• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 8
  • 4
  • Tagged with
  • 43
  • 23
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Implication fonctionnelle de la nucléoporine Nup358/RanBP2 et des récepteurs de transport dans l’entrée du génome adénoviral / Functional implications of the nucleoporin Nup358/RanBP2 and transport receptors in adenoviral genome delivery

Carlón-Andrés, Irene 07 December 2017 (has links)
Les adénovirus (AdV), comme d'autres virus à réplication nucléaire, ont besoin d’arriver jusqu’aunoyau cellulaire afin de libérer leur génome. Pour ce faire, les particules des AdV contenant l’ADNviral sont transportées jusqu’au complexe du pore nucléaire (NPC), via le centre d’organisation desmicrotubules, par un mécanisme encore mal compris qui implique l’exportine cellulaire CRM1. Lacapside des AdV dépasse la taille limite d’entrée dans le noyau, et par conséquent, elle doit êtredésassemblée au niveau du NPC. Le mécanisme d’import de molécules d’ADN n’est pas un processusphysiologique. Pour cela, les AdV doivent détourner la machinerie cellulaire afin d’importer leurgénome dans le noyau. Le NPC est un complexe de protéines appelées nucléoporines. LaNup358/RanBP2, principal composant des filaments cytoplasmiques, sert de plateforme de liaison àdes karyopherines (e.g Importin-β, CRM1) et à la protéine GTPase Ran. Les karyopherinesreconnaissent des signaux spécifiques présents dans les cargos et facilitent leur transport d’unemanière très régulée dépendante de RanGTP. Nous avons constaté que l’import du génome AdV estmoins efficace en l’absence de Nup358. Dans ces conditions, nous avons observé que certaineskaryopherines deviennent limitantes pour l’import du génome viral, et identifié la région minimale deNup358 requise pour compenser ce défaut. D’autre part, nous avons confirmé l’implication de CRM1dans l’arrivé des particules virales au noyau et identifié un nouveau rôle de CRM1 dans ledésassemblage de la capside des AdV. Ces travaux contribuent à mieux connaître le mécanismed’entrée du génome AdV dans le noyau et donnent une idée de la façon dont les virus peuventcontourner la machinerie de transport cellulaire pour leur propre bénéfice. / Nuclear delivery of viral genomes is an essential step for nuclear replicating DNA viruses such asAdenovirus (AdV). AdV particles reach the nuclear pore complex (NPC) in the form of genomecontaining, partially disassembled capsids, through a poorly understood CRM1-dependent mechanism.These capsids exceed the NPC size limit and therefore, they must disassemble at the NPC to releasethe viral genome. Nuclear import of DNA cargos is not a physiological process. Consequently, AdVneed to divert the cellular transport machinery for nuclear genome delivery. The NPC is a multiproteincomplex consisting of nucleoporins (Nups). The Nup358/RanBP2 is the major component ofthe cytoplasmic filaments of the NPC and serves as binding platform for factors includingkaryopherins (i.e Importin-β, CRM1) and the small GTPase Ran. Selective transport of cargo throughthe NPC is mediated by karyopherins, which recognize specific signals within the cargos and facilitatetheir transport in a RanGTP-dependent regulated manner. We identified that Nup358-depleted cellsreduce nuclear import efficiency of the AdV genome. Indeed, we observed that karyopherins are ratelimitingfor AdV genome import under these conditions and we mapped the minimal region ofNup358 necessary to compensate the import defect. On the other hand, we could confirm therequirement of CRM1 in nuclear targeting of AdV capsids and identified and additional role inmediating AdV capsid disassembly. This work helps to understand the strategy used by AdV todeliver their genome and gives insight about how viruses hijack the cellular transport machinery fortheir own benefit.
22

Mise au point d'un système de thérapie génique utilisant le gène HSV-TK couplé au promoteur muté de l'alpha-foetoprotéine dans un vecteur adénoviral

