• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Floating Tybee: planning and designing for rising seas

Manley, Canon Randolph 27 August 2014 (has links)
There is a statistically high probability that within this generation's lifetime, the mean sea level in the south eastern coast of the United States will rise from three to six feet above what it is today. The easiest response to this scenario and its complicated and devastating repercussions is to flee, or to put up a wall. This reaction is defending current lifestyles and cultures against the liabilities and complicated problems associated with sea level rise. This thesis asks: "How can we convert the liabilities of sea level rise into assets?" Using Tybee Island of Chatham County, Georgia as a case study, this thesis will answer this question by exploring 5 topics: 1. Understanding sea level rise 2. Understanding barrier islands of coastal Georgia and Tybee Island 3. The current Sea Level Rise Adaptation Plan for Tybee Island and Where it is Lacking 4. A new urban design strategy in planning for sea level rise on Tybee Island 5. Existing instances of aquatic and amphibious architectures and a new type of amphibious architecture for Tybee Island
2

Přijímání a adaptace zaměstnanců ve vybrané společnosti / Hiring and adaptation process of employees in a selected company

Taberyová, Vladimíra January 2015 (has links)
The thesis focuses on the issue of hiring and adaptation process of new employees in the company XY, branch Czech Republic. It is divided into two main parts theoretical and practical. The theoretical part is based on literature study defines basic terms, context and theoretical background related to the respective area. The practical part is a presentation of selected listed company and is dedicated to the analysis and evaluation of the current process of hiring and adaptation process in this company. The aim of the practical part is based on an analysis to identify the strengths and weaknesses of the current concept of hiring and adaptation process in a selected company and to provide suggestions and recommendations that could lead to the entire process improvement.
3

Gender and Climate Change Adaptation Strategies in Agriculture: Lessons from Farming Communities in Ejisu Municipality, Ghana

Sarpong, Eunice Adwoa January 2021 (has links)
Climate change poses a threat to agriculture. Ghana’s agriculture is mainly dependent on rainfall, this makes subsistence farmers majority of whom are women more vulnerable to the impacts of climate change. That said, the impacts of climate change are felt differently by men and women due to their social assigned roles and responsibilities. This study examined the dimensions along which gender matters in adaptation strategies.The study used a case study approach, the Ejisu municipality in Ghana was selected for the study. To understand the gender narratives and how this affects adaptation strategies 10 farmers, and 2 agriculture extension officers were sampled. An inductive approach was used to analyze the core themes that emerged from the data.The findings of the study show that smallholder farmers in Ejisu municipality are changing their agricultural practices due to the changes in climatic conditions. Female farmers were seen to be less adaptive due to gender norms and challenges with access to productive resources. The common adaptative measures used by both male and female farmers are crop rotation, mixed farming, use of agrochemicals, organic fertilizers, leaving land fallow, delayed planting, and conservative agriculture.The study findings further show there are complexities in gender dimensions in the agricultural process and this affects adaptation strategies. The study recommends raising public awareness on climate change by providing adequate support to train farmers on sustainable adaptation, strengthening institutional capacity to ensure gender-responsive initiatives in agriculture, and create equitable access to resources to enhance adaptive capacities.
4

Bridging the Gap: Assessing the Integration of Climate Change Adaptation and Disaster Risk Reduction - A Case Study on Nepal

Ragnartz, Ebba January 2023 (has links)
There are two primary purposes of this study. One is theory development and the other is empirical. The first aim will be conducted by proposing a framework for the integrated approach between Disaster Risk Reduction and Climate Change Adaptation. The empirical purpose will be conducted by applying the framework on Nepal’s National Adaptation Plan (NAP). Numerous scholars and researchers have conducted research regarding why an integrated approach between DRR and CCA is favourable for the development in reducing vulnerability in areas and countries which are heavily affected by climate-related disasters. Although multiple convergences, there still exist certain obstacles and differences across the approaches. These include separation in institutions and actors, financial mechanisms, the gap between typologies and terminology and spatial scale differences. The main findings that can be gathered from this study is that Nepal's NAP includes many objectives and aspects which is pointing towards that the Integrated Approach is becoming more evident in today's DRR and CCA efforts. The areas which lacked the most in the NAP was the centralisation of poverty reduction and a lack of details regarding how and by whom many of the objectives and activities were planned to be implemented.
5

Uplatnění managementu kvality v procesu adaptace zaměstnanců / Applying quality management in the employee's adaptation process

