungus increased biomass, stem lengths and survival rates of clubroot-infected plants. In vitro tests revealed that the endophyte can solubilise phosphate and is not very competitive against other phytopathogenic fungi such as Aspergillus or Fusarium which is likely an effect of the relatively slow growth of the endophyte on agar plates. From this study it can be concluded that i) the fungus Acremonium alternatum induces resistance mechanisms in Arabidopsis and 2 Brassica napus cultivars and facilitates the recognition of the clubroot pathogen Plasmodiophora brassicae; ii) that Arabidopsis and Brassica react differently to this beneficial microbe, a fact that has been observed for Plasmodiophora and other microorganisms as well; iii) living spores are not necessary for clubroot biocontrol in rapeseed as a crude cell wall extract reduces symptoms more efficiently. Overall the endophyte A. alternatum is a very promising candidate for the use in integrative pest management in plant strengtheners or as biocontrol agent. / Die biologische Kontrolle von Pflanzenkrankheiten gewinnt zunehmend an Bedeutung. Bodenbewohnende Mikroben wie Pilze oder Bakterien kolonisieren die Wurzeln von Pflanzen und fördern deren Wachstum. Einige dieser förderlichen Mikroben aktivieren eine schwache Abwehrreaktion in der Pflanze die sich verstärkt bei einer weiteren Infektion mit einem Krankheitserreger. Dieser Mechanismus, den man “Priming” nennt, führt zu einer verbesserten Resistenz der Pflanze gegenüber Pflanzenpathogenen. Obwohl natürliche Schädlingsbekämpfer bereits gegen eine Vielzahl an Krankheiten eingesetzt werden, weiss man über grundsätzliche molekulare Mechanismen dieser Pflanzen-Mikroben-Interaktionen nur wenig. Besonders die Rolle von Resistenzgenen ist bisher wenig erforscht, welche bei der Beziehung zwischen Pilzen und Pflanzen eine Rolle spielen. In der hier vorliegenden Arbeit wurde untersucht, wie der endophytische Pilz Acremonium alternatum die Entwicklung des Krankheitserregers Plasmodiophora brassicae in der Pflanze Arabidopsis thaliana beeinflusst. Die Kohlhernie, ausgelöst von P. brassicae, ist eine verheerende Krankheit die u. a. bei Kohl und Raps auftritt und Wurzelgallen, so genannte “Hernien”, hervorruft. Der Krankheitserreger entwickelt sich im Wurzelsystem der Pflanze und bildet Dauersporen, die bis zu 20 Jahre lang im Boden infektiös überdauern können. Ein Eindämmen der Krankheit mit Pflanzenschutzmitteln ist durch den komplexen Lebenslauf des Erregers sehr schwierig, das führte zu einer weltweiten Verbreitung der Kohlhernie. Auch in Sachsen wurden in den letzten Jahren Fälle von Kohlhernie gemeldet. Wie 2 Studien zeigen, führt die Ko-Inokulation von Kohlhernie-erkrankten Pflanzen mit A. alternatum zu einer Verringerung der Symptome in Chinakohl und Arabidopsis. Es wurde daher die Hypothese aufgestellt, dass der Pilz Resistenzmechanismen in der Pflanze anschaltet und damit ihre Immunität erhöht. Um diese Hypothese zu testen, wurden in der hier vorliegenden Studie Genexpressionsanalysen an infizierten Arabidopsiswurzeln durchgeführt. Dafür wurden die Pflanzen zunächst mit Sporen des Kohlhernieerregers und des Pilzes inokuliert, es wurde RNA aus den Wurzeln extrahiert, in cDNA umgeschrieben und diese mittels quantitativer Reverse-Transkriptase-Polymerasenkettenreaktion (RT-qPCR) untersucht. Ein Microarray von Wurzeln infizierter Pflanzen wurde durchgeführt um die Ereignisse abzubilden, die sich zeitnah nach der Infektion in den Wurzeln abspielen. Die Ergebnisse der Genexpressionsanalysen wurden dann an Arabidopsismutanten, die einen Gendefekt