• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 14
  • 1
  • 1
  • Tagged with
  • 65
  • 65
  • 65
  • 39
  • 27
  • 26
  • 25
  • 16
  • 14
  • 13
  • 12
  • 12
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Symmetries of Maldacena - Wilson Loops from Integrable String Theory

Münkler, Hagen 09 October 2017 (has links)
In der vorliegenden Arbeit werden versteckte Symmetrien innnerhalb der N=4 supersymmetrischen Yang--Mills Theorie oder der nach der AdS/CFT Korrespondenz dualen Beschreibung durch eine String-Theorie in AdS5 x S5 besprochen. Dabei betrachten wir die Maldacena--Wilson Schleife, die sich für diese Untersuchungen besonders eignet, da ihr Vakuum-Erwartungswert für glatte Kurven nicht divergiert und die vermutete Dualität zu Streuamplituden wenigstens konzeptionell eine Möglichkeit bietet, etwaige Symmetrien zu anderen Observablen zu übertragen. Ihre Beschreibung durch Minimalflächen in AdS5 erlaubt es, Symmetrien mithilfe der Integrabilität der zugrunde liegenden klassischen String-Theorie zu konstruieren. Dieser Zugang wurde bereits in der Herleitung der Yang'schen Symmetrie der Maldacena--Wilson Schleife bei starker Kopplung sowie in der Beschreibung von Deformationen gleiches Flächeninhalts von Minimalflächen in AdS3 verwendet. Diese beiden Ergebnisse werden in der vorliegenden Arbeit miteinander verbunden und erweitert. Im Sinne einer systematischen Herangehensweise besprechen wir zunächst die Symmetriestruktur der zugrunde liegenden String-Theorie. Diese Diskussion lässt sich auf die Diskussion von String-Theorien in symmetrischen Räumen verallgemeinern. Dabei zeigt sich, dass die Symmetrie, welche die Deformationen gleiches Flächeninhalts in AdS3 erzeugt, in der Symmetriestruktur dieser Modelle eine zentrale Rolle einnimmt: Sie wirkt als Aufsteige-Operator auf den unendlich vielen erhalten Ladungen und generiert somit den Spektralparameter. Weiterhin lässt sie sich anwenden, um ausgehend von der globalen Symmetrie sämtliche Symmetrien des zugrunde liegenden Modells zu konstruieren. Sie wird daher als die Master-Symmetrie dieser Modelle bezeichnet. Zusätzlich wird die Algebra der Symmetrie-Variationen sowie der erhaltenen Ladungen ausgearbeitet. Für den konkreten Fall von Minimalflächen in AdS5 diskutieren wir die Deformation der Minimalflächenlösung für den Fall eines lichtartigen Vierecks. Diese liefert die duale Beschreibung der Streuamplitude für vier Gluonen. Damit unternehmen wir einen ersten Schritt zur Übertragung der Master-Symmetrie auf Streuamplituden. Weiterhin berechnen wir die Variation der Randkurven der Minimalflächen unter der Master- und Yang'schen Symmetrie für allgemeine, glatte Randkurven. Das Ergebnis dieser Rechnung führt auf eine Verallgemeinerung der Master-Symmetrie zu einer Variation, die von der Kopplungskonstanten abhängt und für beliebige Werte der Kopplungskonstanten eine Symmetrie der Maldacena--Wilson Schleife darstellt. Unsere Diskussion erklärt das Scheitern vorheriger Versuche, die entsprechende Symmetrie im Spezialfall von Minimalflächen in AdS3 zu schwacher Kopplung zu übertragen. Wir besprechen verschiedene Ansätze, die Yang'sche Symmetrie zu schwacher oder beliebiger Kopplung zu übertragen, schlussfolgern aber letztendlich, dass eine Yang'sche Symmetrie der Maldacena--Wilson Schleife nicht vorzuliegen scheint. Die Situation ändert sich, wenn wir Wilson Schleifen in Superräumen betrachten. Diese sind die natürlichen supersymmetrischen Erweiterungen der Maldacena--Wilson Schleife. Für die Yang'sche Invarianz ihres Vakuum-Erwartungswerts wurden wichtige Anhaltspunkte gefunden und sowohl die Beschreibung dieser Operatoren als auch der Beweis der Yang'schen Invarianz bei schwacher Kopplung wurden parallel zur Arbeit an der vorliegenden Dissertation vervollständigt. Wir diskutieren das Gegenstück zu diesem Ergebnis bei starker Kopplung. Dort wird die Wilson Schleife durch eine Minimalfläche beschrieben, welche im Superraum der Superstring-Theorie vom Typ IIB in AdS5 x S5 liegt. Der Vergleich der bei starken Kopplung