• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 294
  • 71
  • 55
  • 23
  • 12
  • 7
  • 6
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 588
  • 165
  • 122
  • 101
  • 75
  • 72
  • 71
  • 62
  • 57
  • 49
  • 45
  • 44
  • 42
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
571

Dynamic Modelling of a Fluidic Muscle with a Comparison of Hysteresis Approaches / Dynamisk Modellering av en Fluidisk Muskel med en Jämförelse av Hysteresmetoder

Antonsson, Tess January 2023 (has links)
n recent years, there has been a surge in interest and research into the utilisation of soft actuators within the field of robotics, driven by the novel capabilities of their inherently compliant material. One such actuator is the Pneumatic Artificial Muscle (PAM) which offers a high power-to-mass ratio, compliance, safety, and biological mimicry when compared to their traditional counterparts. However, because of their flexible and complex physical structure and the compressibility of air inside the PAM, they exhibit nonlinear dynamic behaviour, largely due to the influence of the hysteresis phenomenon. In order to implement strategies to counteract this effect, it first needs to be modelled. As such, this thesis investigates two approaches, namely the Maxwell-Slip (MS) and generalised Bouc-Wen (BW) models. Firstly, the test muscle's initial braid angle, maximum displacement, and maximum force are determined to establish the static force using a modified model. Data is then collected on the PAM's force-displacement hysteresis for 2-6 bar of pressure. Using the results from these experiments, the MS and BW model parameters are identified through optimisation. With the static and hysteresis force components characterised, two complete dynamic models are created. The findings show that, when compared to the collected force-displacement data, the BW model has greater accuracy for all pressures except at 4 bar, although both approaches demonstrate results within a satisfactory margin. Lastly, a model validation is conducted to compare the models using a new dataset, separate from the one on which they were trained. Data for this test is recorded at a pressure of 4 bar with a more complex reference that covers four different regions of the muscle's displacement range. Thereafter, both dynamic models are applied to assess their performance. It is evident from the results that the BW model produces a better outcome than the MS, achieving a normalised error of 5.3746% as compared to the latter's 12.835%. The higher accuracy of the generalised BoucWen method is likely due to it having a more complex structure, specialised parameters, and the ability to model asymmetric hysteresis. The Maxwell-Slip model may however still be preferable in some applications due to its relative simplicity and faster optimisation. / Under de senaste åren har intresset och forskningen ökat kring användningen av mjuka ställdon inom robotik, drivet av den innovativa potentialen som erbjuds av egenskaperna hos deras naturligt flexibla material. Ett sådant ställdon är den Pneumatiska Artificiella Muskeln (PAM) som erbjuder hög kraft i förhållande till vikten, elasticitet, säkerhet och biologisk imitation jämfört med dess traditionella motsvarigheter. Trots dessa fördelar så uppvisar PAM:s ett icke-önskvärt olinjärt dynamiskt beteende, till stor del på grund av deras flexibla och komplexa fysiska struktur samt kompressibiliteten av luft inuti PAM:en. Dessa olinjäriteter orsakar hysteresfenomenet i muskeln. För att implementera strategier för att kunna motverka denna effekt så måste den först modelleras. Till följd därav så undersöker denna avhandling två tillvägagångssätt, nämligen Maxwell-Slip (MS) och den generaliserade Bouc-Wen (BW) modellen. Inledningsvis identifieras testmuskelns initiala flätvinkel, maximala förskjutning och maximala kraft för att fastställa den statiska kraften med hjälp av en modifierad modell. Data samlas sedan in på PAM:ens kraft-förskjutningshysteres för 2-6 bar av tryck. Med hjälp av resultaten från dessa experiment identifieras MS- och BW-modellparametrarna genom optimering. Med de statiska och hystereskraftskomponenterna karakteriserade kan två kompletta dynamiska modeller framkallas. Resultaten visar att jämfört med den insamlade kraft-förskjutningsdatan har BW-modellen en större noggrannhet för alla tryck förutom vid 4 bar, men båda metoderna uppvisar resultat som är inom en godtagbar marginal. Slutligen genomförs en modellvalidering för att jämföra modellerna med hjälp av ett nytt dataset, annorlunda från den som de tränades på. Datan för detta test mäts vid ett tryck på 4 bar med en mer komplex referens som täcker fyra olika regioner av muskelns förskjutningsområde. Därefter tillämpas båda dynamiska modellerna för att bedöma deras prestanda. Det är uppenbart från resultaten att BW-modellen ger ett bättre resultat än MS-modellen, och uppnår ett normaliserat fel på 5,3746% jämfört med den sistnämndas 12,835%. Den högre noggrannheten hos den generaliserade Bouc-Wen-metoden beror sannolikt på att den har en mer komplex struktur, specialiserade parametrar och förmågan att modellera asymmetrisk hysteres. Maxwell-Slipmodellen kan däremot ändå vara att föredra i vissa sammanhang på grund av dess relativa simplicitet och snabbare optimering
572

