• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 367
  • 71
  • 52
  • 31
  • 26
  • 25
  • 18
  • 15
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 703
  • 192
  • 174
  • 114
  • 76
  • 76
  • 65
  • 64
  • 60
  • 59
  • 57
  • 57
  • 56
  • 54
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Self-Organization and Mechanics of Minimal Actin Cortices attached to artificial Bilayers

Schön, Markus 27 September 2018 (has links)
No description available.
142

Role of M1 protein and actin-associated cellular cofactors in Influenza A Virus assembly and release / Rôle de la protéine M1 et des cofacteurs cellulaires associés à l’actine dans l’assemblage et la libération du virus de la Grippe A

Dash, Shantoshini 09 October 2017 (has links)
Le virus de la grippe A (le H1N1) pdm09, généralement connu comme le virus de la grippe porcine, a causé la toute première pandémie du 21e siècle. Le virus de grippe est un virus enveloppé à ARN qui utilise la machinerie cellulaire de l’hôte pour s’assembler à la membrane plasmique de la cellule et être relargué à l’extérieur. Dans cette étude, nous nous sommes intéressés au rôle de la protéine virale de matrice M1 dans ce processus. M1 est la protéine la plus abondante et elle est extrêmement importante pour le virus de la grippe. Les 164 résidus de la protéine M1 situés en N-terminal comprennent deux domaines basiques qui sont : le triplet d’arginine (R76/77/78) sur l'hélice 5 et le signal de localisation nucléaire sur l'hélice 6. Ils sont très bien conservés parmi les sous types de la grippe. Premièrement, pour étudier l'interaction M1-membrane, nous avons développé et standardisé un système minimal regroupant M1+M2+NS1/NEP (±M) dans lequel nous pourrons aussi observer la production de VLPs incorporant M1. En utilisant ce système, nous avons créé des mutations dans le triplet d’arginine de M1 et avons regardé l'accrochage de M1 à la membrane ainsi que l'incorporation de M1 dans les VLPs. La conséquence de ces mutations est que la protéine M1 reste dans le cytosol et qu’il y a une réduction drastique du nombre de VLPs contenant M1 relargués. La mutation du triplet arginine par un triplet alanine inhibe complètement la production de VLPs. De plus, un virus mutant avec ce triplet d’alanine n’est plus capable de produire des virions infectieux. Ainsi nous avons mis en évidence l'importance du triplet arginine dans l'accrochage de M1 à la membrane et la production de virions. Par conséquent, pour étudier l’utilisation de l'actine et de ses cofacteurs par le virus, nous avons utilisé de petits ARN interférents pour inhiber l’expression de gènes dans un système minimal de production de VLPs. Nous avons observé une réduction de la production de VLPs contenant M1 en inhibant Rac1et une augmentation de la libération de VLPs contenant M1 en inhibant RhoA et Cdc42. En utilisant un virus IAV (H3N2)-nanoluciferase sur les cellules A549 pulmonaires, nous avons étudié l'effet de la déplétion des RhoGTPases et de leurs effecteurs sur la production virale. Nous avons observé qu'avec Rac1, l'inhibition de Wave2 et Arp3 réduit aussi le pouvoir infectieux du virus H3N2 au cours des étapes tardives de l'infection sans affecter la phase précoce de d'infection. Les protéines interagissant avec M1 ont été identifiées par LC-MS/MS et incluent la cofiline et l’annexine A2. La cofiline, déjà connue pour participer à la réorganisation de l’actine pendant