Fortier, Pascale 12 April 2018 (has links)
L'alpha-foetoprotéine (AFP) est une protéine hépatique feotale souvent réexprimée dans les hépatomes. L'utilisation de son promoteur en thérapie génique pourrait donc augmenter la spécificité du traitement. Nous avons tenté de mettre au point un système de thérapie génique utilisant des mutants plus puissants du promoteur de l'AFP associés au gène suicide de la thymidine kinase (TK). La comparaison de l'efficacité du gène TK sauvage et du mutant TK30 à induire la mort cellulaire en présence de la prodrogue ganciclovir (GCV) dans notre lignée cellulaire d'hépatome de rat v7.6 nous a révélé que le mutant n'était pas supérieur au gène sauvage. Nous avons comparé l'efficacité de mutants plus actifs du promoteur de l'AFP, MO1 et M11, à induire l'expression du gène TK placé sous leur contrôle ainsi que leur effet bystander respectif. Le mutant MO1 s'est révélé être le meilleur choix pour la thérapie. Un effet bystander a pu être observé in vivo chez des rats Buffalo injectés avec des v7.6 contenant le plasmide MO1-TK. Nous avons démontré la capacité de l'adénovirus Ad-CMV-LacZ ainsi que nos constructions Ad-MO1-EGFP et Ad-MO1-TK à transduire les hépatomes en culture et chez l'animal (sauf pour Ad-MO1-TK). Finalement, nous avons testé l'efficacité de notre système de thérapie génique in vivo. L'Ad-MO1-TK n'a pas réussi à éliminer les tumeurs. Notre système n'est donc pas encore fonctionnel tel qu'utilisé.
23

Surexpression d'XBP1S dans les lymphocytes B, et différenciation plasmocytaire

Forest, Audrey 12 April 2018 (has links)
La production d'IVIg (immunoglobulines pour injection intraveineuse) est actuellement dépendante des dons de plasma, et ainsi limitée. C'est pourquoi pouvoir en produire in vitro est une entreprise importante. Comprendre et maîtriser les arcanes complexes, qui régulent la transformation des cellules B humaines en plasmocytes sécréteurs d'anticorps, est fondamental pour la mise au point des conditions nécessaires à cette production. L'un des éléments clé se nomme XBPIS, facteur de transcription issu de l'épissage particulier de l'ARNm du gène XBPl, qui survient lors de la réponse UPR et qui est également fortement impliqué dans la transformation plasmocytaire. Nous allons tout d'abord devoir surexprimer XBPl et XBPIS dans des lymphocytes B humains, via des constructions adénovirales Ad5/F35, porteuses de leurs ADNc (complémentaire). Et ensuite en étudier les répercussions sur les cultures de cellules B par différentes techniques d'analyses (RT-PCR, FACS, western blotting, ELISA). Les vecteurs adénoviraux pAd5/F35 construits montrent une très bonne capacité d'infection des cellules B. Si ces vecteurs permettent la surexpression d'XBPl et XBPIS dans les cellules 293A, 293 et L4.5, ils ne le permettent malheureusement pas chez les cellules B. Pourtant ces mêmes constructions permettent celle de YEYFP et de c-src dans ces dernières. Il semble donc que l'expression d'XBPJS soit réprimée spécifiquement au sein des cellules B, et que cela soit en relation avec le programme qui gère le stade de développement de la cellule. Provoquer la différenciation plasmocytaire via la surexpression d'XBPIS grâce aux virus Ad5/F35 ne semble pas réalisable. A moins de pouvoir lever ce mécanisme de répression, il faut songer à un autre moyen pour parvenir à la production d'anticorps in vitro.
24

Utilisation de vecteurs viraux et du système inductible au cumate pour la production de protéines recombinantes avec les cellules CHO