Self-sufficient oscillating microsystem at low Reynolds numbers

Akbar, Farzin 21 December 2022 (has links)
This work is inspired by the peculiar behavior of the natural systems, namely the ability to produce self-sustained oscillations in the level of tens of Hertz in constant ambient conditions. This feature is one of the key signatures prescribed to living organisms. The firing rate of neuronal cells, a pulsating heart, or the beating of cilia and flagella are among many biological examples that possess amazing functionalities and unprecedented intelligence solely relying on bio-electro-chemical processes. Exploring shapeable polymeric technologies, new self-oscillating artificial microsystems were developed within this thesis. These microsystems rely on the novel nonlinear architecture that exhibits a negative differential resistance (NDR) within the parametric response that enables periodic oscillations. These systems are made of polymers and metals and were microfabricated in a planar fashion. The electrochemically deposited ionic electroactive polymers act as actuators of the system. Upon the self-assembly process, due to the interlayer strains, the planar device transforms into a three-dimensional soft nonlinear system that is able to perform self-sustained relaxation oscillations when subjected to a constant electric field while consuming extremely low powers (as low as several microwatts). The parameters of these systems were tuned for a high oscillation amplitude and frequency. This electro-mechanical parametric relaxation oscillator (EMPRO) can generate a rhythmic motion at stroke frequencies that are biologically relevant reaching up to ~95 Hz. The EMPRO oscillations at high frequencies generate a flow in the surrounding liquid, which was observed in the form of vortices around the micro actuators. This flow was further studied in ex-vivo conditions by measuring Doppler shifts of ultrasound waves. The EMPRO was made autonomous by integrating an electrochemical voltaic cell. Four different electrochemical batteries were tested to match the power consumption of the EMPRO system and electrochemical compatibility of the surrounding media. An Ag-Mg primary cell was then integrated with the EMPRO for autonomous operation without the need for external power sources, cables or controllers. This biomimicking self-powered self-sustaining oscillating microsystem is envisioned to be useful in novel application scenarios operating at low Reynolds numbers in biologically relevant conditions. Furthermore, as the system is electromechanical in nature, it could be integrated with electronic components such as sensors and communication devices in the next generation of autonomous microsystems.:  Table of contents Acronyms 7 1 Introduction 8 1.1 Motivation 9 1.2 Objectives 9 1.3 Thesis organization 10 2 Background 12 2.1 A brief review on nonlinear self-oscillation 12 2.2 Self-oscillating biological systems 13 2.3 Stimuli responsive materials 15 2.3.1 Electroactive polymers in electrochemical cells 16 2.3.2 Sources of electrical field for electroactive polymers 24 2.4 Self-oscillating synthetic systems 27 2.5 Movement in low Reynolds number regime 33 3 Materials and methods 38 3.1 Deposition methods 38 3.1.1 Photolithography 38 3.1.2 Plasma sputtering 41 3.1.3 Atomic layer deposition 42 3.1.4 Electrochemical polymerization 44 3.2 Shapeable polymeric platform technology 46 3.2.1 Sacrificial layer 46 3.2.2 Hydrogel swelling layer 47 3.2.3 Polyimide reinforcing layer 48 3.3 Characterization methods 49 3.3.1 Profilometry 49 3.3.2 Scanning electron and focused ion beam microscopy 50 3.3.3 Cyclic Voltammetry 52 3.3.4 Ultrasound and Doppler shift measurements 53 4 Electromechanical Parametric Relaxation Oscillators (EMPROs) 56 4.1 Relaxation oscillation in EMPROs 56 4.2 Theory of EMPRO relaxation oscillations 61 4.3 Realization of EMPROs 67 4.3.1 Design parameters of EMPROs 67 4.3.2 EMPRO on-chip battery integration 71 4.4 Fabrication of autonomous EMPROs 76 5 EMPRO performances 84 5.1 Externally biased EMPROs 84 5.2 Autonomous EMPROs 95 6 Conclusions and outlook 98 6.1 Outlook 99 Bibliography i List of Figures and Tables xi Versicherung xiii Acknowledgements xiv Scientific publications and contributions xvi Theses xvii Curriculum Vitae xix
573

Designing and Evaluating a SIL4 DC Motor Controller / Designa och Utvärdera en SIL4 DC-Motorstyrenhet