la phase tardive de l’infection par le virus de la grippe, est aussi un effecteur activé par Rac1, Wave2, Pak1 et LIMK afin de former des lamellipodes. L’annexine A2 est aussi connue pour séquestrer la PS au niveau du feuillet interne de la membrane plasmique cellulaire. La reconnaissance de ces groupes de PS par la protéine virale M1 amorcera finalement le processus d’assemblage viral. Ainsi, nos résultats, en décrivant le mécanisme d'accrochage de M1 à la membrane, montrent aussi que Rac1, Wave2 et Arp3 sont probablement des facteurs pro-viraux de l’assemblage et de la libération des virus de la grippe A. / The influenza A(H1N1)pdm09 virus, commonly known as swine flu, caused the very first pandemic of 21st century. Influenza virus, an enveloped RNA virus, uses the host cellular machinery for its assembly and release from the host cell plasma membrane. In this study, we were interested in the role of the viral M1 matrix protein in this process. M1 is the most abundant and vitally important protein present in influenza virus. The N-terminal 164 residues of M1 protein comprise of two basic domains which are the arginine triplet (R76/77/78) on helix 5 and the nuclear localization signal on helix 6, which are very well conserved among the influenza A virus subtypes. Firstly, to study M1-membrane interaction, we developed and standardized a minimal system consisting of M1+M2+NS1/NEP(±M) in which we could also observe production of VLPs incorporating M1. Using this system, we performed mutations in the M1 arginine triplet and looked at changes in M1 membrane attachment and M1 incorporation in VLP. As a result of these mutations, the M1 protein remained cytosolic and there was a drastic reduction in M1 containing VLP release. Mutating the entire arginine triplet to an alanine triplet inhibited VLP production completely. Also, a mutant virus with this alanine triplet failed completely to produce infectious virions. Thus we established the importance of the arginine triplet in M1 membrane attachment and virion production. Consequently, to study manipulation of actin and its cofactors by the virus, we used siRNA mediated gene silencing in the VLP producing minimal system. We observed a reduction in M1 containing VLP production upon inhibition of Rac1 and enhancement of M1 containing VLPs released upon inhibition of RhoA and Cdc42. By using an IAV (H3N2)-nanoluciferase virus on pulmonary A549 cells, we studied effect of depletion of RhoGTPases and their effectors on virus production. We observed that along with Rac1, inhibition of Wave2 and Arp3 also reduces the infectivity of H3N2 virus at the late phase of infection without any effect on the early phase of infection. The proteins interacting with M1 were identified by LC-MS/MS and included cofilin and annexin A2. Cofilin, already known to take part in the actin reorganization during the late phase of influenza A virus infection, is also one of the downstream effector linked to Rac1, Wave2, Pak1 and LIMK, for lamellipodia formation. Annexin A2 is also known to sequester PS at the inner leaflet of the cell plasma membrane. The viral protein M1 is able to recognize these clusters of PS, which ultimately initiates the viral assembly process. Thus, our results, while defining the mechanism of M1 membrane attachment, also indicate the possible involvement of Rac1, Wave2 and Arp3 as pro-viral factors in IAV assembly and release.
143