Hazuchová, Eva January 2020 (has links)
Quality management in the area of human resources management was previously mainly used in industrial companies. At present it is also promoted in the sphere of state administration. The aim of the thesis is to analyse the human resources management process in the area of the adaptation process of employees of the central body of the state administration of the Czech Republic from the point of view of quality management and to propose recommendations to improve its efficiency with application of process management, change management in relation to ISO 9001 and Methodical Guideline for Quality Management in Service Offices (hereinafter the Methodical Guideline). The theoretical part defines the basic concepts and principles of employee education in state administration and quality management. The definition of basic concepts and principles is based on the study of professional literature and binding documents that link the principles of quality management and human resources management with a focus on the adaptation process. The second chapter of the theoretical part defines the quality management in terms of the requirements of the Methodical Guideline and the requirements of ISO 9001. The empirical part examines the state of quality management in the process of adaptation in the Industrial...
6

Speaking of Transformation: Discourse, Values, and Climate Adaptation Planning in San Antonio, Texas

Ratcliffe, Lindsay G. 16 December 2022 (has links)
No description available.
7

Entre complexité et mise en œuvre : l’interprétation de l’adaptation aux changements climatiques en contexte municipal québécois

Bünzli, Noé 11 1900 (has links)
Devant la question des changements climatiques, l’accent a souvent été mis sur les efforts visant à diminuer les émissions de gaz à effet de serre. Cependant, avec la découverte que certaines transformations profondes de nos environnements sont déjà irréversibles, la notion d’adaptation a gagné en intérêt depuis le tournant du 21e siècle. D’ailleurs, alors que les municipalités, en tant que gouvernement de proximité, sont de plus en plus considérés comme des acteurs importants dans cette volonté d’adaptation, le programme Climat-Municipalité a permis à quatre entités municipales québécoises de produire un plan d’adaptation aux changements climatiques (PACC) entre 2009 et 2016. La question se pose alors : comment l’adaptation aux changements climatiques est-elle interprétée dans le contexte municipal québécois ? Et de manière plus spécifique, comment l’adaptation est-elle interprétée en tant que processus et comment l’adaptation est-elle interprétée en tant qu’action ? Après tout, l’un des grands défis de l’adaptation s’exprime dans ce passage difficile entre la prise de conscience devant les enjeux climatiques et l’opérationnalisation de ce constat, que ce soit dans la mise en œuvre concrète ou, même, dans la simple compréhension sensible des problématiques auxquels la société est confrontée. Devant un phénomène globale affectant une planète où peu d’écosystèmes échappent à l’influence humaine, l’urgence climatique représente ainsi un défi technique, psychologique et sociopolitique unique. Comme notre analyse des PACC de Trois-Rivières, de Sherbrooke et de Laval l’indiquent, ces PACC représentent de remarquables premiers pas dans la bonne direction, mais ils restent insuffisants. Leur ambition, leur mécanisme et leur portée sont, pour l’instant, trop limités pour assurer la pérennité des territoires et des populations ; leur vision généralement à court terme et réactive contribue à se préparer aux défis déjà connus aujourd’hui, mais n’assure probablement pas à nos sociétés la capacité de faire face aux chocs de demain. / For a long time, when facing the daunting challenge of climate changes, the emphasis has been put on the efforts to mitigate greenhouses gases emissions. Yet, when it became clear that our ecosystems were subjects to some deep transformations that were irreversible, the notion of “adaptation” slowly gain traction at the turn of the 21st century. Thus, while the municipalities, as government of proximity, are considered as increasingly important actors in this adaptation scheme, the program Climat-Municipalité offered the opportunity to four municipal entities in Quebec to produce a Climate Change Adaptation Plan (CCAP) between 2009 and 2016. The question is then raised: how is climate change adaptation interpreted at the local level in Quebec? And, to be more specific, how is the Adaptation interpreted as a process and how is Adaptation interpreted as an action? After all, one the greatest challenge of Adaptation is that difficult transition from awareness of climate issues to the operationalization of this realization, whether through concrete implementation or even through a simply better and complex understanding of the hardships faced by our society. Indeed, this global phenomenon of climate change, that can be felt throughout this planet where few ecosystems escape human influence, is at the same time a technical, psychological and sociopolitical challenge. As our analysis of the CCAP of Trois-Rivières, Sherbrooke and Laval shows, those plans represent great “first steps” in the right direction, but they are still insufficient. Their ambition, their inner mechanics and their reach are, at least for now, too limited to guarantee the stability and sustainability of territories and populations. Their mostly short-term and reactive vision helps prepare for today’s challenges but doesn’t ensure our societies the capacity to face tomorrow’s shocks.
8