Zhang, Xinye January 2024 (has links)
Railway safety is an issue that is closely related to people. Hazards such as a collision between two trains can result in severe casualties, necessitating the utmost level of safety measures. Linear actuators control the direction of the train and are critical devices in train operation. Therefore, the safety requirements for linear actuators are high; several internationally accepted standards can help regulate the design of railways and specify safety standards. EN 50129 and EN 50126 are critical standards to follow. This thesis presents two motor controller designs that can be used in linear actuators with high safety quality. This thesis contains two designs, a basic design and an advanced design. The first part of the thesis is the basic design. The basic design is based on the full bridge structure and combines two out of two logic. After integrating metal-oxide-semiconductor field-effect transistors, gate drivers, and DC-DC converter, the basic design is presented following the safety integrated level 4 requirements of EN 50129. A fault tree analysis and a common cause failure analysis are added. The failure rate after fault tree analysis is 2E −14 . The second part of the thesis presents an advanced design based on the basic design and introduces an Automotive Safety Integrated Level D-compliant gate driver according to ISO 26262. It improves the previous design of the DC full bridge to have about 50 percent fewer components. Meanwhile, the advanced design also gives a supplement and refinement of the basic design to advance the possibility of practical application. Failure tree analysis failure mode effects, criticality analysis analysis, and availability argument are then carried out with the advanced design. According to fault tree analysis, the failure rate of the advanced design is 2E−14. / Järnvägssäkerhet är en fråga som är nära relaterad till människor. Faror som en kollision mellan två tåg kan resultera i allvarliga olyckor, vilket kräver högsta möjliga säkerhetsåtgärder. Linjära ställdon styr tågets riktning och är kritiska enheter i tågdrift. Därför är säkerhetskraven för linjära ställdon höga; flera internationellt accepterade standarder kan hjälpa till att reglera utformningen av järnvägar och specificera säkerhetsstandarder. EN 50129 och EN 50126 är kritiska standarder att följa. Denna avhandling presenterar två motorstyrningskonstruktioner som kan användas i linjära ställdon med hög säkerhetskvalitet. Detta examensarbete innehåller två designs, en grundläggande design och en avancerad design. Den första delen av examensarbetet är den grundläggande designen. Den grundläggande designen är baserad på hela brostrukturen och kombinerar två av två logik. Efter att ha integrerat metall-oxid-halvledarfälteffekttransistorer, gate-drivrutiner och DC-DC-omvandlare presenteras den grundläggande designen enligt de säkerhetsintegrerade nivå 4-kraven i EN 50129. En felträdsanalys och en analys av vanlig orsaksfel läggs till. Felfrekvensen efter felträdsanalys är 2E−14. Den andra delen av avhandlingen presenterar en avancerad design baserad på den grundläggande designen och introducerar en Automotive Safety Integrated Level D-kompatibel grinddrivare enligt ISO 26262. Den förbättrar den tidigare designen av DC-fullbryggan för att ha cirka 50 procent färre komponenter. Samtidigt ger den avancerade designen också ett komplement och förfining av den grundläggande designen för att främja möjligheten till praktisk tillämpning. Felträdanalys fellägeseffekter, analys av kritikalitet och tillgänglighetsargument utförs sedan med den avancerade designen. Enligt felträdsanalys är felfrekvensen för den avancerade designen 2E−14.
574

Architectures d'alimentation et de commande des actionneurs haute-vitesse connectés aux réseaux avioniques à tension variable / Electronic power supply and control architectures of a high speed actuator connected to variable voltage aircraft networks

Cuenot, Jérémy 25 October 2017 (has links)
La révolution technologique majeure des nouveaux aéronefs repose sur une électrification intensive de nombreux constituants de l'appareil et le fait que la vitesse des génératrices électriques n'est plus fixe mais variable. Cette nouvelle manière de générer la puissance électrique engendre des variations de tension sur les réseaux DC. De plus, pour accroître la compacité des Machines Synchrones à Aimants Permanents (MSAP) à puissance donnée, on augmente autant que possible leur vitesse d'entrainement, en les associant pour certaines applications à des réducteurs mécaniques. La variation du niveau de tension du bus DC alimentant une MSAP haute vitesse implique son dimensionnement afin d'assurer sa contrôlabilité sur toute la plage de vitesse reportant d'importantes contraintes sur l'onduleur de tension. Pour pallier ce problème, une solution consiste à intercaler un convertisseur DC/DC entre le filtre d'entrée et l'onduleur de tension pour maintenir la tension DC d'entrée de l'onduleur à une valeur adaptée au fonctionnement de la MSAP et optimiser son dimensionnement. Cependant, cette solution augmente l'ordre du système, ce qui accroît la complexité de son contrôle, accentuée par les contraintes liées à la nature haute-fréquence des MSAP considérées.Les travaux menés dans cette thèse concernent l'étude, l'optimisation et le contrôle des structures d'alimentation des actionneurs haute vitesse connectés aux réseaux DC avioniques à tension variable. Il en résulte que pour les applications avioniques considérées, ces architectures d'alimentation intégrant un convertisseur DC/DC supplémentaire permettent de réduire sa masse et son volume sans dégrader le rendement global de la chaîne de conversion notamment avec les convertisseurs à source impédante qui permettent de supprimer structurellement les ondulations de courant en entrée du convertisseur. De plus, des stratégies de commande Pulse Amplitude Modulation employées avec des architectures de contrôle non-linéaires (platitude, passivité) permettent d'assurer le contrôle de ces MSAP haute-vitesse tout en assurant leur stabilité sur toute la plage de fonctionnement / The main technological revolution of the new aircrafts is based on intensive electrification of many components of the aircraft. Moreover, the speed of electrical generators is no longer fixed but variable. This new way of generating electrical power generates voltage variations on DC networks. Besides, to increase the compactness of the Permanent Magnet Synchronous Machines (PMSM) at a given power, their mechanical speed is increased as much as possible by combining them with mechanical reducers for certain applications. The variation of the voltage level of the DC bus supplying a high-speed PMSM implies its sizing in order to ensure its controllability over the entire speed range which carries significant stresses on the Voltage Source Inverter (VSI). To solve this problem, one solution consists in adding an extra DC / DC converter between the input filter and the VSI to maintain the inverter input voltage at a value adapted to the operating point of the PMSM and to optimize its dimensioning. However, this solution increases the order of the system, which increases the complexity of its control, accentuated by the constraints related to the high-frequency nature of the PMSMs considered. The work carried out in this thesis concerns the study, the optimization and the control of the power supply architecture of the high-speed actuators connected to variable-voltage avionic DC networks. As a result, for the avionics applications considered, these power supply architectures integrating an additional DC / DC converter make it possible to reduce the mass and the volume of the power supply structure without degrading the overall efficiency of the conversion chain, in particular by using the impedance-source converters which allow to cancel the DC input current ripples. In addition, Pulse Amplitude Modulation (PAM) control strategies used with non-linear control architectures (flatness, passivity) make it possible to control these high-speed PMSMs while ensuring their stability over the entire operating range
575