Mise au point d'une stratégie pharmacologique originale pour l'obtention de composés anti-cancéreux anti-migratoires / Setting up of an original pharmacological strategy to discover antimigration anticancerous compounds

Hayot, Caroline 12 May 2006 (has links)
La migration cellulaire est une étape clé intervenant à un stade précoce de la dissémination des cellules cancéreuses dans l’organisme, et est donc responsable de la formation des métastases qui tuent environ nonante pourcent des patients atteints de cancer. De plus, ces cellules migrantes résistent à l’apoptose grâce à l’activation constitutive de voies de signalisation anti-apoptotiques, et développent donc une résistance vis-à-vis des traitements anti-cancéreux actuels qui sont généralement pro-apoptotiques. Nous avons pris pour cible ce processus de migration cellulaire dans l’espoir d’identifier des agents anti-migratoires qui permettraient de lutter contre la formation des métastases et de restaurer chez les cellules migrantes une certaine sensibilité aux traitements pro-apoptotiques.<p>Dans la première partie de notre travail, nous avons analysé les effets anti-angiogéniques et anti-migratoires des agents anti-tubuline. Nous avons confirmé que le Taxol® présentait une action anti-angiogénique à des concentrations non-cytotoxiques. Nous avons ensuite démontré que d’autres agents anti-tubuline exerçaient la même action que le Taxol®, et que cette action leur était spécifique. Nous avons montré que certains de ces agents étaient également capables de réduire la migration de lignées cellulaires tumorales, toujours à des concentrations non-cytotoxiques, et que cette action pouvait s’exercer via une affectation du cytosquelette d’actine.<p>Dans la deuxième partie du présent travail, nous avons démontré l’importance de la mise au point d’une approche pharmacologique originale permettant l’identification de composés à action anti-migratoire puisque l’outil utilisé par le U.S. National Cancer Institute pour le criblage de nouvelles molécules anti-cancéreuses ne permet pas de discerner l’activité anti-migratoire des molécules testées.<p>Enfin dans la troisième partie de ce travail, après avoir souligné la raison du choix de l’actine comme cible pour inhiber la migration cellulaire, nous avons développé une stratégie pharmacologique in vitro originale de découverte de composés anti-actine à activité anti-migratoire. Grâce à une approche divisée en plusieurs étapes, à savoir un essai de cytotoxicité, une étude de la dynamique de la polymérisation d’actine en tubes ou sur cellules entières, et des essais de migration bidimensionnelle sur cellules individuelles ou sur population cellulaire, nous avons montré d’une part que des molécules connues pour affecter le cytosquelette actinique étaient capables d’affecter la migration cellulaire, et d’autre part que la méthodologie que nous avons développée permettait bien l’identification de composés affectant l’actine et capables de réduire la migration de cellules tumorales. En conclusion, cette stratégie in vitro pourrait être utilisée dans l’identification de nouvelles molécules à activité anti-migratoire pour lutter contre le cancer.<p> / Doctorat en sciences pharmaceutiques / info:eu-repo/semantics/nonPublished
144

DISHEVELLED-ASSOCIATED ACTIVATOR OF MORPHOGENESIS 1 (DAAM1) IS REQUIRED FOR HEART MORPHOGENESIS

Li, Deqiang 02 February 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Dishevelled-associated activator of morphogenesis 1 (Daam1), a member of the formin protein family, has been implicated in the non-canonical Wnt mediated Planar Cell Polarity (PCP) signaling pathway. Although the studies in Drosophila Daam1 and Xenopus Daam1 generated inconsistent conclusions regarding the function of Daam1, the biological function of mammalian Daam1 was not evaluated. In this study, we used a mouse promoter trap technology to create Daam1 deficient mice to analyze the role of Daam1 in embryonic development and organogenesis. Daam1 is highly expressed in the developing heart. The majority of Daam1 mutant mice died between embryonic day 14.5 and birth, exhibiting a variety of heart defects, which include ventricular noncompaction, ventricular septal defects, and double outlet right ventricle. About 10% mutant mice survive to adulthood, and these survivors do not show significantly compromised heart function based on echocardiographic analyses. However, all of these mutant survivors have ventricular noncompaction with a range of severities. A conditional rescue experiment using a cardiac specific Cre mouse line, Nkx2-5Cre, confirmed that the cardiac defects are the primary cause of death in Daam1 mutants. Both in vivo and ex vivo analyses revealed that Daam1 is essential for regulating non-sarcomeric filamentous actin assembly in cardiomyocytes, which likely contributes to cardiac morphogenesis and ventricular wall maturation. Biochemical studies further suggested that Daam1 is not a key signaling component in regulating the activation of small GTPases, such as RhoA, Rac1 and Cdc42. In conclusion, our studies demonstrated that Daam1 is essential for cardiac morphogenesis likely through its regulation of cytoskeletal architecture in the developing cardiomyocytes. / indefinitely
145

Novel Coronin7 interactions with Cdc42 and N-WASP regulate actin organization and Golgi morphology