Gaillet, Bruno 17 April 2018 (has links)
Aujourd'hui, la production de protéines thérapeutiques est effectuée principalement à partir de lignées de cellules d'ovaires de hamster chinois CHO. Ces cellules, contrairement aux systèmes bactériens et certains systèmes eucaryotes, sont capables d'effectuer toutes les modifications post traductionnelles nécessaires à la fonctionnalité de la protéine. Avec plusieurs centaines de protéines actuellement en essais précliniques, il est nécessaire de développer des méthodes de production de glycoprotéines efficaces et rapides dans les cellules CHO. Au cours de cette thèse deux nouveaux systèmes d'expression performants de protéines recombinantes dans les cellules CHO sont présentés. Ces systèmes reposent sur l'utilisation d'un virus épisomal (adenovirals) ou intégratif (lentivirus) comme vecteur de transfert et du système inductible au cumate pour le contrôle de l'expression des transgènes. Dans ce système inductible, la transcription débute lorsque le transactivateur au cumate (cTA) ou le transactivateur inverse au cumate (rcTA) se lie sur le promoteur inductible au cumate CR5. En présence de cumate, la liaison du cTA sur le promoteur CR5 est inhibée empêchant la transcription contrairement au rcTA dont la liaison avec le promoteur CR5 est possible seulement en présence de cumate. La première méthode consiste à infecter des cellules CHO exprimant le cTA (CHO-cTA) et le récepteur du coxackievirus et de 1'adenovirus (CAR) par un adenovirus de type 5 exprimant le transgène de la protéine d'intérêt dans ce cas-ci celui de l'alcaline phosphatase sécrétée (SEAP) sous le contrôle du promoteur CR5. Cette technique permet de produire à 30°C six jours suivant l'infection jusqu'à 63 ug/mL de SEAP dans des conditions de culture non optimisées. Des lentivirus ont également été utilisés pour l'expression stable de différents transgènes dans les cellules CHO exprimant le cTA ou le rcTA. Des lots de clones CHO ont été générés produisant à 30°C jusqu'à 65 ug/mL de SEAP dans les cellules CHO-cTA et 235 ug/mL d'une protéine de fusion CD200Fc, 160 ug/mL d'anticorps chimérique chB43 et 206 ug/mL d'érytliropoïétine EPO dans les cellules CHO-rcTA, sous des conditions de culture non optimisées. Ces résultats démontrent que l'utilisation de virus couplé à un système de contrôle performant de l'expression de transgènes permet de produire rapidement et en quantité importante une gamme variée de protéines thérapeutiques dans les cellules CHO.
25

Étude de l'autoimmunité contre le foie induite par mimétisme moléculaire

Piché, Chantal January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
26

Nouvelle approche pour modifier le tropisme des vecteurs adénoviraux à l’aide de ligands bispécifiques