Σθεναρός έλεγχος ηλεκτροστατικών μίκρο-επενεργητών

Βάγια, Μαριαλένα 03 August 2009 (has links)
Στην παρούσα διδακτορική διατριβή αναλύθηκαν και μελετήθηκαν διάφορα συστήματα (ΗμΕ) προκειμένου να παρουσιαστεί η μοντελοποίηση τους. Κατά τη μοντελοποίηση αυτή, μελετήθη-καν τα χαρακτηριστικά τους και αναλύθηκε η συμπεριφορά τους. Στη συνέχεια, αναπτύχθηκαν νόμοι ελέγχου, οι οποίοι εφαρμόστηκαν στα συστήματα των ΗμΕ προκειμένου να επιτευχθεί ο έλεγχος της συμπεριφοράς τους. Αναλυτικότερα τα ζητήματα με τα οποία ασχολήθηκε η διατριβή αυτή παρουσιάζονται παρακάτω. Αρχικά πραγματοποιήθηκε η μοντελοποίηση των κάτωθι συστημάτων ΗμΕ: α) ένα σύστημα ΗμΕ του κυρίαρχου βαθμού ελευθερίας, β) ένα σύστημα ΗμΕ δύο βαθμών ελευθερίας και γ) ένα σύστημα ΗμΕ του κυρίαρ-χου βαθμού ελευθερίας στη μοντελοποίηση του οποίου λαμβάνεται υπόψιν η παρουσία του αέρα. Στη συνέχεια της διδακτορικής αυτής παρουσιάζονται και αναλύονται οι ελεγκτές οι οποίοι αναπτύχθηκαν και χρησιμοποιήθηκαν για τη μελέτη των συστημάτων αυτών και οι οποίοι είναι οι εξής: α) ένας Σθεναρός PID ελεγκτής, β) ένας Σθεναρός Η-infinity ελεγκτής, γ) ένας Σθεναρός Διακοπτικός PID ελεγκτής και δ) ένας H-infinity ελεγκτής προκαθορισμένων κερδών. Από την εφαρμογή των προτεινόμενων νόμων ελέγχου στα συστήματα ΗμΕ προκύπτουν τα αποτελέσματα της διδακτορικής αυτής διατριβής. Τα αποτελέσματα αυτά χωρίζονται σε δύο κατηγορίες. Αρχικά σε αυτά που αφορούν τη συμπεριφορά και τα χαρακτηριστικά των συστημάτων των ΗμΕ και στη συνέχεια σε αυτά τα οποία σχετίζονται με την εφαρμογή των νόμων ελέγχου στα συστήματα των ΗμΕ. Η κύρια συνεισφορά της διδακτορικής διατριβής αναφέρεται τόσο στην πρόταση νέων τεχνικών ελέγχου για τα συστήματα των ΗμΕ καθώς και η εφαρμογή με επιτυχία των τεχνικών αυτών στα συστήματα τα οποία μελετήθηκαν κατά τη διεκπόνηση της διατριβής. / In the present Phd thesis different systems of Electrostatic micro Actuators (EmA) have been presented and analyzed. During the modeling process the systems have been observed in order to provide the special characteristics and the special behavior of each model. In addition special control laws have been presented in order to control the movement of the movable parts of the EmAs. In general the main issues of this PhD thesis are presented in the sequel. Firstly the modeling of the following EmAs is presented: a) an EmA whose one plate is moving parallel to the x-axis b) an EmA whose plate is moving parallel to the x-axis and is also making an angular rotation c) an EmA system with squeezed film damping effects (presence of air between the moving surfaces). In the sequel the control laws that have been designed for the aforementioned systems are presented. The designed controllers are: a) a Robust PID controller b) a Robust Switching PID controller c) a robust Η-infinity controller and d) a robust Gain Scheduled H-infinity controller. In the last part of this thesis, the simulation results are presented concering both the behavior of the systems as well as the results provided by the application of the control laws.
576

Studies On Nickel-Titanium Shape Memory Alloy Thin Films For Micro-actuator Applications

