Spelling suggestions: "subject:"actuator atemsystem"" "subject:"actuator systsystem""
1 |
Surgical Instruments based on flexible micro-electronicsRivkin, Boris 15 December 2022 (has links)
This dissertation explores strategies to create micro-scale tools with integrated electronic and mechanical functionalities. Recently developed approaches to control the shape of flexible micro-structures are employed to fabricate micro-electronic instruments that embed components for sensing and actuation, aiming to expand the toolkit of minimally invasive surgery. This thesis proposes two distinct types of devices that might expand the boundaries of modern surgical interventions and enable new bio-medical applications.
First, an electronically integrated micro-catheter is developed. Electronic components for sensing and actuation are embedded into the catheter wall through an alternative fabrication paradigm that takes advantage of a self-rolling polymeric thin-film system. With a diameter of only 0.1 mm, the catheter is capable of delivering fluids in a highly targeted fashion, comprises actuated opposing digits for the efficient manipulation of microscopic objects, and a magnetic sensor for navigation. Employing a specially conceived approach for position tracking, navigation with a high resolution below 0.1 mm is achieved. The fundamental functionalities and mechanical properties of this instrument are evaluated in artificial model environments and ex vivo tissues. The second development explores reshapeable micro-electronic devices. These systems integrate conductive polymer actuators and strain or magnetic sensors to adjust their shape through feedback-driven closed loop control and mechanically interact with their environment. Due to their inherent flexibility and integrated sensory capabilities, these devices are well suited to interface with and manipulate sensitive biological tissues, as demonstrated with an ex vivo nerve bundle, and may facilitate new interventions in neural surgery.:List of Abbreviations
1 Introduction
1.1 Motivation
1.2 Objectives and structure of this dissertation
2 Background
2.1 Tools for minimally invasive surgery
2.1.1 Catheters
2.1.2 Tools for robotic micro-surgery
2.1.3 Flexible electronics for smart surgical tools
2.2 Platforms for shapeable electronics
2.2.1 Shapeable polymer composites
2.2.2 Shapeable electronics
2.2.3 Soft actuators and manipulators
2.3 Sensors for position and shape feedback
2.3.1 Magnetic sensors for position and orientation measurements
2.3.2 Strain gauge sensors
3 Materials and Methods
3.1 Materials for shapeable electronics
3.1.1 Metal-organic sacrificial layer
3.1.2 Polyimide as reinforcing material
3.1.3 Swelling hydrogel for self assembly
3.1.4 Polypyrrole for flexible micro actuators
3.2 Device fabrication techniques
3.2.1 Photolithography
3.2.2 Electron beam deposition
3.2.3 Sputter deposition
3.2.4 Atomic layer deposition
3.2.5 Electro-polymerization of polypyrrole
3.3 Device characterization techniques
3.3.1 Kerr magnetometry
3.3.2 Electro-magnetic characterization of sensors
3.3.3 Electro-chemical analysis of polypyrrole
3.3.4 Preparation of model environments and materials
3.4 Sensor signal evaluation and processing
3.4.1 Signal processing
3.4.2 Cross correlation for phase analysis
3.4.3 PID feedback control
4 Electronically Integrated Self Assembled Micro Catheters
4.1 Design and Fabrication
4.1.1 Fabrication and self assembly
4.1.2 Features and design considerations
4.1.3 Electronic and fluidic connections
4.2 Integrated features and functionalities
4.2.1 Fluidic transport
4.2.2 Bending stability
4.2.3 Actuated micro manipulator
4.3 Magnetic position tracking
4.3.1 Integrated magnetic sensor
4.3.2 Position control with sensor feedback
4.3.3 Introduction of magnetic phase encoded tracking
4.3.4 Experimental realization
4.3.5 Simultaneous magnetic and ultrasound tracking
4.3.6 Discussion, limitations, and perspectives
5 Reshapeable Micro Electronic Devices
5.1 Design and fabrication
5.1.1 Estimation of optimal fabrication parameters
5.1.2 Device Fabrication
5.1.3 Control electronics and software
5.2 Performance of Actuators
5.2.1 Blocking force, speed, and durability
5.2.2 Curvature
5.3 Orientation control with magnetic sensors
5.3.1 Magnetic sensors on actuated device
5.3.2 Reference magnetic field
5.3.3 Feedback control
5.4 Shape control with integrated strain sensors
5.4.1 Strain gauge curvature sensors
5.4.2 Feedback control
5.4.3 Obstacle detection
5.5 Heterogenous integration with active electronics
5.5.1 Fabrication and properties of active matrices
5.5.2 Fabrication and operation of PPy actuators
5.5.3 Site selective actuation
6 Discussion and Outlook
6.1 Integrated self assembled catheters
6.1.1 Outlook
6.2 Reshapeable micro electronic devices
6.2.1 Outlook
7 Conclusion
Appendix
A1 Processing parameters for polymer stack layers
A2 Derivation of magnetic phase profile in 3D
Bibliography
List of Figures and Tables
Acknowledgements
Theses
List of Publications
|
2 |
Hybride Steuerung parallel gekoppelter Aktoren am Beispiel des humanoiden Roboters MyonSiedel, Torsten 01 December 2015 (has links)