im jeweiligen Gen haben, und an Überexprimierer-Pflanzen verifiziert. Kohlherniesymptome an Pflanzen wurden durch eine Kategorisierung der Schadsymptome erfasst. Die allgemeine Pflanzengesundheit sowie der Entwicklungsstand der Pflanze, Stengellängen und das Frischgewicht wurden bestimmt. Zusätzlich wurden 2 Rapssorten, die in Sachsen angebaut werden, untersucht im Hinblick auf die Krankheitsenwicklung und die Reguation von Abwehrgenen. Ein weiteres Ziel dieser Arbeit war es das Biokontrollpotential des bisher schlecht untersuchten Pilzes A. alternatum zu bestimmen. Dazu wurde in vitro die Enzymaktivität des Pilzes getestet sowie seine Konkurrenzfähigkeit gegenüber anderen pflanzenpathogenen Pilzen. Das Potential des Pilzes für die Anwendung im integrierten Pflanzenschutz wurde getestet. Die hier präsentieren Ergebnisse stellen neue Erkenntnisse dar, die für diesen Pilz noch nie untersucht wurden. Der Microarray von Arabidopsiswurzeln zeigte, dass der Kohlhernieerregers die Erkennung durch die Pflanze verhindert und damit Abwehrmechanismen verhindert. Der Pilz A. alternatum förderte die Aktivität der pflanzlichen Erkennungsrezeptoren FLS2 und BAK1 und setzte damit die Erkennung von P. brassicae in Gang. PCR-Analysen ergaben, dass diese früh induzierten Abwehrmechanismen zu einer systemischen Resistenz in der Pflanze führte durch die Aktivierung des Pathogenese-relevanten Gens PR1. Genmarker, die die Aktivität eines alternativen, von Jasmonat und Ethylen vermittelten Abwehrweges anzeigen, waren nicht ativiert. Die Ko-Inokulation von Arabidopsis mit dem Endophyten führte zu einer signifikanten Reduktion der Krankheitssymptome um 24%. In Raps betrug die Reduktion 19% und 24% wenn die Pflanzen vor der Kohlhernie-Infektion mit einem Zellwandextrakt des Pilzes behandelt wurden. Mittels PCR konnte gezeigt werden, dass Gene für das Erkennen von Pathogenen in der Wurzel von Arabidopsis auf den Zellwandextrakt und Sporen des Pilzes reagieren. In Raps wurden alle der untersuchten Erkennungsgene aufreguliert nach der Infektion mit A. alternatum, nicht jedoch bei der Infektion mit P. brassicae. Zusammenfassend lässt sich sagen, dass der endophytische Pilz A. alternatum die Wirtspflanze auf eine folgende Infektion vorbereitet (Priming) und systemische Abwehr-mechanismen in der Pflanze induziert, wenn diese mit Kohlhernie infiziert ist. Außerdem treibt der Pilz das Sprosswachstum voran, erhöht die Biomasse und fördert das Überleben von Kohlhernie-infizierten Pflanzen. In vitro-Tests ergaben, dass der Endophyt Kalziumphosphat löslich machen kann und wenig kompetitiv gegenüber Pflanzenpathogenen wie Aspergillus oder Fusarium ist. Dies ist vermutlich mit dem langsameren Wachstum des Endophyten im Gegensatz zu den anderen Pilzen zu erklären. Aus den Ergebnissen dieser Arbeit lassen sich folgende Schlüsse ziehen: i) der endophytische Pilz Acremonium alternatum induziert Resistenzmechanismen in Arabidopsis und Raps und und fördert die Erkennung des Kohlhernieerregers Plasmodiophora brassicae; ii) Arabidopsis und Raps reagieren unterschiedlich auf diesen förderlichen Pilz, ein solcher Unterschied wurde bereits für Plasmodiophora und andere Mikroben beschrieben; iii) lebende Sporen des Pilzes sind nicht notwendig um Krankheitssymptome der Kohlhernie in Raps zu verringern, ein Zellwandextrakt von A. alternatum ist dafür besser geeignet. Ganz allgemein lässt sich sagen, dass der endophytische Pilz Acremonium alternatum ein sehr vielversprechender Kandidat ist für den Einsatz im integrierten Pflanzenschutz in Pflanzenstärkungsmitteln oder als Biokontrollorganismus.
22