etablierten Invarianz mit den entsprechenden Generatoren bei schwacher Kopplung zeigt, dass die Symmetrie-Generatoren einen lokalen Anteil enthalten, der auf nicht-triviale Weise vom Wert der Kopplungskonstanten abhängt. Zusätzlich finden wir sogenannte Bonus-Symmetrien. Diese sind die analogen Generatoren in den höheren Ordnungen zum Hyperladungs-Generator, der selbst keine Symmetrie darstellt. Wir zeigen, dass diese Symmetrien in allen höheren Ordnungen der Yang'schen Algebra vorliegen. / This thesis discusses hidden symmetries within N=4 supersymmetric Yang--Mills theory or its AdS/CFT dual, string theory in AdS5 x S5. Here, we focus on the Maldacena--Wilson loop, which is a suitable object for this study since its vacuum expectation value is finite for smooth contours and the conjectured duality to scattering amplitudes provides a conceptual path to transfer its symmetries to other observables. Its strong-coupling description via minimal surfaces in AdS5 allows to construct the symmetries from the integrability of the underlying classical string theory. This approach has been utilized before to derive a strong-coupling Yangian symmetry of the Maldacena--Wilson loop and describe equiareal deformations of minimal surfaces in AdS3. These two findings are connected and extended in the present thesis. In order to discuss the symmetries systematically, we first discuss the symmetry structure of the underlying string model. The discussion can be generalized to the discussion of generic symmetric space models. For these, we find that the symmetry which generates the equiareal deformations of minimal surfaces in AdS3 has a central role in the symmetry structure of the model: It acts as a raising operator on the infinite tower of conserved charges, thus generating the spectral parameter, and can be employed to construct all symmetry variations from the global symmetry of the model. It is thus referred to as the master symmetry of symmetric space models. Additionally, the algebra of the symmetry variations and the conserved charges is worked out. For the concrete case of minimal surfaces in AdS5, we discuss the deformation of the four-cusp solution, which provides the dual description of the four-gluon scattering amplitude. This marks the first step toward transferring the master symmetry to scattering amplitudes. Moreover, we compute the master and Yangian symmetry variations of generic, smooth boundary curves. The results leads to a coupling-dependent generalization of the master symmetry, which constitutes a symmetry of the Maldacena--Wilson loop at any value of the coupling constant. Our discussion clarifies why previous attempts to transfer the deformations of minimal surfaces in AdS3 to weak coupling were unsuccessful. We discuss several attempts to transfer the Yangian symmetry to weak or arbitrary coupling, but ultimately conclude that a Yangian symmetry of the Maldacena--Wilson loop seems not to be present. The situation changes when we consider Wilson loops in superspace, which are the natural supersymmetric generalizations of the Maldacena--Wilson loop. Substantial evidence for the Yangian invariance of their vacuum expectation value has been provided at weak coupling and the description of the operator as well as its weak-coupling Yangian invariance were subsequently established in parallel to the work on this thesis. We discuss the strong-coupling counterpart of this finding, where the Wilson loop in superspace is described by minimal surfaces in the superspace of type IIB superstring theory in AdS5 x S5. The comparison of the strong-coupling invariance derived here with the respective generators at weak coupling shows that the generators contain a local term, which depends on the coupling in a non-trivial way. Additionally, we find so-called bonus symmetry generators. These are the higher-level recurrences of the superconformal hypercharge generator, which does not provide a symmetry itself. We show that these symmetries are present in all higher levels of the Yangian.
42