Bhattacharya, K., Swaminathan, Karthic, Peche, V.S., Clemen, C.S., Knyphausen, P., Lammers, M., Noegel, A.A., Rastetter, R.H. 28 February 2020 (has links)
Yes / The contribution of the actin cytoskeleton to the unique architecture of the Golgi complex is manifold. An important player in this process is Coronin7 (CRN7), a Golgi-resident protein that stabilizes F-actin assembly at the trans-Golgi network (TGN) thereby facilitating anterograde trafficking. Here, we establish that CRN7-mediated association of F-actin with the Golgi apparatus is distinctly modulated via the small Rho GTPase Cdc42 and N-WASP. We identify N-WASP as a novel interaction partner of CRN7 and demonstrate that CRN7 restricts spurious F-actin reorganizations by repressing N-WASP ‘hyperactivity’ upon constitutive Cdc42 activation. Loss of CRN7 leads to increased cellular F-actin content and causes a concomitant disruption of the Golgi structure. CRN7 harbours a Cdc42- and Rac-interactive binding (CRIB) motif in its tandem β-propellers and binds selectively to GDP-bound Cdc42N17 mutant. We speculate that CRN7 can act as a cofactor for active Cdc42 generation. Mutation of CRIB motif residues that abrogate Cdc42 binding to CRN7 also fail to rescue the cellular defects in fibroblasts derived from CRN7 KO mice. Cdc42N17 overexpression partially rescued the KO phenotypes whereas N-WASP overexpression failed to do so. We conclude that CRN7 spatiotemporally influences F-actin organization and Golgi integrity in a Cdc42- and N-WASP-dependent manner. / This work was supported by SFB 670 and DFG NO 113/22. K.B. was supported by a fellowship from the NRW International Graduate School “From Embryo to Old Age: the Cell Biology and Genetics of Health and Disease” (IGSDHD), Cologne.
146

Coordination by Cdc42 of actin, contractility, and adhesion for melanoblast movement in mouse skin

Woodham, E.F., Paul, N.R., Tyrrell, B., Spence, H.J., Swaminathan, Karthic, Scribner, M.R., Giampazolias, E., Hedley, A., Clark, W., Kage, F., Marston, D.J., Hahn, K.M., Tait, S.W.G., Larue, L., Brakebusch, C.H., Insall, R.H., Machesky, L.M. 28 February 2020 (has links)
Yes / The individual molecular pathways downstream of Cdc42, Rac, and Rho GTPases are well documented, but we know surprisingly little about how these pathways are coordinated when cells move in a complex environment in vivo. In the developing embryo, melanoblasts originating from the neural crest must traverse the dermis to reach the epidermis of the skin and hair follicles. We previously established that Rac1 signals via Scar/WAVE and Arp2/3 to effect pseudopod extension and migration of melanoblasts in skin. Here we show that RhoA is redundant in the melanocyte lineage but that Cdc42 coordinates multiple motility systems independent of Rac1. Similar to Rac1 knockouts, Cdc42 null mice displayed a severe loss of pigmentation, and melanoblasts showed cell-cycle progression, migration, and cytokinesis defects. However, unlike Rac1 knockouts, Cdc42 null melanoblasts were elongated and displayed large, bulky pseudopods with dynamic actin bursts. Despite assuming an elongated shape usually associated with fast mesenchymal motility, Cdc42 knockout melanoblasts migrated slowly and inefficiently in the epidermis, with nearly static pseudopods. Although much of the basic actin machinery was intact, Cdc42 null cells lacked the ability to polarize their Golgi and coordinate motility systems for efficient movement. Loss of Cdc42 de-coupled three main systems: actin assembly via the formin FMNL2 and Arp2/3, active myosin-II localization, and integrin-based adhesion dynamics. / Cancer Research UK (to L.M.M. [A17196], R.H.I. [A19257], and S.W.G.T.) and NIH grants P01-GM103723 and P41-EB002025 (to K.M.H.). N.R.P. is supported by a Pancreatic Cancer Research Fund grant (to L.M.M.). Funding to Prof. Rottner by the Deutsche Forschungsgemeinschaft (grant RO2414/3-2).
147