Biological control of clubroot (Plasmodiophora brassicae) by an endophytic fungus (Acremonium alternatum)

Auer, Susann 18 August 2015 (has links)
The biological control of plant pests with beneficial microbes has become increasingly important over the last decades. Soil microbes such as fungi and bacteria colonise the roots of plants and promote their growth. Some beneficial microbes can trigger a weak plant defence response that enhances the immune response of the plant at subsequent pathogen attacks and therefore increase the resistance of the plant to other invaders. This mechanism is called “priming”. While biocontrol agents are applied against a variety of plant pests fundamental knowledge of the molecular mechanisms of plant-microbe interactions is still lacking. Especially molecular studies on the role of resistance genes in the interaction of plants with beneficial endophytic fungi are rare. In this study it was investigated how the fungal biocontrol agent Acremonium alternatum affects the development of the clubroot pathogen Plasmodiophora brassicae within the plant host Arabidopsis thaliana. Clubroot is a devastating disease in crop plants such as cabbage and rapeseed and causes abnormal root growth that leads to so called “club roots”. P. brassicae develops within the plant roots and forms resting spores that are very durable and stay infective in soils for up to 2 decades. The control of clubroot by chemical means is difficult and the disease continues to spread on all continents and was also found in Saxony, Germany in recent years. In 2 preliminary studies the co-inoculation of clubroot plants with the fungus A. alternatum resulted in reduced clubroot symptoms in Chinese cabbage and Arabidopsis. It was therefore hypothesised that A. alternatum induces resistance mechanisms in the plant and thus enhances immunity. The focus of this study was to test this hypothesis by carrying out expression analyses on root tissue of infected Arabidopsis plants. For this the plants were inoculated with spores of P. brassicae and A. alternatum before RNA was extracted from the roots, followed by cDNA synthesis and quantitative Reverse Transcriptase Polymerase Chain Reaction (RT-qPCR). A microarray of root tissue of infected Arabidopsis plants was carried out to depict the events at the stage of initial root hair infection with the clubroot pathogen. The findings from the gene expression analyses were verified for 2 genes with Arabidopsis mutants that are defective in the respective gene and with 2 overexpressor lines. Clubroot symptoms were assessed by rating the root galls according to their stage of development. The overall plant health was further evaluated by recording the developmental stage of the plants (generative vs. vegetative), stem lengths and plant biomass. In addition, 2 local varieties of the economically important crop plant rapeseed (Brassica napus var. Ability and var. Visby) were investigated with qRT-PCR and by recording the disease parameters just described. A second goal of this study was to assess the general biocontrol potential of the yet relatively unknown endophyte A. alternatum in terms of enzymatic activity and competitive behaviour against other phytopathogenic fungi. The potential of this fungus for the use in integrative pest management was investigated. The results presented here are novel findings for this fungus and have not been studied before. The microarray from Arabidopsis roots revealed that the clubroot pathogen P. brassicae suppresses its recognition by pathogen receptors of the plant and thus prevents the host to induce resistance mechanisms. The fungus A. alternatum boosted the level of the pathogen recognition-related genes BAK1 and FLS2 and thus helped to establish early plant defence responses. PCR analyses confirmed that these early responses led to salicylic acid-dependent resistance in the plants which was maintained for several days as shown by elevated levels of the PATHOGENESIS-RELATED gene PR1. Marker genes for an alternative resistance pathway