Impact of Climate Change on the Storm Water System in Al Hillah City-Iraq

Al Janabi, Firas 21 January 2015 (has links) (PDF)
The impact of climate change is increasingly important to the design of urban water infrastructure like stormwater systems, sewage systems and drinking water systems. Growing evidence indicates that the water sector will not only be affected by climate change, but it will reflect and deliver many of its impacts through floods, droughts, or extreme rainfall events. Water resources will change in both quantity and quality, and the infrastructure of stormwater and wastewater facilities may face greater risk of damage caused by storms, floods and droughts. The effect of the climate change will put more difficulties on operations to disrupted services and increased cost of the water and wastewater services. Governments, urban planners, and water managers should therefore re-examine development processes for municipal water and wastewater services and are adapt strategies to incorporate climate change into infrastructure design, capital investment projects, service provision planning, and operation and maintenance. According to the Intergovernmental Panel on Climate Change, the global mean temperature has increased by 0,7 °C during the last 100 years and, as a consequence, the hydrological cycle has intensified with, for example, more acute rainfall events. As urban drainage systems have been developed over a long period of time and design criteria are based upon climatic characteristics, these changes will affect the systems and the city accordingly. The overall objective of this thesis is to increase the knowledge about the climate change impacts on the stormwater system in Al Hillah city/Iraq. In more detail, the objective is to investigate how climate change could affect urban drainage systems specifically stormwater infrastructure, and also to suggest an adaptation plan for these changes using adaptation plans examples from international case studies. Three stochastic weather generators have been investigated in order to understand the climate and climate change in Al Hillah. The stochastic weather generators have been used in different kind of researches and studies; for example in hydrology, floods management, urban water design and analysis, and environmental protection. To make such studies efficient, it is important to have long data records (typically daily data) so the weather generator can generate synthetic daily weather data based on a sound statistical background. Some weather generators can produce the climate change scenarios for different kind of global climate models. They can be used also to produce synthetic data for a site that does not have enough data by using interpolation methods. To ensure that the weather generator is fitting the climate of the region properly, it should be tested against observed data, whether the synthetic data are sufficiently similar. At the same time, the accuracy of the weather generator is different from region to region and depends on the respective climate properties. Testing three weather generators GEM6, ClimGen and LARS-WG at eight climate stations in the region of Babylon governorate/Iraq, where Al Hillah is located, is one of the purposes of the first part of this study. LARS-WG uses a semi-parametric distribution (developed distribution), whereas GEM6 and ClimGen use a parametric distribution (less complicated distribution). Different statistical tests have been selected to compare observed and synthetic weather data for the same kind, for instance, the precipitation and temperature distribution (wet and dry season). The result shows that LARS-WG represents the observed data for Babylon region in a better way than ClimGen, whereas GEM6 seems to misfit the observed data. The synthetic data will be used for a first simulation of urban run-off during the wet season and the consequences of climate change for the design and re-design of the urban drainage system in Al Hillah. The stochastic weather generator LARS is then used to generate ensembles of future weather data using five Global Climate Models (GCMs) that best captured the full range of uncertainty. These Global Climate Models are used to construct future climate scenarios of temperature and precipitation over the region of Babylon Governorate in Iraq. The results show an increase in monthly temperatures and a decrease in the total amount of rain, yet the extreme rain events will be more intense in a shorter time. Changes in the amount, timing, and intensity of rain events can affect the amount of stormwater runoff that needs to be controlled. The climate change calculated projections may make existing stormwater-related flooding worse. Different districts in Al Hillah city may face more frequent stormwater floods than before due to the climate change projections. All the results that