Aspects of Yang-Mills Theory : Solitons, Dualities and Spin Chains

Freyhult, Lisa January 2004 (has links)
<p>One of the still big problems in the Standard Model of particle physics is the problem of confinement. Quarks or other coloured particles have never been observed in isolation. Quarks are only observed in colour neutral bound states. The strong interactions are described using a Yang-Mills theory. These type of theories exhibits asymptotic freedom, i.e. the coupling is weak at high energies. This means that the theory is perturbative at high energies only. Understanding quark confinement requires knowledge of the non perturbative regime. One attempt has been to identify the proper order parameters for describing the low energy limit and then to write down effective actions in terms of these order parameters. We discuss one possible scenario for confinement and the effective models constructed with this as inspiration. Further we discuss solitons in these models and their properties.</p><p>Yang-Mills theory has also become important in the context of string theory. According to the AdS/CFT correspondence string theory in AdS<sub>5</sub>×S<sup>5</sup> is dual to four dimensional Yang-Mills with four supersymmetries. The duality relate the non perturbative regime of one of the theories to the perturbative regime of the other. This makes it in general hard to test this conjecture. For a special type of solutions it is however possible to use a perturbative expansion in both theories. We discuss this type of solutions and in particular we discuss a method, the Bethe ansatz, to find the solutions on the gauge theory side.</p>
43

