• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 24
  • 12
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

DEVELOPMENT OF ARYL ISONITRILES AS ANTIMICROBIAL AGENTS, AND TOTAL SYNTHESIS OF 17-NOR-EXCELSINIDINE

Kwaku Kyei-Baffour (6616715) 15 May 2019 (has links)
<p> </p> <p>Infectious diseases caused by bacteria, fungi, and plasmodium parasites are a huge global health problem which ultimately leads to millions of deaths annually. The emergence of strains that exhibit resistance to nearly every class of antimicrobial agents, and the inability to keep up with these resistance trends has brought to the fore the need for new therapeutic agents (antibacterial, antifungal, and antimalarial) with novel scaffolds and functionalities capable of targeting microbial resistance. A novel class of compounds featuring an aryl isonitrile moiety has been discovered that exhibits potent inhibitory activity against several clinically relevant strains of methicillin-resistant <i>Staphylococcus aureus</i> (MRSA). Synthesis, structure-activity relationship (SAR) studies, and biological investigations have led to lead molecules that exhibit anti-MRSA inhibitory activity as low as 1 – 2 µM. The most potent compounds have also been shown to have low toxicity against mammalian cells and exhibit <i>in vivo</i> efficacy in MRSA skin and thigh infection mouse models.</p> <p>The novel aryl isonitriles have also been evaluated for antifungal activity. This study examines the SAR of aryl isonitrile compounds and showed the isonitriles as compounds that exhibit broad spectrum antifungal activity against species of <i>Candida</i> and <i>Cryptococcus</i>. The most potent derivatives are capable of inhibiting growth of these pathogens at concentrations as low as 0.5 µM. Notably, the most active compounds exhibit excellent safety profile and are non-toxic to mammalian cells up to 256 µM.</p> <p>Beyond the antibacterial and antifungal activities, structure-antimalarial relationship analysis of over 40 novel aryl isonitrile compounds has established the importance of the isonitrile functionality as an important moiety for antimalarial activity. Of the many isonitrile compounds exhibiting potent antimalarial activity, two have emerged as leads with activity comparable to that of Artemisinin. The SAR details presented in this study will prove essential for the development new aryl isonitrile analogues to advance them to the next step in the antimalarial drug discovery process.</p> <p>17-nor-Excelsinidine, a zwitterion monoterpene indole alkaloid isolated from <i>Alstonia scholaris</i> is a subject of synthetic scrutiny. This is primarily due to its intriguing chemical structure which includes a bridged bicyclic ammonium moiety, and its anti-adenovirus and anti-HSV activity. Herein we describe a six-step total synthesis of (±)-17-nor-Excelsinidine from tryptamine. Key to the success of this synthesis is the use of palladium-catalyzed carbonylative heck lactamization methodology which built the 6, 7-membered ring lactam in one step. The resulting pentacyclic product, beyond facilitating the easy access to (±)-17-nor-Excelsinidine, could also serve as a precursor to other related indole alkaloids.</p> <br> <p> </p> <p></p>
22

Elaboration, caractérisation, dopages et évaluations in vitro et in vivo de matériaux hybrides : Tissus de fibres de carbone / Phosphates de calcium / Synthesis, characterization, doping and in vitro and in vivo biological evaluations of hybrid materials : Carbon fiber cloths / Calcium phosphates