WASP restricts active Rac to maintain cells' front-rear polarization

Amato, C., Thomason, P.A., Davidson, A.J., Swaminathan, Karthic, Ismail, S., Machesky, L.M., Insall, R.H. 28 February 2020 (has links)
Yes / Efficient motility requires polarized cells, with pseudopods at the front and a retracting rear. Polarization is maintained by restricting the pseudopod catalyst, active Rac, to the front. Here, we show that the actin nucleation-promoting factor Wiskott-Aldrich syndrome protein (WASP) contributes to maintenance of front-rear polarity by controlling localization and cellular levels of active Rac. Dictyostelium cells lacking WASP inappropriately activate Rac at the rear, which affects their polarity and speed. WASP’s Cdc42 and Rac interacting binding (“CRIB”) motif has been thought to be essential for its activation. However, we show that the CRIB motif’s biological role is unexpectedly complex. WASP CRIB mutants are no longer able to restrict Rac activity to the front, and cannot generate new pseudopods when SCAR/WAVE is absent. Overall levels of Rac activity also increase when WASP is unable to bind to Rac. However, WASP without a functional CRIB domain localizes normally at clathrin pits during endocytosis, and activates Arp2/3 complex. Similarly, chemical inhibition of Rac does not affect WASP localization or activation at sites of endocytosis. Thus, the interaction between small GTPases and WASP is more complex than previously thought—Rac regulates a subset of WASP functions, but WASP reciprocally restricts active Rac through its CRIB motif. / Cancer Research UK grants A15672, A24450, and multidisciplinary grant A20017.
148

<b>The Arp2/3 complex participates in the Exocytosis and endocytosis of cellulose synthase complex through regulating the dynamic homeostasis of cortical actin arrays in arabidopsis</b>

Liyuan Xu (17476110) 30 November 2024 (has links)
<p dir="ltr">The actin cytoskeleton acts as a dynamic platform to coordinate various cellular activities, such as exocytosis and endocytosis, that require cells to precisely control when and where specific actin arrays are generated. Actin filament nucleators, including the conserved Actin-Related Protein 2/3 (Arp2/3) complex that creates dendritic networks of branched filaments, as well as a large family of formins that typically generate long, unbranched filaments and bundles, are key regulators of the dynamic homeostasis of cortical actin arrays. To elucidate the molecular mechanisms that underpin how these two nucleators cooperate, or compete, with each other to maintain the homeostatic network of cortical actin in plant cells, we combined the ability to image single filament dynamics in living plant epidermal cells with genetic and/or chemical approaches to stably or acutely disrupt nucleator activity. We found that both the Arp2/3 complex and formins contributed to side-branched filament nucleation in vivo but generated new daughter filaments with distinct dynamic properties. Surprisingly, simultaneous inhibition of both nucleators significantly enhanced the frequency of <i>de novo</i> nucleation events though a mechanism that remains unexplained. To understand how the Arp2/3 complex participates in exo- and endocytic trafficking, we employed the cellulose synthase (CESA) complex (CSC) as a cargo marker and discovered that the Arp2/3 complex contributed to the late stages of exocytosis of CSCs at the PM. To directly assess the internalization process of CSCs, we constructed a functional, fluorescense-tagged-CESA6 marker and developed single-particle live-cell imaging approaches to visualize and quantify the dynamic behavior of CSCs on the PM during internalization. We found that actin, myosin, as well as the Arp2/3 complex were involved in CSC internalization events. Collectively, these results reveal a previously undescribed role for the Arp2/3 complex in exocytosis and internalization in plant cells, possibly through regulating the dynamic homeostasis of the cortical actin cytoskeleton.</p>
149