that is mediated over the plant signals jasmonate and ethylene were not activated in Arabidopsis. The co-inoculation of Arabidopsis plants with the endophyte A. alternatum resulted in a significant reduction of clubroot symptoms by up to 24%. In rapeseed the reduction of disease symptoms was 19% and 28% when the plants were treated with a crude cell wall extract of A. alternatum before inoculation with the clubroot pathogen. PCR analyses from Arabidopsis showed a strong response of pathogen recognition genes to the cell wall extract and spores of the endophytic fungus. In rapeseed all of the investigated pathogen recognition genes were upregulated after the endophyte treatment but not with the clubroot pathogen. Together with the PCR results from the microarray these findings suggest that A. alternatum primes its host plant and enhances the resistance of the plant towards P. brassicae. In addition, the fungus increased biomass, stem lengths and survival rates of clubroot-infected plants. In vitro tests revealed that the endophyte can solubilise phosphate and is not very competitive against other phytopathogenic fungi such as Aspergillus or Fusarium which is likely an effect of the relatively slow growth of the endophyte on agar plates. From this study it can be concluded that i) the fungus Acremonium alternatum induces resistance mechanisms in Arabidopsis and 2 Brassica napus cultivars and facilitates the recognition of the clubroot pathogen Plasmodiophora brassicae; ii) that Arabidopsis and Brassica react differently to this beneficial microbe, a fact that has been observed for Plasmodiophora and other microorganisms as well; iii) living spores are not necessary for clubroot biocontrol in rapeseed as a crude cell wall extract reduces symptoms more efficiently. Overall the endophyte A. alternatum is a very promising candidate for the use in integrative pest management in plant strengtheners or as biocontrol agent. / Die biologische Kontrolle von Pflanzenkrankheiten gewinnt zunehmend an Bedeutung. Bodenbewohnende Mikroben wie Pilze oder Bakterien kolonisieren die Wurzeln von Pflanzen und fördern deren Wachstum. Einige dieser förderlichen Mikroben aktivieren eine schwache Abwehrreaktion in der Pflanze die sich verstärkt bei einer weiteren Infektion mit einem Krankheitserreger. Dieser Mechanismus, den man “Priming” nennt, führt zu einer verbesserten Resistenz der Pflanze gegenüber Pflanzenpathogenen. Obwohl natürliche Schädlingsbekämpfer bereits gegen eine Vielzahl an Krankheiten eingesetzt werden, weiss man über grundsätzliche molekulare Mechanismen dieser Pflanzen-Mikroben-Interaktionen nur wenig. Besonders die Rolle von Resistenzgenen ist bisher wenig erforscht, welche bei der Beziehung zwischen Pilzen und Pflanzen eine Rolle spielen. In der hier vorliegenden Arbeit wurde untersucht, wie der endophytische Pilz Acremonium alternatum die Entwicklung des Krankheitserregers Plasmodiophora brassicae in der Pflanze Arabidopsis thaliana beeinflusst. Die Kohlhernie, ausgelöst von P. brassicae, ist eine verheerende Krankheit die u. a. bei Kohl und Raps auftritt und Wurzelgallen, so genannte “Hernien”, hervorruft. Der Krankheitserreger entwickelt sich im Wurzelsystem der Pflanze und bildet Dauersporen, die bis zu 20 Jahre lang im Boden infektiös überdauern können. Ein Eindämmen der Krankheit mit Pflanzenschutzmitteln ist durch den komplexen Lebenslauf des Erregers sehr schwierig, das führte zu einer weltweiten Verbreitung der Kohlhernie. Auch in Sachsen wurden in den letzten Jahren Fälle von Kohlhernie gemeldet. Wie 2 Studien zeigen, führt die Ko-Inokulation von Kohlhernie-erkrankten Pflanzen mit A. alternatum zu einer Verringerung der Symptome in Chinakohl und Arabidopsis. Es wurde daher die Hypothese aufgestellt, dass der Pilz Resistenzmechanismen in der Pflanze anschaltet und damit ihre Immunität erhöht. Um diese Hypothese zu testen, wurden in der hier vorliegenden Studie Genexpressionsanalysen an infizierten Arabidopsiswurzeln durchgeführt. Dafür wurden die Pflanzen zunächst mit Sporen des