Olivier, Florian 04 December 2018 (has links)
Ce travail a consisté à optimiser la synthèse de phosphates de calcium (CaP) déposés sur tissus de fibres de carbone (TFC) par procédé de sono-électrodéposition afin d’obtenir des revêtements uniformes. Les paramètres électrochimiques clés optimisés sont le type et la durée de polarisation cathodique ainsi que la température de l’électrolyte. Pour un potentiel constant de -1 V à 70 °C, un régime d’électrolyse contrôlé de l’eau conduit à la formation d’un revêtement plaquettaire d’hydroxyapatite déficitaire en calcium (CDA) carbonatée. Les plaquettes sont composées de particules lamellaires (de quelques dizaines à centaines de nm) constituées de CDA carbonatée de structure ordonnée au coeur et de structure désordonnée car hydratée en surface des particules, organisation typique des apatites biomimétiques. Le matériau hybride a été dopé en strontium, engendrant la formation de revêtements où les ions Ca²+ sont substitués par des ions Sr²+ de manière contrôlée, conférant au biomatériau de nouvelles propriétés en vue d’une application en régénération osseuse. Ce travail a aussi démontré la possibilité d’adsorber de façon sélective des principes actifs ciblés (tétracycline, naproxène, aspirine) dans chaque constituant du matériau hybride. Les courbes de désorption ont mis en évidence deux modes de libération selon le principe actif.Une évaluation biologique des différentes matériaux hybrides a été réalisée. L’étude in vitro a porté sur la viabilité et la prolifération d’ostéoblastes humains en surface des biomatériaux hybrides, démontrant leur biocompatibilité. L’intérêt d’un dopage (Sr²+, aspirine et naproxène) sur l’activité des ostéoblastes a été démontré. Une expérience pilote in vivo a été menée, consistant à créer un défaut osseux dans des fémurs de rats et à étudier l’influence du type de biomatériaux TFC/CaP sur les évolutions quantitative et qualitative de la régénération osseuse. / Optimization of the synthesis of calcium phosphates (CaP) on carbon fiber cloths (TFC) was performed in using sono-electrodeposition process in order to obtain uniform coatings. The electrochemical potential applied and the electrolyte temperature during the synthesis were determined as being key parameters. For a constant potential of -1 V at 70 ° C, a controlled water electrolysis regime results in the deposit of plate-like calcium-deficient apatite (CDA). This plate-like particles (from a few tens to hundreds of nm in length) consist in an ordered structure of carbonated CDA in their core and in a disordered structure in the hydrated surface, a typical organization of biomimetic apatites. The hybrid material was doped with strontium, resulting in a carbonated CDA coating where the Ca²+ ions are controllably substituted by Sr²+ ions, leading to new properties for a bone regeneration application. This work has also shown the possibility of selectively adsorb targeted active molecules (tetracycline, naproxen, aspirin) in each component of the hybrid material. The desorption curves revealed two modes of release depending on the active molecule.A biological evaluation of the different hybrid materials was carried out. The in vitro study investigated the viability and proliferation of human osteoblasts at the surface of hybrid materials, demonstrating their biocompatibility. The interest of a doping (Sr²+, aspirin and naproxen) on osteoblast activity was demonstrated. An in vivo pilot experiment was conducted, through the creation of a bone defect in rat thighbones to study the influence of TFC/CaP biomaterials on the quantitative and qualitative evolutions of bone regeneration.
23

AMBIENT IONIZATION MASS SPECTROMETRY FOR HIGH THROUGHPUT BIOANALYSIS

Nicolas Mauricio Morato Gutierrez (16635960) 25 July 2023 (has links)
<p>The rapid analysis of complex samples using mass spectrometry (MS) provides valuable information in both point-of-care (e.g. drug testing) and laboratory-based applications, including the generation of spectral libraries for classification of biosamples, the identification of biomarkers through large-scale studies, as well as the synthesis and bioactivity assessments of large compound sets necessary for drug discovery. In all these cases, the inherent speed of MS is attractive, but rarely fully utilized due to the widespread use of sample purification techniques prior to analysis. Ambient ionization methodologies can help circumvent this drawback by facilitating high-throughput qualitative and quantitative analysis directly from the complex samples without any need for work-up. For instance, the use of swabs or paper substrates allows for rapid identification, quantification, and confirmation, of drugs of abuse from biofluids or surfaces of forensic interest in a matter of minutes, as described in the first two chapters of this dissertation. Faster analysis can be achieved using an automated desorption electrospray ionization (DESI) platform which allows for the rapid and direct screening of complex-sample microarrays with throughputs better than 1 sample per second, giving access to rich spectral information from tens of thousands of samples per day. The development of the bioanalytical capabilities of this platform, particularly within the context of drug discovery (e.g. bioactivity assays, biosample analysis), is described across most other chapters of this dissertation. The use of DESI, a contactless ambient ionization method developed in our laboratory and whose 20 years of history are overviewed in the introduction of this document, provides an additional advantage as the secondary microdroplets generated through the DESI process act as reaction vessels that can accelerate organic reactions by up to six orders of magnitude, facilitating on-the-fly synthesis of new compounds from arrays of starting materials. Unique implications of this microdroplet chemistry in the prebiotic synthesis of peptides and spontaneous redox chemistry at air-solution interfaces, together with its practical applications to the synthesis of new drug molecules, are also overviewed. The success obtained with the first automated DESI-MS system, developed within the DARPA Make It program, led to increased interest in a new-generation platform which was designed over the past year, as overviewed in the last section of this dissertation, and which is currently being installed for validation prior to the transfer of the technology to NCATS, where we anticipate it will make a significant impact through the consolidation and acceleration of the early drug discovery workflow.</p>
24