Aspects of Yang-Mills Theory : Solitons, Dualities and Spin Chains

Freyhult, Lisa January 2004 (has links)
One of the still big problems in the Standard Model of particle physics is the problem of confinement. Quarks or other coloured particles have never been observed in isolation. Quarks are only observed in colour neutral bound states. The strong interactions are described using a Yang-Mills theory. These type of theories exhibits asymptotic freedom, i.e. the coupling is weak at high energies. This means that the theory is perturbative at high energies only. Understanding quark confinement requires knowledge of the non perturbative regime. One attempt has been to identify the proper order parameters for describing the low energy limit and then to write down effective actions in terms of these order parameters. We discuss one possible scenario for confinement and the effective models constructed with this as inspiration. Further we discuss solitons in these models and their properties. Yang-Mills theory has also become important in the context of string theory. According to the AdS/CFT correspondence string theory in AdS5×S5 is dual to four dimensional Yang-Mills with four supersymmetries. The duality relate the non perturbative regime of one of the theories to the perturbative regime of the other. This makes it in general hard to test this conjecture. For a special type of solutions it is however possible to use a perturbative expansion in both theories. We discuss this type of solutions and in particular we discuss a method, the Bethe ansatz, to find the solutions on the gauge theory side.
44

Holographic Experiments on Defects

Wapler, Matthias Christian January 2009 (has links)
Using the AdS/CFT correspondence, we study the anisotropic transport properties of both supersymmetric and non-supersymmetric matter fields on (2+1)-dimensional defects coupled to a (3+1)-dimensional N=4 SYM "heat bath". We address on the one hand the purely conformal defect where the only non-vanishing background field that we turn on is a "topological", parameter parametrizing the impact on the bulk. On the other hand we also address the case of a finite external background magnetic field, finite net charge density and finite mass. We find in the purely conformal limit that the system possesses a conduction threshold given by the wave number of the perturbation and that the charge transport arises from a quasiparticle spectrum which is consistent with an intuitive picture where the defect acquires a finite width in the direction of the SYM bulk. We also examine finite-coupling modifications arising from higher derivative interactions in the probe brane action. In the case of finite density, mass and magnetic field, our results generalize the conformal case. We discover at high frequencies a spectrum of quasiparticle resonances due to the magnetic field and finite density and at small frequencies a Drude-like expansion around the DC limit. Both of these regimes display many generic features and some features that we attribute to strong coupling, such as a minimum DC conductivity and an unusual behavior of the "cyclotron" and plasmon frequencies, which become correlated to the resonances found in the conformal case. We further study the hydrodynamic regime and the relaxation properties, in which the system displays a set of different possible transitions to the collisionless regime. The mass dependence can be cast in two regimes: a generic relativistic behavior dominated by the UV and a non-linear hydrodynamic behavior dominated by the IR. In the massless case, we also extend earlier results to find an interesting duality under the transformation of the conductivity and the exchange of density and magnetic field. Furthermore, we look at the thermodynamics and the phase diagram, which reproduces general features found earlier in 3+1 dimensional systems and demonstrates stability in the relevant phase.
45

Holographic Experiments on Defects

Wapler, Matthias Christian January 2009 (has links)
Using the AdS/CFT correspondence, we study the anisotropic transport properties of both supersymmetric and non-supersymmetric matter fields on (2+1)-dimensional defects coupled to a (3+1)-dimensional N=4 SYM "heat bath". We address on the one hand the purely conformal defect where the only non-vanishing background field that we turn on is a "topological", parameter parametrizing the impact on the bulk. On the other hand we also address the case of a finite external background magnetic field, finite net charge density and finite mass. We find in the purely conformal limit that the system possesses a conduction threshold given by the wave number of the perturbation and that the charge transport arises from a quasiparticle spectrum which is consistent with an intuitive picture where the defect acquires a finite width in the direction of the SYM bulk. We also examine finite-coupling modifications arising from higher derivative interactions in the probe brane action. In the case of finite density, mass and magnetic field, our results generalize the conformal case. We discover at high frequencies a spectrum of quasiparticle resonances due to the magnetic field and finite density and at small frequencies a Drude-like expansion around the DC limit. Both of these regimes display many generic features and some features that we attribute to strong coupling, such as a minimum DC conductivity and an unusual behavior of the "cyclotron" and plasmon frequencies, which become correlated to the resonances found in the conformal case. We further study the hydrodynamic regime and the relaxation properties, in which the system displays a set of different possible transitions to the collisionless regime. The mass dependence can be cast in two regimes: a generic relativistic behavior dominated by the UV and a non-linear hydrodynamic behavior dominated by the IR. In the massless case, we also extend earlier results to find an interesting duality under the transformation of the conductivity and the exchange of density and magnetic field. Furthermore, we look at the thermodynamics and the phase diagram, which reproduces general features found earlier in 3+1 dimensional systems and demonstrates stability in the relevant phase.
46

AdS/CFT Holography of the O(N)-symmetric $\phi^4$ Vector Model / AdS/CFT Holographie der O(N)-symmetrischen $\phi^4$ Vektortheorie

Hölzler, Helmut 30 October 2007 (has links)
No description available.
47

Brane resolution em conifold com torção / Brane resolution in torsional conifolds