Sharma, Sudhir Kumar 12 1900 (has links) (PDF)
Shape memory alloys (SMAs) have been recognized as one of the most promising materials for MEMS micro-actuator applications. Among the available materials, Nickel/Titanium (NiTi) SMAs are more popular because, they exhibit unique properties in shape memory effect (SME) and pseudo-elasticity (PE). In addition NiTi SMA possesses high corrosion resistance, excellent mechanical properties and is also bio¬compatible. NiTi thin-film SMAs have been considered as the most significant material in the field of MEMS applications, which can be patterned with standard lithographic techniques to scale-up for batch production. However, the lack of proper understanding of basic materials’ properties and inability to reproduce, has limited the usage of this material in MEMS devices. The properties of NiTi SMA thin-films are very much sensitive to the elemental composition and structure, which are in turn decided by the deposition process and process parameters. A brief history of NiTi shape memory alloys (SMAs), basic information, transformation characteristics, crystal structure, phase diagram and literature reviewed for the current motivation have been presented in the second chapter In the third chapter, a brief summary about the deposition techniques relevant to NiTi film deposition has been presented. The deposition of NiTi films by a number of deposition techniques such as thermal evaporation, co-evaporation, molecular beam Epitaxy, pulsed laser deposition, flash evaporation, electron beam deposition, filtered arc deposition, ion beam assisted sputter deposition, vacuum plasma spraying, ion beam sputtering, ECR sputtering and magnetron sputtering techniques have been discussed. In order to achieve a precise control over film thickness and composition of the films on to the substrates, the selection of magnetron sputtering has been highlighted. In the present thesis, two prolonged approaches such as DC magnetron sputtering of an alloy target and co-sputtering of elemental targets have been presented. Various characterization techniques used for film thickness, composition, structure, micro¬structure, electrical, phase transformation and mechanical properties have also been briefly presented in the same chapter. In the fourth chapter, description of Conventional Alloy Target Sputtering System has been presented. DC magnetron sputtering of an alloy target with two different atomic ratios (Ni:Ti = 45:55 & 50:50) has been used for depositing the coatings. Several limitations in the reproducibility and repeatability have been observed with single alloy target sputtering, irrespective of the target composition ratio. In addition to this, incorporation of oxygen in the films during and after deposition has been observed, which has limited the extensive usage of this single alloy target system. The limitations regarding control over composition, thickness uniformity over large area have been improved by designing and fabricating a dedicated Three Target Magnetron Co-sputtering System. The vacuum diagnosis of the system under different conditions has been carried out by using PPR-200 Residual Gas Analyzer (RGA), which have included in Appendix I. Similar to alloy target sputtering system, the thickness uniformity and required composition with deposition parameters over a size of 75 mm diameter has been achieved and the process repeatability has been established. Oxygen incorporation in the films during deposition has been minimized by pre-sputtering of Ti target for known duration of time, which has resulted in significant reduction in partial pressure of oxygen in the chamber. The oxide layer formation on film surface has been eliminated by in-situ capping layer (TiN) deposition. In the fifth chapter, the influence of process parameters such as sample locations, substrate to target distance (STD), working pressure (WP), gas flow rates, deposition rates, deposition and annealing temperature, Target power, on the film thickness and composition uniformity have been presented for alloy target sputtering system as well as for the co-sputtering system. The film thicknesses have been measured with stylus method. Film compositions have been determined by energy dispersive X-ray spectroscopy (EDS), Secondary ion mass spectrometry (SIMS), Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS). The working pressure of 1.5 X 10-3 mbar, STD of 90 mm and target power of 100 W have been found to produce coatings having uniform thickness and composition over the given area for alloy target sputtering system. Similar investigations have been carried out for co-sputtered NiTiCu films. The working pressure of 1.5x 10-3 mbar, at a STD of 90 mm, at a rotational speed of 15 rpm and at target powers of 600, 50 and 12 W for Ti, Ni and Cu respectively, have resulted in the thickness and required composition uniformity over a size of 75 mm diameter substrate and the process repeatability has been established. In the Sixth chapter, the influence of process parameters on film structure and micro-structure on the NiTi/NiTiCu films deposited by a single alloy target and co¬sputtering have been studied by different analytical techniques like XRD, TEM, AFM, SEM etc. Phase transformation temperatures and kind of transformations have been investigated by DSC, Resistivity / Temperature and Stress/ Temperature studies and correlations have been established. The process parameters have been optimized for TiN deposition, which act as the capping layer to protect NiTi films from surface oxidation. The variation in mechanical behavior for the NiTi/ NiTiCu films before and after TiN capping by nano-indentation test have also presented. XRD and TEM studies have shown that the NiTi / NiTiCu films deposited at room temperature to 400o C are amorphous. Post-annealing, at a temperature of 450O C or above resulted in the film crystallization with oxide layer formation at the film surface, which has been confirmed by XRD and XTEM studies. In the case of Ni-rich NiTi films, R-phase diffraction peaks have also been identified in addition to the Austenite / Martensite phase. XRD investigations have shown that Ti-rich NiTi and Ni-rich NiTi films have resulted in precipitate free films. In the case of Ti-rich NiTiCu and Ni-rich NiTiCu films, the variations in Ti/Ni target power has resulted in the formation of NiTi 2 and Ni3Ti precipitates along with their parent Martensite and Austenite phases. When the Cu content is increased in NiTiCu films, an increase in number of Martensite phase diffraction peaks in XRD spectrum has been observed. XTEM studies have confirmed formation of oxide layer, inter-metallic layer and interface layer at higher post annealing temperatures. SEM studies have shown that the films deposited at higher gas flow rate results in the columnar micro-structure. In the context of NiTiCu films, the films deposited at higher Ti target power have shown more compact and tightly packed film micro-structure. AFM studies have shown increase in the average crystallite size and film roughness with post annealing temperature and duration. TiN coating has been used as the capping layer onto NiTi / NiTiCu films. Structural and micro-structural comparison of these films before and after TiN coating has resulted the appearance of (111) TiN peak in all TiN capped films. SEM and AFM studies have shown that the film roughness have decreased after capping layer deposition. DSC thermal cycling used to verify the film crystallization temperature has shown the appearance of exothermic peak in NiTi / NiTiCu films. DSC, Resistivity-temperature, stress-temperature response has been confirmed the transformation temperature and kind of transformations in all the films. Residual stress measurements have shown that the crystalline films exhibited lower bi-axial stress in comparison to the amorphous films. Ti-rich NiTi films have shown single phase transformations (M-A and A-M) whereas two phase transformations (M-R-A and A-R-M) have been observed in Ni-rich NiTi films. Higher deposition / annealing temperature have shown the appearance of distinct phase transformation peaks in resistivity vs. temperature studies. In the case of NiTiCu films, the decrease in film crystallization temperature with increase in the Cu content has been observed. The phase transformation temperature evaluated from second thermal cycle has shown decrease in the width of hysteresis loop with increase in the Cu content in NTC films. Nano-indentation studies have been carried out to evaluate the micro-hardness and modulus values of TiN capped and uncapped NiTi / NiTiCu films. The modulus and hardness uniformity have been confirmed for the different location over a diameter of 75 mm. The modulus and hardness values have increased with increase in the substrate and annealing temperature. Increase in the Cu target power has resulted in the increase in the hardness and modulus values under same deposition conditions. TiN coated NiTi / NiTiCu films have shown larger modulus and hardness values than the uncapped films. In the Seventh chapter, the fabrication process and actuation response for silicon dioxide, Aluminum and NiTi SMA coated micro-cantilevers has been discussed. Various nano-structures such as pyramids, beams and pillars by focused ion beam (FIB) micro-machining have been fabricated. High aspect ratio nano-pillars have been selected for micro-compression testing. In summary, this thesis emphasizes on the fabrication of specific sputtering systems relevant to NiTi film deposition and process parameter optimization for desired film thickness and composition uniformity. DC magnetron sputtering of a NiTi alloy target (50:50 and 45:55 at. %) and co-sputtering of elemental targets (Ni, Ti and Cu) have been presented. These films have been investigated for structural, micro-structural, phase transformation and mechanical properties. In-situ deposition of TiN capping layer, on to NiTi / NiTiCu films has been carried out to reduce the oxygen trapping. The fabrication process and actuation response of micro-cantilevers have been described. The etching characteristics to generate various nano-structures viz. pyramids, beams and pillars by focused ion beam (FIB) micro-machining have been investigated and mechanical testing of selected nano-structures have also been reported.
577