have been taken from the Global Climate Models are in a daily resolution format and in order to run the Storm Water Management Model it is important to have all data in a minimum of one hour resolution. In order to fulfill this condition a disaggregation model has been used. Some hourly precipitation data were required to calibrate the temporal disaggregation model; however none of the climate stations and rain gauges in the area of interest have hourly resolution data, so the hourly data from Baghdad airport station have been used for that calibration. The changes in the flood return periods have been seen in the projected climate change results, and a return period will only remain valid over time if environmental conditions do not change. This means that return periods used for planning purposes may need to be updated more often than previously, because values calculated based on the past 30 years of data may become unrepresentative within a relatively short time span. While return periods provide useful guidance for planning the effects of flooding and related impacts, they need to be used with care, and allowances have to be made for extremes that may occur more often than may be expected. In the study area with separated stormwater systems, the Storm Water Management Model simulation shows that the number of surface floods as well as of the floods increases in the future time periods 2050s and 2080s. Future precipitation will also increase both the flooding frequency and the duration of floods; therefore the need to handle future situations in urban drainage systems and to have a well-planned strategy to cope with future conditions is evident. The overall impacts on urban drainage systems due to the increase of intensive precipitation events need to be adapted. For that reason, recommendations for climate change adaptation in the city of Al Hillah have been suggested. This has been accomplished by merging information from the review of five study cases, selected based on the amount and quality of information available. The cities reviewed are Seattle (USA), Odense (Denmark), Tehran (Iran), and Khulna (Bangladesh). / Die Auswirkungen des Klimawandels auf die Gestaltung der städtischen Wasserinfrastruktur wie Regenwasser, Kanalisation und Trinkwassersysteme werden immer wichtiger. Eine wachsende Anzahl von Belegen zeigt, dass der Wassersektor nicht nur durch den Klimawandel beeinflusst werden wird, aber er wird zu reflektieren und liefern viele seiner Auswirkungen durch Überschwemmungen, Dürren oder extreme Niederschlagsereignisse. Die Wasserressourcen werden sich in Quantität und Qualität verändern, und die Infrastruktur von Regen-und Abwasseranlagen kann einer größeren Gefahr von Schäden durch Stürme, Überschwemmungen und Dürren ausgesetzt sein. Die Auswirkungen des Klimawandels werden zu mehr Schwierigkeiten im Betrieb gestörter Dienstleistungen und zu erhöhten Kosten für Wasser-und Abwasserdienstleistungen führen. Regierungen, Stadtplaner, und Wasser-Manager sollten daher die Entwicklungsprozesse für kommunale Wasser-und Abwasserdienstleistungen erneut überprüfen und Strategien anpassen, um den Klimawandel in Infrastruktur-Design, Investitionsprojekte, Planung von Leistungserbringung, sowie Betrieb und Wartung einzuarbeiten. Nach Angaben des Intergovernmental Panel on Climate Change hat die globale Mitteltemperatur in den letzten 100 Jahren um 0,7 °C zugenommen, und in der Folge hat sich der hydrologische Zyklus intensiviert mit, zum Beispiel, stärkeren Niederschlagsereignisse. Da die städtischen Entwässerungssysteme über einen langen Zeitraum entwickelt wurden und Design-Kriterien auf klimatischen Eigenschaften beruhen, werden diese Veränderungen die Systeme und die Stadt entsprechend beeinflussen. Das übergeordnete Ziel dieser Arbeit ist es, das Wissen über die Auswirkungen des Klimawandels auf das Regenwasser-System in der Stadt Hilla / Irak zu bereichern. Im Detail ist das Ziel, zu untersuchen, wie der Klimawandel die Siedlungsentwässerung und insbesondere die Regenwasser-Infrastruktur betreffen könnte. Desweiteren soll ein Anpassungsplan für diese Änderungen auf der Grundlage von beispielhaften Anpassungsplänen aus internationalen Fallstudienvorgeschlagen werden. Drei stochastische Wettergeneratoren wurden untersucht, um das Klima und den Klimawandel in Hilla zu verstehen. Stochastische Wettergeneratoren wurden in verschiedenen Untersuchungen und Studien zum Beispiel in der Hydrologie sowie im Hochwasser-Management, Siedlungswasser-Design- und Analyse, und Umweltschutz eingesetzt. Damit solche Studien effizient sind, ist es wichtig, lange Datensätze (in der Regel Tageswerte) haben, so dass der Wettergenerator synthetische tägliche Wetterdaten erzeugen kann, dieauf einem soliden statistischen Hintergrund basieren. Einige Wettergeneratoren können Klimaszenarien für verschiedene Arten von globalen Klimamodellen