Kohlhernieerregers und des Pilzes inokuliert, es wurde RNA aus den Wurzeln extrahiert, in cDNA umgeschrieben und diese mittels quantitativer Reverse-Transkriptase-Polymerasenkettenreaktion (RT-qPCR) untersucht. Ein Microarray von Wurzeln infizierter Pflanzen wurde durchgeführt um die Ereignisse abzubilden, die sich zeitnah nach der Infektion in den Wurzeln abspielen. Die Ergebnisse der Genexpressionsanalysen wurden dann an Arabidopsismutanten, die einen Gendefekt im jeweiligen Gen haben, und an Überexprimierer-Pflanzen verifiziert. Kohlherniesymptome an Pflanzen wurden durch eine Kategorisierung der Schadsymptome erfasst. Die allgemeine Pflanzengesundheit sowie der Entwicklungsstand der Pflanze, Stengellängen und das Frischgewicht wurden bestimmt. Zusätzlich wurden 2 Rapssorten, die in Sachsen angebaut werden, untersucht im Hinblick auf die Krankheitsenwicklung und die Reguation von Abwehrgenen. Ein weiteres Ziel dieser Arbeit war es das Biokontrollpotential des bisher schlecht untersuchten Pilzes A. alternatum zu bestimmen. Dazu wurde in vitro die Enzymaktivität des Pilzes getestet sowie seine Konkurrenzfähigkeit gegenüber anderen pflanzenpathogenen Pilzen. Das Potential des Pilzes für die Anwendung im integrierten Pflanzenschutz wurde getestet. Die hier präsentieren Ergebnisse stellen neue Erkenntnisse dar, die für diesen Pilz noch nie untersucht wurden. Der Microarray von Arabidopsiswurzeln zeigte, dass der Kohlhernieerregers die Erkennung durch die Pflanze verhindert und damit Abwehrmechanismen verhindert. Der Pilz A. alternatum förderte die Aktivität der pflanzlichen Erkennungsrezeptoren FLS2 und BAK1 und setzte damit die Erkennung von P. brassicae in Gang. PCR-Analysen ergaben, dass diese früh induzierten Abwehrmechanismen zu einer systemischen Resistenz in der Pflanze führte durch die Aktivierung des Pathogenese-relevanten Gens PR1. Genmarker, die die Aktivität eines alternativen, von Jasmonat und Ethylen vermittelten Abwehrweges anzeigen, waren nicht ativiert. Die Ko-Inokulation von Arabidopsis mit dem Endophyten führte zu einer signifikanten Reduktion der Krankheitssymptome um 24%. In Raps betrug die Reduktion 19% und 24% wenn die Pflanzen vor der Kohlhernie-Infektion mit einem Zellwandextrakt des Pilzes behandelt wurden. Mittels PCR konnte gezeigt werden, dass Gene für das Erkennen von Pathogenen in der Wurzel von Arabidopsis auf den Zellwandextrakt und Sporen des Pilzes reagieren. In Raps wurden alle der untersuchten Erkennungsgene aufreguliert nach der Infektion mit A. alternatum, nicht jedoch bei der Infektion mit P. brassicae. Zusammenfassend lässt sich sagen, dass der endophytische Pilz A. alternatum die Wirtspflanze auf eine folgende Infektion vorbereitet (Priming) und systemische Abwehr-mechanismen in der Pflanze induziert, wenn diese mit Kohlhernie infiziert ist. Außerdem treibt der Pilz das Sprosswachstum voran, erhöht die Biomasse und fördert das Überleben von Kohlhernie-infizierten Pflanzen. In vitro-Tests ergaben, dass der Endophyt Kalziumphosphat löslich machen kann und wenig kompetitiv gegenüber Pflanzenpathogenen wie Aspergillus oder Fusarium ist. Dies ist vermutlich mit dem langsameren Wachstum des Endophyten im Gegensatz zu den anderen Pilzen zu erklären. Aus den Ergebnissen dieser Arbeit lassen sich folgende Schlüsse ziehen: i) der endophytische Pilz Acremonium alternatum induziert Resistenzmechanismen in Arabidopsis und Raps und und fördert die Erkennung des Kohlhernieerregers Plasmodiophora brassicae; ii) Arabidopsis und Raps reagieren unterschiedlich auf diesen förderlichen Pilz, ein solcher Unterschied wurde bereits für Plasmodiophora und andere Mikroben beschrieben; iii) lebende Sporen des Pilzes sind nicht notwendig um Krankheitssymptome der Kohlhernie in Raps zu verringern, ein Zellwandextrakt von A. alternatum ist dafür besser geeignet. Ganz allgemein lässt sich sagen, dass der endophytische Pilz Acremonium alternatum ein sehr vielversprechender Kandidat ist für den Einsatz im integrierten Pflanzenschutz in Pflanzenstärkungsmitteln oder als Biokontrollorganismus.
23