TYROSINE PHOSPHORYLATION MEDIATED REMODELING OF THE ERYTHROCYTE MEMBRANE IN SICKLE CELL DISEASE

John M Hausman (14043162) 04 November 2022 (has links)
<p>The pathological hallmarks of sickle cell disease originate from a single mutation of the beta hemoglobin gene resulting in a valine at position 6 instead of the canonical glutamic acid. This small change perpetuates many factors, manifesting into chronic embolic processes in the microvasculature, causing painful vaso-occlusive episodes and eventual organ failure. There have been numerous therapies developed to reduce the mortality of sickle cell ranging from agents to induce production of fetal hemoglobin to chronic blood transfusions. Although each of these options are effective at improving the quality of life for sickle cell patients, they only treat one aspect of the disease and, for some, become ineffective over time. In the hope of producing a better therapy, a better understanding of the pathogenesis of vaso-occlusive episodes is needed. While many models have been offered to account for these vaso-occlusive events, one recently proposed mechanism stems from the elevated tyrosine phosphorylation of the cytoplasmic domain of the major erythrocyte membrane protein, Band 3. Band 3 serves as a hub for many critical proteins in the red cell. It binds ankyrin, which associates the spectrin cortical cytoskeleton to the red cell membrane, deoxygenated hemoglobin, the kinases Wnk1 and OSR1, which regulate cation transport, and a glycolytic enzyme metabolon that regulates the production of ATP and glutathione. When Band 3 is tyrosine phosphorylated, each of these proteins dissociate, causing significant changes to red cell homeostasis. These changes include an accumulation of reactive oxygen species, vesiculation and release of prothrombotic microvesicles, leakage of cell free hemoglobin, and a decrease in cell volume. Normally, Band 3 exists in a predominantly unphosphorylated state, however, in sickle cell disease, Band 3 is abundantly tyrosine phosphorylated. Reduction in the tyrosine phosphorylation of Band 3 has been documented to prevent the release of microvesicles and hemoglobin from sickle cell red blood cells. Because these microvesicles and cell free hemoglobin contribute to the vaso-occlusive episodes in sickle cell patients, inhibiting the mechanism for their release offers a potential therapeutic option. But to accomplish this, the molecular cause for the elevated tyrosine phosphorylation in sickle cell disease must be identified. Since tyrosine phosphorylation is performed by a tyrosine kinase and removed by a tyrosine phosphatase, the elevation in phosphorylation must be due to changes in both of these processes. Unfortunately, the identity and nature of these kinases and phosphatases are poorly understood. In this dissertation, I identified the tyrosine kinases Syk, Lyn, and Src attributed to Band 3</p> <p>15</p> <p>phosphorylation that facilitates the release of microvesicles and hemoglobin in sickle cell red blood cells. Inhibition of Syk or one of the two Src family kinases is sufficient to prevent the destabilization of the red blood cell membrane. These kinases function in a hierarchy, where one of the three Src family kinase, Lyn phosphorylates Syk, activating it, and promoting the phosphorylation of Band 3 at tyrosines 8 and 21. Prevention of either phosphorylation event prevents the release of microvesicles and cell free hemoglobin. I also report the identification of PTP1B as the tyrosine phosphatase responsible for maintaining Band 3 in an unphosphorylated state. Interestingly, in sickle cell disease, this tyrosine phosphatase is proteolytically cleaved, resulting in a reduction in dephosphorylating potential. It has been reported previously that PTP1B is a substrate of the calcium dependent protease, calpain and that calpain inhibitors improve the cell morphology of sickle erythrocytes. Inhibition of this proteolytic process may offer an additional therapeutic option for the treatment of sickle cell disease.</p>
25