Silva, José Euclides Gomes da January 2010 (has links)
SILVA, José Euclides Gomes da. Brane resolution em conifold com torção. 2010. 120 f. Dissertação (Mestrado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2010. / Submitted by francisco lima (admir@ufc.br) on 2014-03-20T14:00:30Z No. of bitstreams: 1 2010_dis_jegdasilva.pdf: 606336 bytes, checksum: 7d1080495b039a4501073a2c1711042a (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2014-05-16T21:06:49Z (GMT) No. of bitstreams: 1 2010_dis_jegdasilva.pdf: 606336 bytes, checksum: 7d1080495b039a4501073a2c1711042a (MD5) / Made available in DSpace on 2014-05-16T21:06:49Z (GMT). No. of bitstreams: 1 2010_dis_jegdasilva.pdf: 606336 bytes, checksum: 7d1080495b039a4501073a2c1711042a (MD5) Previous issue date: 2010 / We will study a technique for smoothing a naked singularity in a conifold called Brane Resolution On the one hand the singularity appears as a brane solution of supergravity containing only terms of sector Neveu-Schwarz On the other hand we can see the singularity of the conifold as coming from a fixed point of the discrete symmetry group responsible for generating the conifold The conifold is of most importance in the process of compactification in string theories in particular in so-called conical transitions In fact there are different kinds Calabi-Yau varieties that can be built Despite such spaces have distint topological characteristics it can become a space on the other transitions through conical transitions This is done through the generation of singularities in Calabi-Yau that surprisingly does not generate quantum problems. The technique consists of adding a topological term sector Ramond-Ramond action to the inclusion of a Chern-Simons term responsible for interaction between the fields of the Ramond-Ramond sector (Cn), generates a flow field and H3 = DB2 F3 = DC2 on the singularity of the conifold. From the equation of motion of the field and an appropriate choice for the configuration of the metric and fields find the warp factors that are responsible for the removal of the singularity method can also be understood topologically as the incision of a sphere in the vicinity of the place node of the cone The behavior of fields on the conifold is done in order to extend the correspondence AdS-CFT correspondence was originally proposed for the space AdS5 × S 5 but soon emerged as extensions using other varieties M4 × C6 Near the natural perity space can be written as AdS5 5 × X 5 where X is the base of the conifold space usually takes up the space base as a homogeneous space of Ricci-flat Einstein where X = 5 SU (3) / SU (2) × SU (2). However, to maintain conformal invariance of the theory of dual fields is necessary to soften the conifold through incisions of the Eguchi-Hanson type that can be of two types: a 3-sphere S 3 is called deformation or by a 2-sphere S 2 is called resolution Recently it has been proposed resolutions conifold in a scenario of heterotic theory endowed with torsion Such an effect is relevant in theories where the black hole type solutions exist in the internal variety as the branes and spinning black branes latter takes into account the black hole's angular momentum - spin - and it is a solution of Kerr From the transgression of the Bianchi identity for the 3-form field strength of the Kalb-Ramond term derived from a Gauss-Bonnet and instanton can introduce a twist and hence a new term not dependent on the connection meter. We will study the effects of such terms on conifold a smoothing compared with the case without torsion Furthermore we study the effect that another term has topological branes on the resolution of the term BF This term originated as an extension of the Chern-Simons term to four dimensions with topologically generate mass function as gauge fields for this work, we modify the action of the heterotic theory in order to obtain the term BF as one of the terms fault and then responsible for the flow that removes the singularity found for an ansatz well known a configuration where the flow generated by the BF term is responsible for resolution / Estudaremos uma técnica de suavização de uma singularidade nua em um conifold chamada Brane Resolution Por um lado a singularidade aparece como uma solução de brana de supergravidade contendo apenas termos do setor de Neveu-Schwarz Por outro lado podemos ver a singularidade do conifold como oriunda de um ponto fixo do grupo de simetria discreto responsável pela geração do conifold O conifold tem bastante importância no processo de compactificação em teorias de cordas em particular nas chamadas transições cônicas De fato existem diferentes tipos de espaços deCalabi-Yau que podem ser variedades internas Apesar de tais espaços terem características to- pológicas distintas pode-se transformar um espaço no outro através das transições cônicas Isso se faz através da geração de singularidades no espaço de Calabi-Yau que surpreendentemente não gera problemas quânticos. A técnica consiste em acrescentar um termo topológico do setor de Ramond-Ramond à ação A inclusão de um termo de Chern-Simons responsável pela interação entre os campos do setor de Ramond-Ramond (Cn ), gera um fluxo dos campos H3 = dB2 e F3 = dC2 sobre a singularidade do conifold. A partir da equação de movimento do campo pode-se, dado uma escolha adequada para a configuração da métrica e dos campos, encontrar os fatores de warp que são responsáveis pela retirada da singularidade O método também pode ser entendido topologicamente como a incisão de uma esfera no lugar da vizinhança do nodo do cone O estudo do comportamento de campos sobre o conifold é feito no intuito de extender a correspondência AdS-CFT originalmente a correspondência foi proposta para o espaço AdS5 ×S 5 mas logo surgiram extensões utilizando outras variedades como M4 × C6 Próximo a singula- ridade o espaço pode ser escrito como AdS5 × X 5 onde X 5 é o espaço base do conifold Geralmente toma-se o espaço base como um espaço homogêneo de Einstein Ricci-plana onde X 5 = SU (3)/SU (2) × SU (2). Contudo, para manter a invariância conforme da teoria de campos dual é necessário suavizar o conifold através de incisões do tipo Eguchi-Hanson que podem ser de dois tipos: por uma 3-esfera S 3 é chamada deformation ou por uma 2-esfera S 2 é chamada resolution Recentemente foram propostas resoluções do conifold em um cenário de teoria heterótica dotada de torção Tal efeito é relevante em teorias onde soluções do tipo buraco negro existem na variedade interna como as black branes e spinning branes esta última leva em conta o momento angular do buraco negro - spin - e é uma solução do tipo Kerr A partir da transgressão da identidade de Bianchi para a 3-forma intensidade de campo de Kalb-Ramond oriundo de um termo de Gauss-Bonnet e de instanton podemos introduzir uma torção e com isso um novo termo na conexão não dependente da métrica. Estudaremos os efeitos de tais termos sobre a suavização de um conifold comparando com o caso sem torção Além disso buscamos estudar o efeito que um outro termo topológico tem sobre a resolução de branas o termo BF Tal termo surgiu como uma extensão do termo de Chern-Simons para quatro dimensões tendo como função gerar massa topologicamente para campos de calibre Nesse trabalho iremos modificar a ação da teoria heterótica de modo a obtermos o termo BF como um dos termos de anomalia e logo responsável pelo fluxo que retira a singularidade Encontramos para um ansatz bastante conhecido uma configuração onde o fluxo gerado pelo termo BF é o responsável pela desingularização do espaço
48