Bundles of Semi-flexible Cytoskeletal Filaments

Strehle, Dan 30 June 2014 (has links) (PDF)
Schaut man durch ein Mikroskop auf eine biologische Zelle mit angefärbten Zytoskelett, so erblickt man lange, mehr oder minder gerade Objekte. Mit ziemlicher Sicherheit gehören diese zu einer von drei Arten von Zytoskelettfilamenten -- Aktin- oder Mikrofilamente, Intermediärfilamente und Mikrotubuli. Schon seit mehreren Jahrzehnten versucht man die mechanischen Eigenschaften lebender Zellen nicht nur zu beschreiben, sondern ihr Verhalten von zwei tieferen Ebenen ausgehend zu verstehen: Inwiefern beschreiben die Eigenschaften von Filamentnetzwerken und -gelen die Zellmechanik und, noch tiefgreifender, wie bestimmen eigentlich die einzelnen Filamente die Netzwerkmechanik. Das Verständnis der Mechanik homogener und isotroper, verhedderter als auch quervernetzter Gele ist dabei erstaunlich detailreich, ohne jedoch vollständig dem jüngeren Verständnis von Zellen als glassartige Systeme zu entsprechen. In den letzten Jahren sind daher anisotrope Strukturen mehr und mehr in den Fokus gerückt, die die Bandbreite möglichen mechanischen Verhaltens enorm bereichern. Die vorliegende Arbeit beschäftigt sich mit solch einem hochgradig anisotropen System -- nämlich Aktinbündeln -- unter drei Gesichtspunkten. Mit Hilfe von aktiven Biegedeformationen wird ein funktionales Modul, das eine differentielle Antwort auf verschiedenen Zeitskalen liefert, identifiziert. Es handelt sich um Aktinfilamente, die durch transiente Quervernetzer gebündelt werden. Während sich das System nach kurz anhaltenden Deformation völlig elastisch verhält, sorgt eine Restrukturierung der Quervernetzer während langanhaltender Deformationen für eine plastische Verformung des Bündels. In einem weiteren Aspekt widmet sich die Arbeit der frequenz- und längenabhängigen Biegesteifigkeit. Die Methode des Bündel-Wigglings, das Induzieren von \"Seilwellen\", wird dabei genutzt, um aus der Wellenform die Biegesteifigkeit zu berechnen. Bündel von Aktinbündeln zeigen dabei ein Verhalten, das vom klassischen Worm-like-chain-Modell abweicht und stattdessen durch das Worm-like-bundle-Modell beschrieben werden kann. Der letzte Aspekt dieser Arbeit untersucht den Musterbildungsprozess bei der Entstehung von Aktinbündeln. Gänzlich unerwartet entstehen quasi-isotrope Strukturen mit langreichweitiger Ordnung, wenn der Bündelungsprozess erst nach der Polymerisation von Filamenten frei von zusätzlichen mechanischen Einwirkungen einsetzt. Da dieser Zustand nicht von der klassischen Flüssigkristalltheorie vorhergesagt wird, soll eine Simulation eine Hypothese zum Entstehungsmechanismus testen. Die Annahme einer lateralen Kondensation von Filamenten zu Bündeln reicht demnach aus, um die beobachteten Strukturen zu erzeugen. Diese Arbeit leistet somit einen Beitrag zum Verständnis hochgradig anisotroper Strukturen und deren Überstrukturen, wie sie auch in lebendigen Zellen reichlich vorhanden sind. / Being the most basic unit of living organisms, the cell is a complex entity comprising thousands of different proteins. Yet only very few of which are considered to play a leading part in the cell’s mechanical integrity. The biopolymers actin, intermediate filaments and microtubules constitute the so-called cytoskeleton – a highly dynamic, constantly restructuring scaffold endowing the cell not only with integrity to sustain mechanical perturbations but also with the ability to rapidly reorganize or even drive directed motion. Actin has been regarded to be the protagonist and tremendous efforts have been made to understand passive actin networks using concepts from polymer rheology and statistical mechanics. In bottom-up approaches isotropic, homogeneous actin-gels are well-characterized with rheological methods that measure elastic and viscous properties on different time scales. Cells, however, are not exclusively isotropic networks of any of the mentioned filaments. Rather, actin alone can already be organized into heterogeneous and highly anisotropic structures like bundles. These heterogeneous structures have only come into focus recently with theoretical work addressing bundle networks. and, in the case of the worm-like bundle theory, individual bundles. This work aims at characterizing bundles and bundle-crosslinker systems mechanically in two complementary approaches – in the time as well as in the frequency domain. In addition, it illuminates a bundle formation mechanism that leads to bundle networks displaying higher ordering.
150