Characterizing Microglial Response to Amyloid: From New Tools to New Molecules

Priya Prakash (10725291) 29 April 2021 (has links)
<p>Microglia are a population of specialized, tissue-resident immune cells that make up around 10% of total cells in our brain. They actively prune neuronal synapses, engulf cellular debris, and misfolded protein aggregates such as the Alzheimer’s Disease (AD)-associated amyloid-beta (Aβ) by the process of phagocytosis. During AD, microglia are unable to phagocytose Aβ, perhaps due to the several disease-associated changes affecting their normal function. Functional molecules such as lipids and metabolites also influence microglial behavior but have primarily remained uncharacterized to date. The overarching question of this work is, <i>How do microglia become dysfunctional in chronic inflammation</i>? To this end, we developed new chemical tools to better understand and investigate the microglial response to Aβ <i>in vitro</i> and <i>in vivo</i>. Specifically, we introduce three new tools. (1) Recombinant human Aβ was developed via a rapid, refined, and robust method for expressing, purifying, and characterizing the protein. (2) A pH-sensitive fluorophore conjugate of Aβ (called Aβ<sup>pH</sup>) was developed to identify and separate Aβ-specific phagocytic and non-phagocytic glial cells <i>ex vivo</i> and <i>in vivo</i>. (3) New lysosomal, mitochondrial, and nuclei-targeting pH-activable fluorescent probes (called LysoShine, MitoShine, and NucShine, respectively) to visualize subcellular organelles in live microglia. Next, we asked, <i>What changes occur to the global lipid and metabolite profiles of microglia in the presence of Aβ in vitro and in vivo</i>? We screened 1500 lipids comprising 10 lipid classes and 700 metabolites in microglia exposed to Aβ. We found significant changes in specific lipid classes with acute and prolonged Aβ exposure. We also identified a lipid-related protein that was differentially regulated due to Aβ <i>in vivo</i>. This new lipid reprogramming mechanism “turned on” in the presence of cellular stress was also present in microglia in the brains of the 5xFAD mouse model, suggesting a generic response to inflammation and toxicity. It is well known that activated microglia induce reactive astrocytes during inflammation. Therefore, we asked, <i>What changes in proteins, lipids, and metabolites occur in astrocytes due to their reactive state? </i>We provide a comprehensive characterization of reactive astrocytes comprising 3660 proteins, 1500 lipids, and 700 metabolites. These microglia and astrocytes datasets will be available to the scientific community as a web application. We propose a final model wherein the molecules secreted by reactive astrocytes may also induce lipid-related changes to the microglial cell state in inflammation. In conclusion, this thesis highlights chemical neuroimmunology as the new frontier of neuroscience propelled by the development of new chemical tools and techniques to characterize glial cell states and function in neurodegeneration.</p>
26

ACCELERATING DRUG DISCOVERY AND DEVELOPMENT USING ARTIFICIAL INTELLIGENCE AND PHYSICAL MODELS

Godakande Kankanamge P Wijewardhane (15350731) 25 April 2023 (has links)
<p>Drug discovery and development has experienced a tremendous growth in the recent</p> <p>years, and methods to accelerate the process are necessary as the demand for effective drugs</p> <p>to treat a wide range of diseases continue to increase. Nevertheless, the majority of conventional</p> <p>techniques are labor-intensive or have relatively low yields. As a result, academia</p> <p>and the pharmaceutical industry are continuously seeking for rapid and efficient methods to</p> <p>accelerate the drug discovery pipeline. Therefore, in order to expedite the drug discovery</p> <p>process, recent developments in physical and artificial intelligence models have been utilized</p> <p>extensively. However, the overarching problem is how to use these cutting-edge advancements</p> <p>in artificial intelligence to enhance drug discovery? Therefore, this dissertation work</p> <p>focused on developing and applying artificial intelligence and physical models to accelerate</p> <p>the drug discovery pipeline at different stages. As the first study reported in the dissertation,</p> <p>the potential to apply graph neural network-based machine learning architectures</p> <p>with the assistance of molecular modeling features to identify plausible drug leads out of</p> <p>structurally similar chemical databases is assessed. Then, the capability of applying molecular</p> <p>modeling methods including molecular docking and molecular dynamics simulations to</p> <p>identify prospective targets and biological pathways for small molecular drugs is discussed</p> <p>and evaluated in the following chapter. Further, the capability of applying state-of-the-art</p> <p>deep learning architectures such as multi-layer perceptron and recurrent neural networks</p> <p>to optimize the formulation development stage has been assessed. Moreover, this dissertation</p> <p>has contributed to assist functionality identification of unknown compounds using</p> <p>simple machine learning based computational frameworks. The developed omics data analysis</p> <p>pipeline is then discussed in order to comprehend the effects of a particular treatment</p> <p>on the proteome and lipidome levels of cells. In conclusion, the potential for developing and</p> <p>utilizing various artificial intelligence-based approaches to accelerate the drug discovery and</p> <p>development process is explored in this research. Thus, these collaborative studies intend</p> <p>to contribute to ongoing acceleration efforts and advancements in the drug discovery and</p> <p>development field.</p>
27