The effects of the root endophytic fungus Acremonium strictum on plant-herbivore interactions

Jaber, Lara 12 May 2010 (has links)
No description available.
24

Evasion and Attack: Structural Studies of a Bacterial Albumin-binding Protein and of a Cephalosporin Biosynthetic Enzyme

Lejon, Sara January 2008 (has links)
<p>This thesis describes the crystal structures of two proteins in the context of combatting bacterial infections. The GA module is a bacterial albumin-binding domain from a surface protein expressed by pathogenic strains of the human commensal bacterium <i>Finegoldia magna</i>. The structure of the GA module in complex with human serum albumin (HSA) provides insights into bacterial immune evasion, where pathogenicity is acquired by the bacterial cell through the ability to coat (and disguise) itself with serum proteins. The structure shows binding of the GA module to HSA in the presence of fatty acids, and reveals interactions responsible for the host range specificity of the invading bacterium. The complex resulting from binding of the GA module to HSA readily forms stable crystals that permit structural studies of drug binding to HSA. This was exploited to study the specific binding of the drug naproxen to the albumin molecule.</p><p>Antibiotics play a major role in controlling infections by attacking invading bacteria. The enzyme deacetylcephalosporin C acetyltransferase (DAC-AT) catalyses the last step in the biosynthesis of the beta-lactam antibiotic cephalosporin C, one of the clinically most important antibiotics in current use. The enzyme uses acetyl coenzyme A as cofactor to acetylate a biosynthetic intermediate. Structures of DAC-AT in complexes with reaction intermediates have been determined. The structures suggest that the acetyl transfer reaction proceeds through a double displacement mechanism, with acetylation of a catalytic serine by the cofactor through a suggested tetrahedral transition state, followed by acetyl transfer to the intermediate through a second suggested tetrahedral transition state. The structure of DAC-AT yields valuable information for the continued study of cephalosporin biosynthesis in the context of developing new beta-lactam compounds.</p>
25

Evasion and Attack: Structural Studies of a Bacterial Albumin-binding Protein and of a Cephalosporin Biosynthetic Enzyme

Lejon, Sara January 2008 (has links)
This thesis describes the crystal structures of two proteins in the context of combatting bacterial infections. The GA module is a bacterial albumin-binding domain from a surface protein expressed by pathogenic strains of the human commensal bacterium Finegoldia magna. The structure of the GA module in complex with human serum albumin (HSA) provides insights into bacterial immune evasion, where pathogenicity is acquired by the bacterial cell through the ability to coat (and disguise) itself with serum proteins. The structure shows binding of the GA module to HSA in the presence of fatty acids, and reveals interactions responsible for the host range specificity of the invading bacterium. The complex resulting from binding of the GA module to HSA readily forms stable crystals that permit structural studies of drug binding to HSA. This was exploited to study the specific binding of the drug naproxen to the albumin molecule. Antibiotics play a major role in controlling infections by attacking invading bacteria. The enzyme deacetylcephalosporin C acetyltransferase (DAC-AT) catalyses the last step in the biosynthesis of the beta-lactam antibiotic cephalosporin C, one of the clinically most important antibiotics in current use. The enzyme uses acetyl coenzyme A as cofactor to acetylate a biosynthetic intermediate. Structures of DAC-AT in complexes with reaction intermediates have been determined. The structures suggest that the acetyl transfer reaction proceeds through a double displacement mechanism, with acetylation of a catalytic serine by the cofactor through a suggested tetrahedral transition state, followed by acetyl transfer to the intermediate through a second suggested tetrahedral transition state. The structure of DAC-AT yields valuable information for the continued study of cephalosporin biosynthesis in the context of developing new beta-lactam compounds.
26

Biological Detoxification of Enniatins

Suchfort, Rosine Ghislaine 07 November 2016 (has links)
No description available.
27