Etude biochimique comparative des "Actin Depolymerizing Factors"(ADFs) d'Arabidopsis : activité inattendue de pontage des filaments d'actine pour les ADFs appartenant à la sous-classe III / Comparative biochemical analysis of Arabidopsis Actin-Depolymerizing Factors (ADFs) : unexpected actin-crosslinking activity for subclass III ADFs

Tholl, Stéphane 02 March 2012 (has links)
L'organisation et la dynamique du cytosquelette d'actine sont finement régulées par une multitude de "actin-binding proteins" (ABPs). Parmi ces dernières, les ADFs (actin-depolymerizing factors) jouent un rôle majeur dans le turnover des filaments d'actine en induisant leur découpage et en facilitant leur dépolymérisation. Arabidopsis thaliana possède 11 protéines ADFs fonctionnelles qui peuvent être classées en 4 sous-classes sur la base de leur profil d'expression et liens phylogénétiques. Nous démontrons que l’ADF5 et l’ADF9 de la sous-classe III sont des ADFs atypiques puisqu’elles n’induisent pas la dépolymérisation des filaments d’actine. Au contraire, elles montrent une forte capacité à stabiliser et ponter les filaments d’actine en longs câbles in vitro ainsi que in vivo. Nous décrivons la caractérisation d’un nouveau mutant knockout d’Arabidopsis. Les données suggèrent un rôle d’ADF9 dans l’élongation cellulaire. Ainsi, l’hypocotyle est significativement plus long dans les mutants adf9 que dans les plantules sauvages, et ce phénotype est amplifié par des conditions de croissance à l’obscurité dans lesquelles le gène ADF9 est normalement préférentiellement exprimé. L’analyse des cellules épidermiques d’hypocotyle indique que ce phénotype est essentiellement dut à une augmentation de l’élongation cellulaire. De manière surprenante, les plantules mutantes adf9 présentent également des racines plus courtes que les contrôles, suggérant un lien complexe entre l’organisation du cytosquelette d’actine et l’élongation cellulaire. Finalement, la capacité réduite du cal issue des plantules adf9 à proliférer suggère également un rôle d’ADF9 dans la division cellulaire. / Actin cytoskeleton organization and dynamics are tightly regulated by many actin-binding proteins (ABPs). Among ABPs, the actin-depolymerizing factors (ADFs) play a major role in actin filament turnover by promoting actin filament severing and facilitating pointed end depolymerization. Arabidopsis thaliana has 11 functional proteins that can be classified into four subclasses according to their expression profile and phylogenetic relationships. We provide evidence that subclass III ADF5 and ADF9 are unconventional ADFs since they do not display typical actin filament depolymerizing activities. Instead, they exhibit opposite activities with a surprisingly high ability to stabilize and crosslink actin filaments into long and thick actin bundles both in vitro and in live cells. Competition experiments with ADF1 support that ADF9 antagonizes the depolymerizing activity of conventional ADFs. We report the characterization of a not yet described knockout Arabidopsis mutant. Data strongly suggests a role for ADF9 in cell elongation. Indeed, hypocotyls are significantly longer in adf9 mutant than in wild- type seedlings, and this phenotype is enhanced in dark growth conditions in which the ADF9 gene is normally preferentially expressed. The analysis of hypocotyl epidermal cells indicates that this phenotype is essentially due to an increase of cell expansion. Surprisingly, adf9 seedlings exhibit shorter roots than control plants, suggesting a complex link between actin cytoskeleton organization and cell elongation. Finally, the reduced ability of adf9- derived calli to proliferate supports a role for ADF9 in cell division as well.

Page generated in 0.0371 seconds