Die motorischen Fähigkeiten humanoider Roboter werden häufig von antriebsbedingten Nichtlinearitäten und Reibungseffekten negativ beeinflusst. Zur deren Kompensation werden üblicherweise modellbasierte Regelkreise genutzt, die i.d.R. von einer hochfrequenten Signalverarbeitung und mehreren Sensorqualitäten abhängen. Entgegen solch modellbasierten Techniken werden in der vorliegenden Arbeit modellfreie Steuerungsmethoden auf Basis parallel gekoppelter Antriebe entwickelt. Zur Entwicklung und Untersuchung dieser Steuerungsmethoden wird nach der von Pfeifer in seinem Werk “How the body shapes the way we think” beschriebenen synthetischen Methodik vorgegangen. Entgegen modellbasierten Untersuchungen auf Basis von Simulationen stehen bei der synthetischen Methodik empirische Untersuchungen am realen System im Vordergrund. Als Ausgangspunkt dienen konventionelle elektromechanische Antriebe mit deren bekannten leistungseinschränkenden Nichtlinearitäten und Reibungseffekten. Durch die parallele Kopplung mehrerer Antriebe an einem einzelnen Gelenk wird das Spektrum der Steuerungsmöglichkeiten deutlich erweitert. Es zeigt sich, dass (1) durch eine konstante antagonistische Vorspannung das Arbeitsverhalten von konventionellen Proportionalreglern optimiert werden kann, (2) durch dynamische asymmetrische Änderung der Vorspannung Nichtlinearitäten bei niedrigen Geschwindigkeiten ausgeglichen werden können und (3) getriebebedingte Reibungseffekte mit einer phasenverschobenen Pulsmodulation der Steuersignale kompensiert werden können. Weiterhin wird gezeigt, wie die erarbeiteten Steuerungsmethoden auf beliebig viele parallel gekoppelte Antriebe übertragen werden können. Für den praktischen Einsatz der Steuerungsmethoden werden diese in einer hybriden Steuerung zusammengeführt. Diese wird durch eine weitere Funktion, den Energiesparmodus beim Halten statischer Positionen, ergänzt und am humanoiden Roboter Myon implementiert und experimentell evaluiert. / Motor functions of humanoid robots are often negatively influenced by nonlinearities and friction effects of the actuators. The popular means of compensation are control circuits based on modelling, which rely on powerful HF Signal processing and various sensor qualities. In contrast, this thesis develops non-modelling control methods based on parallel coupled actuators. Development and exploration of these control methods follow Pfeifer’s synthetic methodology as described in his work “How the body shapes the way we think”. In contrast to the analysis based on emulation as used in modelling, the synthetic methodology focuses rather on empirical tests within the real system. The present work explores control methods for parallel coupled actuators for use in robot points. It starts from conventional electromechanical actuators with their known power limiting nonlinearities and frictional effects. Linking several parallel coupled actuators to a single joint significantly expands the spectrum of control capabilities. Using two parallel coupled actuators as an example, it is examined to which extent undesirable properties of single actuators can be compensated. The results show that (1) the Performance of conventional proportional controllers can be optimized by a constant antagonistic bias voltage, (2) nonlinearities at low velocities can be balanced out by a dynamic asymmetrical adjustment of the bias, and that (3) gear related frictional effects can be compensated by a phase shifted pulse modulation of the control signals. In addition, it is shown how the developed control methods can be applied to a random number of parallel coupled actuators. For practical use, the various control methods are combined in a hybrid control, which is supplemented by an energy saving mode when maintaining static positions. The hybrid control is being implemented into the humanoid robot Myon and evaluated by experiment.
|
3 |
Threshold Voltage Shift Compensating Circuits in Non-Crystalline Semiconductors for Large Area Sensor Actuator InterfaceRaghuraman, Mathangi January 2014 (has links) (PDF)
Thin Film Transistors (TFTs) are widely used in large area electronics because they offer the advantage of low cost fabrication and wide substrate choice. TFTs have been conventionally used for switching applications in large area display arrays. But when it comes to designing a sensor actuator system on a flexible substrate comprising entirely of organic and inorganic TFTs, there are two main challenges – i) Fabrication of complementary TFT devices is difficult ii) TFTs have a drift in their threshold voltage (VT) on application of gate bias. Also currently there are no circuit simulators in the market which account for the effect of VT drift with time in TFT circuits.
The first part of this thesis focuses on integrating the VT shift model in the commercially available AIM-Spice circuit simulator. This provides a new and powerful tool that would predict the effect of VT shift on nodal voltages and currents in circuits and also on parameters like small signal gain, bandwidth, hysteresis etc. Since the existing amorphous silicon TFT models (level 11 and level 15) of AIM-Spice are copyright protected, the open source BSIM4V4 model for the purpose of demonstration is used. The simulator is discussed in detail and an algorithm for integration is provided which is then supported by the data from the simulation plots and experimental results for popular TFT configurations.
The second part of the thesis illustrates the idea of using negative feedback achieved via contact resistance modulation to minimize the effect of VT shift in the drain current of the TFT. Analytical expressions are derived for the exact value of resistance needed to compensate for the VT shift entirely. Circuit to realize this resistance using TFTs is also provided. All these are experimentally verified using fabricated organic P-type Copper Phthalocyanine (CuPc) and inorganic N-type Tin doped Zinc Oxide (ZTO) TFTs.
The third part of the thesis focuses on building a robust amplifier using these TFTs which has time invariant DC voltage level and small signal gain at the output. A differential amplifier using ZTO TFTs has been built and is shown to fit all these criteria. Ideas on vertical routing in an actual sensor actuator interface using this amplifier have also been discussed such that the whole system may be “tearable” in any contour. Such a sensor actuator interface can have varied applications including wrap around thermometers and X-ray machines.
|
Page generated in 0.0343 seconds