Design of a Pneumatic Artificial Muscle for Powered Lower Limb Prostheses

Murillo, Jaime 01 May 2013 (has links)
Ideal prostheses are defined as artificial limbs that would permit physically impaired individuals freedom of movement and independence rather than a life of disability and dependence. Current lower limb prostheses range from a single mechanical revolute joint to advanced microprocessor controlled mechanisms. Despite the advancement in technology and medicine, current lower limb prostheses are still lacking an actuation element, which prohibits patients from regaining their original mobility and improving their quality of life. This thesis aims to design and test a Pneumatic Artificial Muscle that would actuate lower limb prostheses. This would offer patients the ability to ascend and descend stairs as well as standing up from a sitting position. A comprehensive study of knee biomechanics is first accomplished to characterize the actuation requirement, and subsequently a Pneumatic Artificial Muscle design is proposed. A novel design of muscle end fixtures is presented which would allow the muscle to operate at a gage pressure surpassing 2.76 MPa (i.e. 400 psi) and yield a muscle force that is at least 3 times greater than that produced by any existing equivalent Pneumatic Artificial Muscle. Finally, the proposed Pneumatic Artificial Muscle is tested and validated to verify that it meets the size, weight, kinetic and kinematic requirements of human knee articulation.
578

Entwicklung einer Erregereinheit zur Erzeugung hochfrequenter Schwingungen beim Drahtsägen

Krüger, Thomas 18 December 2014 (has links) (PDF)
Bei der Fertigung von Siliziumwafern durch Zerteilen eines Siliziumblockes kommt das Drahttrennläppverfahren zur Anwendung. Es wird eine Erregereinheit entwickelt, die den Siliziumblock während des Schneidprozesses zu Schwingungen anregt. Die Verwendung von Piezoaktoren ermöglicht mehrachsige Schwingungen mit variabler Frequenz und Amplitude. Wesentliche Bestandteile der Arbeit sind experimentelle Untersuchungen an den Aktoren und der gesamten Erregereinheit sowie die Modellierung des Gesamtsystems mit Hilfe linearer Einzelmodelle. Es zeigt sich, dass die Aktoren bei dynamischen Anwendungen linear beschrieben werden können, während das Gesamtmodell besonders in den Resonanzbereichen aufgrund montagebedingter Einflüsse Schwächen aufweist. Abschließend wird der Einfluss der Schwingungsanregung beim Drahtsägen untersucht. Aus den Versuchen geht hervor, dass im getesteten Frequenz- und Amplitudenbereich sowohl hohe Erregerfrequenzen als auch –amplituden geringere Schnittkräfte zur Folge haben.
579

Development of an embedded system actuator node for intergration into an IEC 61850 based substation automation application