Topics in gauge/gravity dualities / Estudos na dualidade calibre/gravidade

Jose Renato Sanchez Romero 11 November 2014 (has links)
This thesis consists in a self-contained study of gauge/gravity dualities in the line of the Klebanov-Witten model. Here we explore first the known Maldacena duality that relates N=4 SYM theory in four dimensions to type IIB supergravity on AdS_5×S^5 in reasonable detail, after some necessary preliminaries on supersymmetric gauge theories, where we display in detail the supersymmetry algebra and representations for N 1 supersymmetry. There we also construct the so-called superfields that will be helpful to write invariant lagrangians for gauge theoriesmreadily, and then useful to construct the gauge theory side of the Klebanov-Witten model. In the original AdS/CFT correspondence and its phenomenologically interesting extensions, Dp-branes as solutions of supergravity and nonperturbative objects in string theory where gauge theory lives are crucial. So, to preserve the self-contained nature of this work, we include a brief review of superstring theory addressed to understand the need to include this higher-dimensional objects by T-duality and, at low-energy limit of the string theory, as solutions of the Einstein equations. The first climax of this work occurs when we use all we learned to establish the Maldacena conjecture, N=4 SU(Nc) SYM theory we study in the supersymmetry chapter, living on the four-dimensional worldvolume of a stack of Nc D3-branes in a flat-space, corresponds exactly to type IIB supergravity on AdS_5×S^5 .In order to prove it, we match symmetries and operators with states in both sides. But actually this corresponds to the weak form of the correspondence, because it is not possible to handle neither string theory or gauge theory at strong coupling. The focus and main motive to have to learn the first hundred of pages here will be to extend the dual gauge theory we studied in AdS/CFT towards more realistic gauge theories as duals of some supergravity theory. The Klebanov-Witten model, consists in replacing the five-sphere in the gravity background of type IIB for a more interesting Einstein manifold X5 , a coset space called T^1,1 .The resulting dual gauge theory is expected to be less supersymmetric, and it is indeed N = 1 superconformal field theory with matter content in the bifundamental representation of the gauge group SU(N)×SU(N), and a quartic superpotential that exhibits SU(2)×SU(2)×U(1) global symmetry, which is precisely the symmetry of the coset space in the gravity side. This is not the end of the story, the Klebanov-Witten model extended the Maldacena correspondence and found as a dual gauge theory a less supersymmetric but still conformal theory. Breaking of the conformal theory, proposed by Klebanov, Nekrasov and Tseytlin, is achieved by introducing fractional M D3-branes in addition to the N regular D3-branes. The resulting theory is an SU(N+M)×SU(N) gauge theory with N = 1 supersymmetry, no longer conformal and then a little more interesting as a part of the crusade to find a QCD-like theory. This is still not the end, the last model suffers from a singularity in the deep IR, rendering the gravitational description invalid in that regime. It was conjectured that the strong dynamics of the gauge theory should somehow resolve this problem. Klebanov, again, and Strassler showed that this conjecture was correct, and argue that the RG flow is in fact an infinite series of Seiberg duality transformations- a cascade - in which the number of colors repeatedly drops from N NM , so the gaugegroup changes from SU(N+M)×SU(N) to SU(NM) ×SU(N). This process can be repeated until the IR limit where the gauge group simply becomes SU(M). So, at the end we get a N=1 SU(M) gauge theory, a QCD-like theory. We say that the standard model itself may lie at the base of a duality cascade. / Essa tese consiste num estudo autocontido das dualidades calibre/gravidade na linha do modelo do Klebanov-Witten. Aqui nos exploramos primeiro de um jeito razoavelmente detalhado,a conhecida dualidade do Maldacena que relaciona a teoria N=4 SYM em quatro dimensões com as supercordas tipo IIB no espaço AdS_5×S^5, depois de alguns preliminares necessários sobre teorias supersimétricas de calibre, onde nós mostramos em detalhe à algebra supersimétrica e as representações para N 1 supersimetria. Nós também construímos os conhecidos supercampos que são úteis para escrever lagrangianas invariantes para teorias de calibre facilmente, e então serão úteis para construir a teoría de calibre do modelo de Klebanov-Witten. Na correspondência AdS/CFT original e as suas extensões fenomenologicamente interessantes, as Dp-branas, como soluções de supergravidade e objetos não perturbativos na teoria de cordas onde as teorias de calibre moram, são essenciais. Assim ,a fim de preservar a natureza autocontida desse trabalho, nós incluímos uma breve revisão sobre teoria de supercordas dirigida a entender a necessidade de incluir esses objetos extra-dimensionais usando dualidade-T e, no limite de baixa-energia da teoria de cordas, como soluções das equações de Einstein. O primeiro clímax desse trabalho ocorre quando nós usamos tudo o que aprendemos para estabelecer a conjectura do Maldacena, a teoria de calibre N=4 SYM que nós estudamos no capítulo de supersimetria, morando no volume de mundo quadridimensional de uma pilha de Nc D3-branas (sim, o subscrito c significa cor!) em espaço plano, corresponde exatamente à teoria de supergravidade tipo IIB no espaço AdS_5×S^5 . A fim de testar ela, nós identificamos simetrias e operadores com estados em ambos lados da dualidade. Mas na verdade isto corresponde à forma fraca da correspondência, porque não é possível lidar nem com a teoria de cordas nem com a teoria de calibre no limite de acoplamento forte. O foco e motivo principal de porque nós temos que aprender as primeiras cem páginas aqui, será estender a teoria de calibre dual que estudamos em AdS/CFT, para teorias de calibre mais realisticas como duais de alguma teoria de supergravidade. O modelo do Klebanov-Witten, consiste em substituir a esfera de cinco dimensões no fundo de supergravidade da teoria de supercordas tipo IIB por um espaço que é mais interessante X5, um espaço coset chamado T^1,1. Nós esperamos que a teoria de calibre dual que resulta é menos supersimetrica, e na verdade é N =1 superconforme com um conteúdo de matéria na representação bifundamental do grupo de calibre SU(N)×SU(N), e um superpotencial quártico que tem simetria global SU(2)×SU(2)×U(1), que é precisamente a simetria do espaço coset no lado da gravidade. Mas isso não é tudo, o modelo do Klebanov-Witten estendeu a correspondência do Maldacena e encontrou como teoria dual uma teoria menos supersimetrica mas ainda conforme. A quebra da simetria conforme, proposta pelo Klebanov, Nekrasov e Tseytlin, é obtida introduzindo M D3-branas fracionais além das N D3-branas regulares. A teoria resultante é uma teoria de calibre SU(N+M)×SU(N) com N = 1 supersimetria, não mais conforme e então um pouco mais interessante como parte da nossa cruzada para encontrar uma teoria tipo-QCD. Isso ainda não é o final, o modelo anterior sofre de uma singularidade no IR profundo, tornando inválido a descrição gravitacional. Foi conjeturado então que a dinâmica do acoplamento forte na teoria de gauge deveria de algum jeito resolver esse problema. Klebanov, de novo, e Strassler mostraram que essa conjetura foi correta, e argumentaram que o fluxo do GR é de fato uma serie infinita de transformações de dualidade de Seiberg - uma cascata - onde o numero de cores cai repetidamente de NNM, e o grupo de calibre muda de SU(N+M)×SU(N) a SU(NM)×SU(N). O processo pode ser repetido até o limite IV onde o grupo de calibre simplesmente torna-se SU(M). Então, no final nós obtemos uma N = 1 teoria de calibre SU (M ), ou seja uma teoria tipo-QCD. Então, nós dissemos que o modelo padrão mesmo pode se situar na base da cascata de dualidade.
49

Brane resolution em conifold com torÃÃo. / Brane resolution in torsional conifolds