Pinard, Maxime 10 1900 (has links)
L’adénovirus a été étudié dans l’optique de développer de nouveaux traitements pour différentes maladies. Les vecteurs adénoviraux (AdV) sont des outils intéressants du fait qu’ils peuvent être produits en grandes quantités (1X1012 particules par millilitre) et de par leur capacité à infecter des cellules quiescentes ou en division rapide. Les AdVs ont subi bon nombre de modifications pour leur permettre de traiter des cellules tumorales ou pour transporter des séquences génétiques exogènes essentielles pour le traitement de maladies monogéniques. Toutefois, les faibles niveaux d’expression du récepteur primaire de l’adénovirus, le CAR (récepteur à l’adénovirus et au virus coxsackie), réduit grandement l’efficacité de transduction dans plusieurs tumeurs. De plus, certains tissus normaux comme les muscles n’expriment que très peu de CAR, rendant l’utilisation des AdVs moins significative. Pour pallier à cette limitation, plusieurs modifications ont été générées sur les capsides virales. L’objectif de ces modifications était d’augmenter l’affinité des AdVs pour des récepteurs cellulaires spécifiques surexprimés dans les tumeurs et qui seraient exempts dans les tissus sains avoisinant. On peut mentionner dans les approches étudiées: l’utilisation de ligands bispécifiques, l’incorporation de peptides dans différentes régions de la fibre ou la substitution par une fibre de sérotypes différents. Notre hypothèse était que les domaines d’interaction complémentaire (K-Coil et ECoil) permettraient aux ligands de s’associer aux particules virales et d’altérer le tropisme de l’AdV. Pour ce faire, nous avons inclus un domaine d’interaction synthétique, le K-Coil,dans différentes régions de la fibre virale en plus de générer des mutations spécifiques pour abolir le tropisme naturel. Pour permettre la liaison avec les récepteurs d’intérêt dont l’EGF-R, l’IGF-IR et le CEA6, nous avons fusionné le domaine d’interaction complémentaire, le E-Coil, soit dans les ligands des récepteurs ciblés dont l’EGF et l’IGF-I, soit sur un anticorps à un seul domaine reconnaissant la protéine membranaire CEA6, l’AFAI. Suite à la construction des différents ligands de même que des différentes fibres virales modifiées, nous avons determiné tout d’abord que les différents ligands de même que les virus modifiés pouvaient être produits et que les différentes composantes pouvaient interagir ensemble. Les productions virales ont été optimisées par l’utilisation d’un nouveau protocole utilisant l’iodixanol. Ensuite, nous avons démontré que l’association des ligands avec le virus arborant une fibre modifiée pouvait entraîner une augmentation de transduction de 2 à 21 fois dans différentes lignées cellulaires. À cause de la difficulté des adénovirus à infecter les fibres musculaires occasionnée par l’absence du CAR, nous avons cherché à savoir si le changement de tropisme pourrait accroître l’infectivité des AdVs. Nous avons démontré que l’association avec le ligand bispécifique IGF-E5 permettait d’accroître la transduction autant dans les myoblastes que dans les myotubes de souris. Nous avons finalement réussi à démontrer que notre système pouvait induire une augmentation de 1,6 fois de la transduction suite à l’infection des muscles de souriceaux MDX. Ces résultats nous amènent à la conclusion que le système est fonctionnel et qu’il pourrait être évalué dans des AdVs encodant pour différents gènes thérapeutiques. / Adenoviruses have been studied as a way to develop new treatments for different diseases. Adenoviral vectors (AdV) are considered interesting tools for this propose, because they can be produced at high titers (1X1012 particles per millilitre) in laboratory and they have the capacity to infect non-dividing and dividing cells. AdV have been often modified in order to obtain the ability to kill tumour cells or to deliver exogenous genetic sequences essential to treat monogenic disease. However, weak expression of the primary adenovirus receptor, the CAR (Coxsackie and adenovirus receptor) reduces greatly the transduction efficiency of AdV for the tumour cells. Moreover, some normal tissues express low amount of CAR, like the skeletal muscle, reducing the appeal of using AdV as a gene delivery vehicle for this tissue. To address this problematic, many modifications were done on the adenoviral capsid. The goal of these modifications were to generate an AdV able to target specific cellular receptors that were expressed in tumour cells but not in normal cells. Several approaches were done to modify the tropism of AdV, such as incubation with a bispecific ligands, incorporation of peptides within the adenoviral fiber structure or substitution of the viral fiber with a different serotype fiber. The hypothesis of my project was to determine if an interaction domain fused within a ligand could bind the complementary domain incorporated on a virus and change the tropism of the AdV. The first step was to include a synthetic interaction domain, the K-Coil, within specific region of the adenoviral fiber, as well as inserting two point mutations to abolish the natural tropism. To target the EGF-R, IGF-IR and the CEA6, we fused the complementary interaction domain, the E-Coil, to the respective ligand known as the EGF and the IGF-I or to a single domain antibody (known as AFAI) that bind specifically to CEA6. The specific interaction between the E-Coil and K-Coil was used to associate the ligand with the fiber in order to retarget the AdV toward the selected receptor. We showed that the different ligands as well as the modified fibers could be produced and that both E-Coil and K-Coil expressing partners could interact together. We optimized the viral production by using an iodixanol purification protocol. More importantly, we clearly demonstrated that the ligand association with the fiber could increase the transduction efficiency between 2 to 21 fold against various tumour cells. The difficulty of adenovirus to infect muscle cells because of the lack of CAR expression brought us to evaluate the potential of our retargeted AdV to increase the transduction for the tissue. We showed that the use of IGF-E5 could increase the transduction efficiency in myoblasts as wells as in myotubes. We finally demonstrated that our retargeting system could increase the transduction efficiency for skeletal muscle by 1,6 fold in new born MDX mice. In conclusion, our results show that the retargeting system is indeed functional. This system could be assessed using vectors that express therapeutic genes.
27

Sim1 function in the developing and adult brain

Yang, Chun January 2006 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
28

Etude du rôle des modifications post-traductionnelles de la protéine VI lors de l’entrée de l’adénovirus dans sa cellule hôte / Role of capsid protein VI post-translational modifications in adenovirus host cell entry