Retonda-Modiya, John-Charly January 2012 (has links)
Thesis submitted in fulfilment of the requirements for the degree Master of Technology: Electrical Engineering in the Faculty of Engineering at the Cape Peninsula University of Technology, 2012 / The introduction of the IEC 61850 standard in substations for communication networks and systems by the International Electrotechnical Commission (IEC) in 2003 provided the possibility for communication between devices of different manufacturers. However, the advent of this standard also brought about many challenges associated with it. The challenges introduced by this fairly recent standard of communications in Substation Automation Systems (SAS), and the need for the development of cost effective IEC 61850- compliant devices, motivated the decision of the Centre for Substation and Energy Management Systems within the Electrical Engineering Department of the Cape Peninsula University of Technology to focus on the implementation of the IEC 61850 standard using an embedded hardware platform. The development of an IEC 61850 embedded application requires substantial knowledge in multiple domains such as data networking, software modelling and development of Intelligent Electronic Devices (IEDs), protection of the electrical system, system simulation and testing methods, etc. Currently knowledge about the implementation of the IEC 61850 standard usually resides with vendors and is not in the public domain. The IEC 61850 standard allows for two groups of communication services between entities within the substation automation system. One group utilizes a client-server model accommodating services such as Reporting and Remote Switching. The second group utilizes a peer-to-peer model for Generic Substation Event (GSE) services associated with time-critical activities such as fast and reliable communication between Intelligent Electronic Devices (IEDs) used for protection of the power network. The messages associated with the GSE services are the Generic Object Oriented Substation Event (GOOSE) messages. The use of GOOSE messages for protection of the electrical system is very important in modern substations. Detailed knowledge of the structure of these messages is important in instances requiring fault diagnosis to determine the cause of mal– operation or to address interoperability concerns or when developing custom IEC 61850- compliant devices with limited functionality. A practical protection application (overcurrent) case study is presented where GOOSE messages are exchanged between a commercial IED and an IEC 61850-compliant controller based on an embedded platform. The basic data model and software development of an actuator node for a circuit breaker is proposed using an IEC 61850 communication stack on an embedded platform. The performance of the GOOSE messages is confirmed to be as per the functional behaviour specified, and per the IEC 68150 standard in terms of the temporal behaviour required. This thesis document tables the methods, software programs, hardware interfacing and system integration techniques that allow for the development and implementation of a low cost IEC 61850-compliant controller unit on an embedded systems platform for the substation automation system. The overcurrent case study distributed between a commercial IED (SIEMENS Siprotec device) and the actuator application developed on an embedded platform for this project (DK60 board) is in compliance with the IEC 61850 standard and utilizing GOOSE messaging is successfully completed both in terms of functional and temporal behaviour. This novel research work contributes not only to the academic community, but to the international Power Systems community as a whole. Keywords: IEC 61850 standard, IEDs, GOOSE message, software modelling, software development, substation automation systems, communication stack, embedded systems, actuator.
580

Ultrasonic Guided Wave Based Models, Devices and Methods for Integrated Structural Health Monitoring