Josà Euclides Gomes da Silva 15 July 2010 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Estudaremos uma tÃcnica de suavizaÃÃo de uma singularidade nua em um conifold chamada Brane Resolution Por um lado a singularidade aparece como uma soluÃÃo de brana de supergravidade contendo apenas termos do setor de Neveu-Schwarz Por outro lado podemos ver a singularidade do conifold como oriunda de um ponto fixo do grupo de simetria discreto responsÃvel pela geraÃÃo do conifold O conifold tem bastante importÃncia no processo de compactificaÃÃo em teorias de cordas em particular nas chamadas transiÃÃes cÃnicas De fato existem diferentes tipos de espaÃos deCalabi-Yau que podem ser variedades internas Apesar de tais espaÃos terem caracterÃsticas to- polÃgicas distintas pode-se transformar um espaÃo no outro atravÃs das transiÃÃes cÃnicas Isso se faz atravÃs da geraÃÃo de singularidades no espaÃo de Calabi-Yau que surpreendentemente nÃo gera problemas quÃnticos. A tÃcnica consiste em acrescentar um termo topolÃgico do setor de Ramond-Ramond à aÃÃo A inclusÃo de um termo de Chern-Simons responsÃvel pela interaÃÃo entre os campos do setor de Ramond-Ramond (Cn ), gera um fluxo dos campos H3 = dB2 e F3 = dC2 sobre a singularidade do conifold. A partir da equaÃÃo de movimento do campo pode-se, dado uma escolha adequada para a configuraÃÃo da mÃtrica e dos campos, encontrar os fatores de warp que sÃo responsÃveis pela retirada da singularidade O mÃtodo tambÃm pode ser entendido topologicamente como a incisÃo de uma esfera no lugar da vizinhanÃa do nodo do cone O estudo do comportamento de campos sobre o conifold à feito no intuito de extender a correspondÃncia AdS-CFT originalmente a correspondÃncia foi proposta para o espaÃo AdS5 ÃS 5 mas logo surgiram extensÃes utilizando outras variedades como M4 à C6 PrÃximo a singula- ridade o espaÃo pode ser escrito como AdS5 à X 5 onde X 5 à o espaÃo base do conifold Geralmente toma-se o espaÃo base como um espaÃo homogÃneo de Einstein Ricci-plana onde X 5 = SU (3)/SU (2) à SU (2). Contudo, para manter a invariÃncia conforme da teoria de campos dual à necessÃrio suavizar o conifold atravÃs de incisÃes do tipo Eguchi-Hanson que podem ser de dois tipos: por uma 3-esfera S 3 à chamada deformation ou por uma 2-esfera S 2 à chamada resolution Recentemente foram propostas resoluÃÃes do conifold em um cenÃrio de teoria heterÃtica dotada de torÃÃo Tal efeito à relevante em teorias onde soluÃÃes do tipo buraco negro existem na variedade interna como as black branes e spinning branes esta Ãltima leva em conta o momento angular do buraco negro - spin - e à uma soluÃÃo do tipo Kerr A partir da transgressÃo da identidade de Bianchi para a 3-forma intensidade de campo de Kalb-Ramond oriundo de um termo de Gauss-Bonnet e de instanton podemos introduzir uma torÃÃo e com isso um novo termo na conexÃo nÃo dependente da mÃtrica. Estudaremos os efeitos de tais termos sobre a suavizaÃÃo de um conifold comparando com o caso sem torÃÃo AlÃm disso buscamos estudar o efeito que um outro termo topolÃgico tem sobre a resoluÃÃo de branas o termo BF Tal termo surgiu como uma extensÃo do termo de Chern-Simons para quatro dimensÃes tendo como funÃÃo gerar massa topologicamente para campos de calibre Nesse trabalho iremos modificar a aÃÃo da teoria heterÃtica de modo a obtermos o termo BF como um dos termos de anomalia e logo responsÃvel pelo fluxo que retira a singularidade Encontramos para um ansatz bastante conhecido uma configuraÃÃo onde o fluxo gerado pelo termo BF à o responsÃvel pela desingularizaÃÃo do espaÃo / We will study a technique for smoothing a naked singularity in a conifold called Brane Resolution On the one hand the singularity appears as a brane solution of supergravity containing only terms of sector Neveu-Schwarz On the other hand we can see the singularity of the conifold as coming from a fixed point of the discrete symmetry group responsible for generating the conifold The conifold is of most importance in the process of compactification in string theories in particular in so-called conical transitions In fact there are different kinds Calabi-Yau varieties that can be built Despite such spaces have distint topological characteristics it can become a space on the other transitions through conical transitions This is done through the generation of singularities in Calabi-Yau that surprisingly does not generate quantum problems. The technique consists of adding a topological term sector Ramond-Ramond action to the inclusion of a Chern-Simons term responsible for interaction between the fields of the Ramond-Ramond sector (Cn), generates a flow field and H3 = DB2 F3 = DC2 on the singularity of the conifold. From the equation of motion of the field and an appropriate choice for the configuration of the metric and fields find the warp factors that are responsible for the removal of the singularity method can also be understood topologically as the incision of a sphere in the vicinity of the place node of the cone The behavior of fields on the conifold is done in order to extend the correspondence AdS-CFT correspondence was originally proposed for the space AdS5 à S 5 but soon emerged as extensions using other varieties M4 à C6 Near the natural perity space can be written as AdS5 5 à X 5 where X is the base of the conifold space usually takes up the space base as a homogeneous space of Ricci-flat Einstein where X = 5 SU (3) / SU (2) à SU (2). However, to maintain conformal invariance of the theory of dual fields is necessary to soften the conifold through incisions of the Eguchi-Hanson type that can be of two types: a 3-sphere S 3 is called deformation or by a 2-sphere S 2 is called resolution Recently it has been proposed resolutions conifold in a scenario of heterotic theory endowed with torsion Such an effect is relevant in theories where the black hole type solutions exist in the internal variety as the branes and spinning black branes latter takes into account the black hole's angular momentum - spin - and it is a solution of Kerr From the transgression of the Bianchi identity for the 3-form field strength of the Kalb-Ramond term derived from a Gauss-Bonnet and instanton can introduce a twist and hence a new term not dependent on the connection meter. We will study the effects of such terms on conifold a smoothing compared with the case without torsion Furthermore we study the effect that another term has topological branes on the resolution of the term BF This term originated as an extension of the Chern-Simons term to four dimensions with topologically generate mass function as gauge fields for this work, we modify the action of the heterotic theory in order to obtain the term BF as one of the terms fault and then responsible for the flow that removes the singularity found for an ansatz well known a configuration where the flow generated by the BF term is responsible for resolution
50