Plant breeding aspects of ryegrasses (Lolium sp.) infected with endophytic fungi

Stewart, Alan V. January 1987 (has links)
Some aspects of the presence of systemic endophytic fungi in agriculturally important New Zealand grasses were studied in relation to plant breeding. Seedling resistance to adult Argentine stem weevil feeding in perennial ryegrass, Italian ryegrass and tall fescue was found to be related to the presence of their respective Acremonium endophytes in the seed rather than to plant genetic resistance. In addition a study of perennial ryegrass revealed that this resistance was independent of endophyte viability. The seedling resistance conferred by the endophyte of Italian ryegrass was found to be beneficial for field establishment. This endophyte differs from that in perennial ryegrass and tall fescue in that it does not confer resistance to Argentine stem weevil on mature plants, but only on seedlings. The extent of plant genetic seedling tolerance to adult Argentine stem weevil feeding was limited to broad inter-specific differences, with tall fescue more tolerant than perennial ryegrass and both of these more tolerant than Italian ryegrass. This ranking corresponds with previous observations on feeding preference on mature plants. A study of factors affecting the concentration of endophyte mycelia in infected seed of perennial ryegrass revealed that plant genetic factors had little effect. The major factors studied were: 1) the endophyte concentration in the maternal parent plant directly influenced the endophyte concentration in the seed. 2) nitrogen fertilizer applications to a seed crop reduced the concentration of mycelia in the seed, with earlier applications having a greater effect. 3) application of the fungicide propiconazole (Tilt) to a seed crop reduced the endophyte concentration in the seed. 4) the endophyte concentration in the seed was found to directly influence the endophyte concentration in seedlings, six month old plants and that of seed harvested from a first year seed crop. As there have been no previous reports of tetraploid perennial ryegrass cultivars with endophyte an experiment was conducted to determine if these could be developed by the standard procedure of colchicine treatment. The results revealed that endophyte was retained following colchicine treatment.
28

Preference-performance relationships in herbivorous insects feeding on oilseed rape inoculated with soil-borne fungi

Li, Hong 03 July 2008 (has links)
No description available.
29

Estudios epidemiológicos y de patogenicidad de Monosporascus cannonballus Pollack et Uecker

Beltrán Martínez, Roberto 06 May 2008 (has links)
El ascomiceto Monosporascus cannonballus Pollack et Uecker es uno de los principales hongos asociados al síndrome del "colapso", que afecta al cultivo de cucurbitáceas en España y otros países. Las ascosporas son el inóculo principal del hongo, quedando en el suelo tras la descomposición de las raíces afectadas, pudiendo ser extraídas del suelo mediante un proceso físico, que permite su cuantificación a lo largo del tiempo. Basándose en esta técnica, se han realizado varios estudios epidemiológicos que han permitido obtener resultados innovadores. Se ha estudiado la dinámica poblacional de las ascosporas de M. cannonballus en suelos con diferentes condiciones hídricas y de cultivo. En campos con cultivo de melón, se ha observado que el nivel de ascosporas alcanza un máximo siete meses después de la plantación (3-4 meses después del final del cultivo), para ir disminuyendo después progresivamente, hasta llegar a niveles similares a los iniciales a los doce meses de la plantación. En campos con encharcamiento invernal, se ha observado un descenso progresivo del nivel de ascosporas, constatando que éstas pueden sobrevivir en suelo al menos por un periodo de tres años, sin haber perdido su infectividad. M. cannonballus ha sido considerado como un hongo termófilo, típico de zonas desérticas y semiáridas; en este estudio se ha demostrado que es capaz de sobrevivir en zonas templadas y en condiciones de encharcamiento. Se ha realizado un estudio de cuantificación de ascosporas en suelo de campos de melón de varias zonas productoras de la Comunidad Valenciana, detectándose ascosporas de M. cannonballus en todos ellos. En el momento de aparición de síntomas de "colapso", se han observado diferencias significativas entre los campos y entre las zonas síntomáticas y asintomáticas, a favor de unas u otras, según los campos. Al comparar los niveles iniciales de ascosporas en suelo con los obtenidos dos o tres meses tras el final del cultivo, se han visto situaciones contradictori / Beltrán Martínez, R. (2006). Estudios epidemiológicos y de patogenicidad de Monosporascus cannonballus Pollack et Uecker [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1865 / Palancia

Page generated in 0.0631 seconds