Martinez, Ruben 13 December 2012 (has links)
Les adénovirus sont des virus non enveloppés. Afin de pouvoir se répliquer ils doivent entrer dans leur cellule hôte et être transportés jusqu’au noyau pour pouvoir initier l’expression du génome viral. Pour ce faire le virus utilise les composants de sa capside. Parmi ses composants, la protéine VI, une protéine interne de capside, induit la rupture de l’endosome grâce à son hélice amphipatique en N-terminal de la protéine. Récemment, une autre fonction de cette protéine a été décrite durant l’entrée du virus, impliquant cette fois-ci le motif conservé PPxY de la protéine VI. En effet la mutation de ce motif conservé : mutant M1 (PPxYPGAA), diminue de 20 fois l’infection du virus par rapport au virus sauvage. Cette baisse d’infectiosité est liée à un défaut de transport et d’accumulation du virus au niveau du centre organisateur des microtubules (MTOC). Il se trouve que la mutation du motif PPxY conduit à une perte d’interaction de la protéine VI avec les ubiquitines ligase de la famille Nedd4, mais également à un défaut d’ubiquitylation de la protéine VI. Nous avons ainsi entrepris d’étudier le rôle de cette modification post-traductionnelle lors de l’entrée du virus dans la cellule, mais aussi, de manière plus générale, le rôle de la protéine VI. Ainsi nous avons mis en évidence le rôle de la protéine VI et de son motif PPxY dans l’activation du génome viral. Par ailleurs, nous avons identifié une lysine ubiquitylée de la protéine VI et produit un mutant : mutant M6, pour étudier le rôle de cette ubiquitylation. Nous avons enfin entrepris de caractériser l’entrée du virus en produisant et en utilisant des adénovirus mutants, dont le nouveau mutant M6 / Adenoviruses are non-enveloped viruses. In order to replicate they have to enter their host cell and be transported toward the nucleus to initiate the viral gene expression. This requires the involvement of viral capsids components. Among these components, protein VI, an inner capsid protein, can induce endosomal rupture, thanks to its amphipathic helix located at the N-terminus part of the protein. Recently, the involvement of a conserved PPxY motif in the Protein VI has also been described in viral entry. Indeed, mutation of this motif (PPxY  PGAA) reduced infectivity of the mutant virus (M1 mutant) 20 folds compared to the wild type virus. This reduction of infectivity is related to a defect of transport and accumulation of viruses at the microtubule organizing center (MTOC) during virus entry. The mutation of PPxY motif leads to a loss of interaction between the protein VI and ubiquitin ligases from the Nedd4 family, and to a lack of protein VI ubiquitylation. The aim of this study was therefore to investigate the role of this posttranslational modification during virus entry, but also more generally the role of protein VI. In this work, we highlight the role of protein VI and its PPxY motif in the activation of the viral genome. Moreover, to investigate the ubiquitylation during virus entry we identify a lysine mutant of protein VI that lack ubiquitylation without altering the potential for interaction with ubiquitin ligases: the mutant M6. We then proceed to characterize the entry of the virus by producing and using mutant viruses, including this new mutant.
29

Étude de l'autoimmunité contre le foie induite par mimétisme moléculaire

Piché, Chantal January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
30

Nouvelle approche pour modifier le tropisme des vecteurs adénoviraux à l’aide de ligands bispécifiques