Approches pour les corrélateurs à trois points en N = 4 super Yang-Mills / Some approaches to three-point correlators in N=4 super Yang-Mills

Petrovskii, Andrei 14 September 2016 (has links)
La correspondance AdS/CFT est la première réalisation précise de la dualité jauge/gravité. Jusqu’à maintenant la correspondance AdS/CFT reste une conjecture. La dualité de N = 4 SYM et la théorie des cordes est un exemple le plus notable de correspondance AdS/CFT. Un des obstacles principaux à l’explorer est le fait que le régime de couplage faible pour la théorie de jauge est le régime de couplage fort pour la théorie des cordes et vice versa. Par conséquent, aussi longtemps que les méthodes perturbatives sont appliquées, on ne peut pas comparer les observables de deux cotés de la correspondance directement en dehors de quelques cas particuliers. A ce stade, l’énorme symétrie de N = 4 SYM joue un rôle important en permettant le calcul exact des observables de la théorie au moins dans la limite planaire. Cette thèse est consacrée au calcul des fonctions à trois, l’un des principaux observables de N = 4 SYM, et est composée de deux parties. Dans la première partie nous considérons l’approche générale pour le calcul des fonctions à trois points sur la base de soi-disant vertex de spin, qui est inspiré de la théorie de champs des cordes. Dans la deuxième partie, nous considérons un type spécifique de fonctions à trois points appelés lourd-lourd-léger, qui sont caractérisés par la propriété que la longueur de l’un des opérateurs est beaucoup plus petite des longueurs de deux autres. Il s’avère que ces fonctions de corrélations peuvent être identifiées à des facteurs de forme diagonaux et ainsi on peut appliquer les résultats concernant les facteurs de forme. / N=4 SYM theory has been drawing the attention of a lot of physicists during two last decades mainly due to the two aspects: AdS/CFT correspondence and integrability. AdS/CFT correspondence is the first precise realization of the gauge/string duality whose history starts in the 60's, when a string theory was considered as a candidate for describing the strong interactions. In 1997 Maldacena made a proposal about the duality between certain conformal field theories (CFT) and string theories defined on the product of AdS space and some compact manifold, which implies a one to one map between the observables of the gauge and string counterparts. Up to now AdS/CFT correspondence still remains a conjecture. The duality of N=4 SYM and the appropriate string counterpart is the most notable example of the AdS/CFT correspondence. One of the main obstructions to exploring it is the fact that weak coupling regime for the gauge theory is the strong coupling regime for the string theory and vice versa. Therefore as long as perturbative methods are applied, one can not compare the observables of dual counterparts directly apart from some specific cases. At this point the huge symmetry of N=4 SYM plays an important role allowing exact computation of the theory observables at least in the planar limit. This property of the theory is called integrability. The observables of the N=4 SYM are Wilson loops and correlation functions built out of gauge invariant operators. The space-time dependence of the two- and three-point correlators is fixed by the conformal symmetry up to some parameters: dimensions of the operators in the case of two-point functions and dimensions of the operators and structure constants in the case of three-point functions. It's commonly accepted to refer to the problem of finding the dimensions of the operators as the spectral problem. On the classical level the operator dimension is equal to the sum of the dimensions of the fundamental fields out of which the operator is composed. When the interaction is turned on, the conformal dimension gets quantum correction. In order to compute three-point functions, apart from the conformal dimensions of corresponding operators one needs to compute the structure constants. In CFT computation of the higher-point correlators eventually can be reduced to computation of two- and three-point functions by means of the operator product expansion. Therefore two- and three-point functions appear to be building blocks of any correlator of the theory. This thesis is devoted to computation of three-point functions and consists of two parts. In the first part we consider the general approach for computing three-point functions based on the so-called spin vertex, which is inspired from the string field theory. In the second part we consider a specific kind of three-point functions called heavy-heavy-light, which are characterized by the property that the length of one of the operators is much smaller the lengthes of other two. It happens that this kind of correlators can be considered as diagonal form factors which supposes that in this case one can apply the results obtained in the form factor theory.

Page generated in 0.0872 seconds