Rathod, Vivek T January 2014 (has links) (PDF)
Structural Health Monitoring (SHM) systems for future structures and vehicles would involve a process of damage identification and prediction of certain quantities of interest that concerns the function and safety. This process provides SHM systems the ability to not only save cost but also enhance the service life, safety and reliability of the structures and vehicles. Integrated SHM system (ISHM) is an advancement of SHM system that has additional capability of predicting the component life/failure. ISHM system development involves detailed understanding of diagnostic waves, hardware components, signal processing paradigms and intelligent use of algorithms. Diagnostic waves like the guided waves are the elastic waves that propagate in a direction defined by the material boundaries. These waves have the capability of traveling large distance probing the entire thickness in plates/shells. Thus, they are widely used by SHM systems in monitoring the plate structures. Piezoelectric transducers are often employed in the interrogation using guided waves. Most SHM systems employing guided waves are designed for specific structures. Current paradigms of SHM systems are unable to enable the transition from simple or ideal structures to realistic and complicated structures. This is due to the challenges at the fundamental level involving transducer, wave propagation and phenomena of guided wave scattering with damages to evaluate the possible solutions through mathematical modeling and signal analysis capability required by ISHM systems. This thesis aims to develop understanding of these problems at a fundamental level. Complex system level understanding is still needed which is left out as open problem. A primary requirement in designing SHM system is the proper understanding of wave characteristics such as number of modes, wavelength and dispersiveness. Although three-dimensional elasticity solution and simplified theories are available to understand them, their applicability in SHM problem requires a much more detailed look. Effort toward this direction has led to the development of simpler models. However, mathematical models are not available for understanding the wave characteristics in complex structures involving stiffeners and adhesive joints. This problem is addressed in this thesis. There is a fair amount of understanding developed regarding transducer characteristics. This is accomplished by analytical and finite element models of transducers in the past. However, simplified transducer model that are computationally fast to suit SHM system requirements needs to be developed. The development of such model is presented in this thesis. Apart from modeling the transducers and wave scattering due to damage, signal correlation and calibration are needed for practical implementation in SHM. Characterization studies reported in published literature are limited to quasi-static and low frequencies applications. However, SHM of aerospace structures employ guided waves typically in the frequency range of 100-500 kHz. Methods to characterize the transducers at this frequency range needs to be developed, which is addressed in this thesis. Another major requirement of SHM system is the design and development of sensor-actuator network and appropriate algorithm. Techniques developed earlier involving transducer arrays in this regard have limitation due to complexity of geometry and signal interpretation that needs to be addressed. The network with suitable algorithm should ideally monitor large area including the critical areas of failure with minimum number of transducers. ISHM systems further require some capability to estimate the useful life of the damaged structure in order to take suitable decisions. Efficient techniques to achieve these are not developed. Overall, there is a need to improve highly interdisciplinary areas involving mathematical modeling, transducer design, fabrication and characterization, damage detection and monitoring strategies. In this thesis, various novel techniques to combine mathematical model with experimental signals to enhance the damage detection capability are presented. In this thesis, developments in the three main aspects of SHM systems are focused upon. They are (1) development of mathematical models of sensors/actuators, wave propagation and scattering due to damage (2) characterization and calibration of transducers and (3) development of technique to monitor wide variety of damages within the scope of ultrasonic guided wave based SHM. The thesis comprises of ten chapters. First chapter is devoted to the background and motivation for the problem addressed in this thesis. In second chapter, brief overview of available mathematical models and conventional damage monitoring strategy is presented. The significant contributions reported in the subsequent chapters in this thesis are outlined below In chapter 3, a reduced-order model of guided wave propagation in thick structures with reduced-order approximation of higher-order elasto-dynamic field is formulated. The surface normal and shear tractions of the thick structure are satisfied in a closed form. The time-frequency Fourier spectral finite element is developed and is validated using detailed and computationally intensive finite element simulations. Natural frequencies obtained from the developed spectral finite element and the detailed finite element simulations are compared. Transient response due to broad frequency band and narrow frequency band excitations given in the form of surface tractions are validated by comparing with the detailed finite element simulations. Using the developed spectral finite element, wave scattering from a free edge and a notch are simulated and validated by comparing with the detailed finite element simulations. In chapter 4, two-dimensional plane wave and flexural wave scattering models for more complicated features such as stiffener with delamination and stiffener with bolt failures in a stiffened panel are derived using ultrasonic ray tracing based approach combined with wave-field representation. Dispersion relations are reformulated for the base plate where it is bolted with the stiffener. Surface conditions due to contact stiffness and contact damping are modeled by introducing springs and dampers. Scattering coefficients for the bonded and bolted stiffeners are derived. The scattering coefficients are evaluated for various different frequencies. Results are compared for different stiffener parameters. In chapter 5, a simplified analytical model of a piezoelectric actuator with uniform electrodes is modeled. The problem is to determine the launched guided wave characteristics in the structure. The analytical model is derived considering two-dimensional elasticity based approach and Airy’s stress function. The actuator model is used to specify the displacement boundary conditions in the detailed finite element model. The radiated wave patterns in a plate due to actuation from transducers of different shapes are obtained and validated with experiments. Phased array actuators are modeled in the detailed finite element model using the displacements estimated from the actuator model. The radiated wave pattern from the detailed finite element simulations are validated with experiments. Chapter 6 is devoted to the design and characterization of transducers for ultrasonic guided wave applications. The characterization techniques involve the estimation of voltage response for the induced strain by the guided wave at various different frequencies. First, a novel removable bonding technique and a calibration technique are demonstrated and related advantages are discussed. Performance of the piezoelectric thin film under quasi-static, dynamic and transient impact loadings are analyzed first. Next, a guided wave technique is developed to characterize piezoelectric thin film sensors and actuators at ultrasonic frequencies. The transducers with inter digital electrodes are characterized for frequency tuning and directional sensitivity. This characterization study enables in the selection of optimal frequency bands for interrogation. Further, the characterization of transducers with thermal degradation is presented. In chapter 7, a novel guided wave technique to calibrate the thin film sensors for ultrasonic applications is presented. Calibration procedure involves the estimation of the piezoelectric coefficient at ultrasonic range of frequencies. Calibration is done by the measurement of voltage generated across thin films when guided waves are induced on them. With the proposed technique, piezoelectric coefficient can be estimated accurately at any frequency of the propagating wave. Similarly, the measurement of piezoelectric coefficient of thin films with inter digital electrodes is presented. The estimation of piezoelectric coefficient at various different directions using laser Doppler vibrometer is presented. Lastly, the degradation of piezoelectric coefficient is studied for increasing thermal fatigue. In chapter 8, toward SHM methodology development, a guided wave based technique to detect and monitor cracks in a structure is presented. To establish the methodology, a detailed study is carried out on the effect of crack and specimen size on the guided wave propagation characteristics. Using the wave characteristics, an analytical way of modeling Lamb wave propagation in the specimen with plastic zone is proposed. The feasibility to determine plastic zone and fatigue crack propagation with integrated piezoelectric transducers is demonstrated experimentally and the results are verified analytically. A method is further established to detect damage at initial stage and crack-tip plastic zone size along with crack length for a given stress amplitude or vice-versa. An approach to estimate fatigue life from the transducer signals is also proposed. In chapter 9, a compact circular array of sensor-actuator network and an algorithm is presented to monitor large plate structures. A method based on the wavelet transforms of transducer signals is established to localize and estimate the severity of damages. Experiments are conducted to demonstrate the capability of the circular array based method in the localization and quantification of various types of damages like debonding of stiffeners, failure of bolted joints, corrosion and hole-enlargement. A damage index is then computed from wavelet time-frequency map that indicates the severity of damage. Chapter 10 ends with the concluding remarks on the work done with simultaneous discussion on the future scope. The work reported in this thesis is interdisciplinary in nature and it aims to combine the modeling and simulation techniques with realistic data in SHM to impart higher confidence levels in the prediction of damages and its prognosis. The work also aims in incorporating various mathematical models of wave propagation and ray tracing based algorithm to optimize the detection scheme employed in SHM. The future direction based on this study could be aimed at developing intelligent SHM systems with high confidence levels so that statistical machine learning would be possible to deal with complex real-world SHM problems.

Page generated in 0.0798 seconds