Pinard, Maxime 10 1900 (has links)
L’adénovirus a été étudié dans l’optique de développer de nouveaux traitements pour différentes maladies. Les vecteurs adénoviraux (AdV) sont des outils intéressants du fait qu’ils peuvent être produits en grandes quantités (1X1012 particules par millilitre) et de par leur capacité à infecter des cellules quiescentes ou en division rapide. Les AdVs ont subi bon nombre de modifications pour leur permettre de traiter des cellules tumorales ou pour transporter des séquences génétiques exogènes essentielles pour le traitement de maladies monogéniques. Toutefois, les faibles niveaux d’expression du récepteur primaire de l’adénovirus, le CAR (récepteur à l’adénovirus et au virus coxsackie), réduit grandement l’efficacité de transduction dans plusieurs tumeurs. De plus, certains tissus normaux comme les muscles n’expriment que très peu de CAR, rendant l’utilisation des AdVs moins significative. Pour pallier à cette limitation, plusieurs modifications ont été générées sur les capsides virales. L’objectif de ces modifications était d’augmenter l’affinité des AdVs pour des récepteurs cellulaires spécifiques surexprimés dans les tumeurs et qui seraient exempts dans les tissus sains avoisinant. On peut mentionner dans les approches étudiées: l’utilisation de ligands bispécifiques, l’incorporation de peptides dans différentes régions de la fibre ou la substitution par une fibre de sérotypes différents. Notre hypothèse était que les domaines d’interaction complémentaire (K-Coil et ECoil) permettraient aux ligands de s’associer aux particules virales et d’altérer le tropisme de l’AdV. Pour ce faire, nous avons inclus un domaine d’interaction synthétique, le K-Coil,dans différentes régions de la fibre virale en plus de générer des mutations spécifiques pour abolir le tropisme naturel. Pour permettre la liaison avec les récepteurs d’intérêt dont l’EGF-R, l’IGF-IR et le CEA6, nous avons fusionné le domaine d’interaction complémentaire, le E-Coil, soit dans les ligands des récepteurs ciblés dont l’EGF et l’IGF-I, soit sur un anticorps à un seul domaine reconnaissant la protéine membranaire CEA6, l’AFAI. Suite à la construction des différents ligands de même que des différentes fibres virales modifiées, nous avons determiné tout d’abord que les différents ligands de même que les virus modifiés pouvaient être produits et que les différentes composantes pouvaient interagir ensemble. Les productions virales ont été optimisées par l’utilisation d’un nouveau protocole utilisant l’iodixanol. Ensuite, nous avons démontré que l’association des ligands avec le virus arborant une fibre modifiée pouvait entraîner une augmentation de transduction de 2 à 21 fois dans différentes lignées cellulaires. À cause de la difficulté des adénovirus à infecter les fibres musculaires occasionnée par l’absence du CAR, nous avons cherché à savoir si le changement de tropisme pourrait accroître l’infectivité des AdVs. Nous avons démontré que l’association avec le ligand bispécifique IGF-E5 permettait d’accroître la transduction autant dans les myoblastes que dans les myotubes de souris. Nous avons finalement réussi à démontrer que notre système pouvait induire une augmentation de 1,6 fois de la transduction suite à l’infection des muscles de souriceaux MDX. Ces résultats nous amènent à la conclusion que le système est fonctionnel et qu’il pourrait être évalué dans des AdVs encodant pour différents gènes thérapeutiques. / Adenoviruses have been studied as a way to develop new treatments for different diseases. Adenoviral vectors (AdV) are considered interesting tools for this propose, because they can be produced at high titers (1X1012 particles per millilitre) in laboratory and they have the capacity to infect non-dividing and dividing cells. AdV have been often modified in order to obtain the ability to kill tumour cells or to deliver exogenous genetic sequences essential to treat monogenic disease. However, weak expression of the primary adenovirus receptor, the CAR (Coxsackie and adenovirus receptor) reduces greatly the transduction efficiency of AdV for the tumour cells. Moreover, some normal tissues express low amount of CAR, like the skeletal muscle, reducing the appeal of using AdV as a gene delivery vehicle for this tissue. To address this problematic, many modifications were done on the adenoviral capsid. The goal of these modifications were to generate an AdV able to target specific cellular receptors that were expressed in tumour cells but not in normal cells. Several approaches were done to modify the tropism of AdV, such as incubation with a bispecific ligands, incorporation of peptides within the adenoviral fiber structure or substitution of the viral fiber with a different serotype fiber. The hypothesis of my project was to determine if an interaction domain fused within a ligand could bind the complementary domain incorporated on a virus and change the tropism of the AdV. The first step was to include a synthetic interaction domain, the K-Coil, within specific region of the adenoviral fiber, as well as inserting two point mutations to abolish the natural tropism. To target the EGF-R, IGF-IR and the CEA6, we fused the complementary interaction domain, the E-Coil, to the respective ligand known as the EGF and the IGF-I or to a single domain antibody (known as AFAI) that bind specifically to CEA6. The specific interaction between the E-Coil and K-Coil was used to associate the ligand with the fiber in order to retarget the AdV toward the selected receptor. We showed that the different ligands as well as the modified fibers could be produced and that both E-Coil and K-Coil expressing partners could interact together. We optimized the viral production by using an iodixanol purification protocol. More importantly, we clearly demonstrated that the ligand association with the fiber could increase the transduction efficiency between 2 to 21 fold against various tumour cells. The difficulty of adenovirus to infect muscle cells because of the lack of CAR expression brought us to evaluate the potential of our retargeted AdV to increase the transduction for the tissue. We showed that the use of IGF-E5 could increase the transduction efficiency in myoblasts as wells as in myotubes. We finally demonstrated that our retargeting system could increase the transduction efficiency for skeletal muscle by 1,6 fold in new born MDX mice. In conclusion, our results show that the retargeting system is indeed functional. This system could be assessed using vectors that express therapeutic genes.

Page generated in 0.0226 seconds