DEVELOPMENT OF TOOLS TO UNDERSTAND THE ROLE OF THE PBAF CHROMATIN REMODELER IN PROSTATE CANCER

Sandra Carolina Ordonez Rubiano (18115162) 06 March 2024 (has links)
<p dir="ltr">The BRG1/BRM-associated factor (BAF) complexes, also called SWI/SNF, are multi-subunit chromatin remodelers that regulate chromatin compaction in an ATP-dependent manner. In the past decade, BAF complexes have been under the spotlight in cancer research, especially after proteomic analyses revealed the genes encoding the subunits are amongst the most frequently mutated genes in cancer. The present dissertation focuses on prostate cancer (PCa), a disease in which the role of the BAF subunits is increasingly being explored but is yet to be defined as a potential therapeutic target. According to the GLOBOCAN report, PCa is the second most frequent cancer in males worldwide. Since most of the variants of PCa rely on the androgen receptor (AR) axis, surgical or chemical castration and androgen deprivation therapy (ADT) are the main treatment strategies for PCa patients. Even though these therapeutic approaches prolong survival, reduce tumor burden, and relieve symptoms, PCa patients eventually relapse and develop castration resistant PCa (CRPC). At present, the mechanisms underlying ADT resistance are not fully understood, current efforts focus on finding new targets for PCa treatment.</p><p dir="ltr">In the projects included in this dissertation we explored the function of the PBAF complex, a BAF subtype, in a variety of models of PCa and its potential as a therapeutic target by inhibiting or depleting its different subunits. To do so we (i) developed the first inhibitors for BRD7 (a subunit unique to PBAF) and (ii) established cell-based assays in multiple PCa cell lines to study BRD7 and other PBAF unique subunits.</p><p dir="ltr">Bromodomain-containing proteins are readers of acetylated lysine and play important roles in cancer. Bromodomain-containing protein 7 (BRD7) has been implicated in multiple malignancies; however, there are no selective chemical probes to study its function in disease. Using crystal structures of BRD7 and BRD9 bromodomains (BDs) bound to BRD9-selective ligands, we identified a binding pocket exclusive to BRD7. We synthesized a series of ligands designed to occupy this binding region and identified two inhibitors with increased selectivity towards BRD7, 1-78 and 2-77, which bind with submicromolar affinity to the BRD7 BD. Our binding mode analyses indicate that these ligands occupy a uniquely accessible binding cleft in BRD7 and maintain key interactions with the asparagine and tyrosine residues critical for acetylated lysine binding. Finally, we validated the utility and selectivity of the compounds in cell-based models of prostate cancer.</p><p dir="ltr">There are three BAF complexes that have been biochemically characterized up to date: canonical BAF (cBAF), polybromo-associated BAF (PBAF) and GLTSCR1/like-containing BAF (GBAF or ncBAF). All BAF complexes are characterized by containing an ATPase and accessory subunits that may be shared between them or unique to each subtype. PBAF, the BAF subtype of interest of this dissertation, contains four unique subunits: BRD7, PBRM1, ARID2 and BAF45A. We showed that knocking down BRD7 and ARID2 leads to reduction of cell viability in PCa cells with ligand-dependent and independent AR signaling, while knocking down PBRM1 leads to reduction in viability of cells with only ligand-dependent AR signaling. We also performed a chromatin immunoprecipitation assay with BAF45A and observed that it does not colocalize with AR binding sites, indicating that the mechanism by which PBAF regulates AR signaling is indirect. This observation was further supported by the fact that knocking down BRD7 prevents expression of genes related to adaptive processes, but not AR target genes, in response to androgen treatment. Further mechanistic studies will aid in understanding the function of PBAF in PCa. However, overall, our results indicate that PBAF is a promising therapeutic target in PCa models expressing AR, including CRPC systems.</p>
28

DISTINCT ROLES OF THE aD HELIX IN aCAMKII ACTIVATION CHARACTERIZED USING A DE NOVO MUTATION FROM CHILDREN WITH LEARNING DISABILITIES

Walter Saide (16650807) 07 August 2023 (has links)
<p>This dissertation describes the effects of a <i>de novo</i> mutation of CaMKII found in children with learning disabilities and describes its effect on catalytic activity. We develop a malachite green assay for the measurement of CaMKII activation and use it for high-throughput chemical screening to identify CaMKII inhibitors and enhancers. We also propose a new mechanism of regulation of CaMKII activity by ADP.</p><p><br></p>

Page generated in 0.0449 seconds