erzeugen. Sie können unter Verwendung von Interpolationsverfahren auch synthetische Daten für einen Standort generieren, für den nicht genügend Daten vorliegen. Um sicherzustellen, dass der Wettergenerator dem Klima der Region optimal entspricht, sollte gegen die beobachteten Daten geprüft werden, ob die synthetischen Daten ausreichend ähnlich sind. Gleichzeitig unterscheidet sich die Genauigkeit des Wettergenerator von Region zu Region und abhängig von den jeweiligen Klimaeigenschaften. Der Zweck des ersten Teils dieser Studie ist es daher, drei Wettergeneratoren, namentlich GEM6, ClimGen und LARS-WG, an acht Klimastationen in der Region des Gouvernements Babylon / Irak zu testen. LARS-WG verwendet eine semi-parametrische Verteilung (entwickelte Verteilung), wohingegen GEM6 und ClimGen eine parametrische Verteilung (weniger komplizierte Verteilung) verwenden. Verschiedene statistische Tests wurden ausgewählt, um die beobachteten und synthetischen Wetterdaten für identische Parameter zu vergleichen, zum Beispiel die Niederschlags- und Temperaturverteilung (Nass-und Trockenzeit). Das Ergebnis zeigt, dass LARS-WG die beobachteten Daten für die Region Babylon akkurater abzeichnet, als ClimGen, wobei GEM6 die beobachteten Daten zu verfehlen scheint. Die synthetischen Daten werden für eine erste Simulation des städtischen Run-offs in der Regenzeit sowie der Folgen des Klimawandels für das Design und Re-Design des städtischen Entwässerungssystems in Hilla verwendet. Der stochastische Wettergenerator LARS wird dann verwendet, um Gruppen zukünftiger Wetterdaten unter Verwendung von fünf globalen Klimamodellen (GCM), die das gesamte Spektrum der Unsicherheit am besten abdecken, zu generieren. Diese globalen Klimamodelle werden verwendet, um zukünftige Klimaszenarien der Temperatur und des Niederschlags für die Region Babylon zu konstruieren. Die Ergebnisse zeigen, eine Steigerung der monatlichen Temperaturen und eine Abnahme der Gesamtmenge der Regen, wobei es jedoch extremere Regenereignissen mit höherer Intensivität in kürzerer Zeit geben wird. Veränderungen der Höhe, des Zeitpunkt und der Intensität der Regenereignisse können die Menge des Abflusses von Regenwasser, die kontrolliert werden muss, beeinflussen. Die Klimawandel-Prognosen können bestehende regenwasserbedingte Überschwemmungen verschlimmern. Verschiedene Bezirke in Hilla können stärker von Regenfluten betroffen werden als bisher aufgrund der Prognosen. Alle Ergebnisse, die von den globalen Klimamodellen übernommen wurden, sind in täglicher Auflösung und um das Regenwasser-Management-Modell anzuwenden, ist es wichtig, dass alle Daten in einer Mindestauflösung von einer Stunde vorliegen. Zur Erfüllung dieser Bedingung wurde ein eine Aufschlüsselungs-Modell verwendet. Einige Stunden-Niederschlagsdaten waren erforderlich, um das zeitliche Aufschlüsselungs-Modell zu kalibrieren. Da weder die Klimastationen noch die Regen-Messgeräte im Interessenbereich über stundenauflösende Daten verfügt, wurden die Stundendaten von Flughäfen in Bagdad verwendet. Die Veränderungen in den Hochwasserrückkehrperioden sind in den projizierten Ergebnissen des Klimawandels ersichtlich, und eine Rückkehrperiode wird nur dann über Zeit gültig bleiben, wenn sich die Umweltbedingungen nicht ändern. Dies bedeutet, dass Wiederkehrperioden, die für Planungszwecke verwendet werden, öfter als bisher aktualisiert werden müssen, da die auf Grundlage von Daten der letzten 30 Jahre berechneten Werte innerhalb einer relativ kurzen Zeitspanneunrepräsentativ werden können. Während Wiederkehrperioden bieten nützliche Hinweise für die Planung die Effekte von Überschwemmungen und die damit verbundenen Auswirkungen, müssen aber mit Vorsicht verwendet werden, und Extreme, die öfter eintreten könnten als erwartet, sollten berücksichtigt werden. Im Studienbereich mit getrennten Regenwassersystemen zeigt die Simulation des Regenwasser-Management-Modells, dass sich die Anzahl der Oberflächenhochwasser sowie der Überschwemmungen im Zeitraum 2050e-2080 erhöhen wird. Zukünftige Niederschläge werdensowohl die Hochwasser-Frequenz als auch die Dauer von Überschwemmungen erhöhen. Daher ist die Notwendigkeit offensichtlich, zukünftige Situationen in städtischen Entwässerungssystemen zu berücksichtigen und eine gut geplante Strategie zu haben, um zukünftige Bedingungen zu bewältigen. Die gesamten Auswirkungen auf die Siedlungsentwässerungssyteme aufgrund der Zunahme von intensiven Niederschlagsereignissen müssen angepasst werden. Aus diesem Grund wurden Empfehlungen für die Anpassung an den Klimawandel in der Stadt Hilla vorgeschlagen. Diese wurden durch die Zusammenführung von Informationen aus der Prüfung von fünf Fallstudien, ausgewählt aufgrund der Menge und Qualität der verfügbaren Informationen, erarbeitet,. Die bewerteten Städte sind Seattle (USA), Odense (Dänemark), Teheran (Iran), und Khulna (Bangladesch).
9

Impact of Climate Change on the Storm Water System in Al Hillah City-Iraq

Al Janabi, Firas 13 November 2014 (has links)
The impact of climate change is increasingly important to the design of urban water infrastructure like stormwater systems, sewage systems and drinking water systems. Growing evidence indicates that the water sector will not only be affected by climate change, but it will reflect and deliver many of its impacts through floods, droughts, or extreme rainfall events. Water resources will change in both quantity and quality, and the infrastructure of stormwater and wastewater facilities may face greater risk of damage caused by storms, floods and droughts. The effect of the climate change will put more difficulties on operations to disrupted services and increased cost of the water and wastewater services. Governments, urban planners, and water managers should therefore re-examine development processes for municipal water and wastewater services and are adapt strategies to incorporate climate change into infrastructure design, capital investment projects, service provision planning, and operation and maintenance. According to the Intergovernmental Panel on Climate Change, the global mean temperature has increased by 0,7 °C during the last 100 years and, as a consequence, the hydrological cycle has intensified with, for example, more acute rainfall events. As urban drainage systems have been developed over a long period of time and design criteria are based upon climatic characteristics, these changes will affect the systems and the city accordingly. The overall objective of this thesis is to increase the knowledge about the climate change impacts on the stormwater system in Al Hillah city/Iraq. In more detail, the objective is to investigate how climate change could affect urban drainage systems specifically stormwater infrastructure, and also to suggest an adaptation plan for these changes using adaptation plans examples from international case studies. Three stochastic weather generators have been investigated in order to understand the climate and climate change in Al Hillah. The stochastic weather generators have been used in different kind of researches and studies; for example in hydrology, floods management, urban water design and analysis, and environmental protection. To make such studies efficient, it is important to have long data records (typically daily data) so the weather generator can generate synthetic daily weather data based on a sound statistical background. Some weather generators can produce the climate change scenarios for different kind of global climate models. They can be used also to produce synthetic data for a site that does not have enough data by using interpolation methods. To ensure that the weather generator is fitting the climate of the region properly, it should be tested against observed data, whether the synthetic data are sufficiently similar. At the same time, the accuracy of the weather generator is different from region to region and depends on the respective climate properties. Testing three weather generators GEM6, ClimGen and LARS-WG at eight climate stations in the region of Babylon governorate/Iraq, where Al Hillah is located, is one of the purposes of the first part of this study. LARS-WG uses a semi-parametric distribution (developed distribution), whereas GEM6 and ClimGen use a parametric distribution (less complicated distribution). Different statistical tests have been selected to compare observed and synthetic weather data for the same kind, for instance, the precipitation and temperature distribution (wet and dry season). The result shows that LARS-WG represents the observed data for Babylon region in a better way than ClimGen, whereas GEM6 seems to misfit the observed data. The synthetic data will be used for a first simulation of urban run-off during the wet season and the consequences of climate change for the design and re-design of the urban drainage system in Al Hillah. The stochastic weather generator LARS is then used to generate ensembles of future weather data using five Global Climate Models (GCMs) that best captured the full range of uncertainty. These Global Climate Models are used to construct future climate scenarios of temperature and precipitation over the region of Babylon Governorate in Iraq. The results show an increase in monthly temperatures and a decrease in the total amount of rain, yet the extreme rain events will be more intense in a shorter time. Changes in the amount, timing, and intensity of rain events can affect the amount of stormwater runoff that needs to be controlled. The climate change calculated projections may make existing stormwater-related flooding worse. Different districts in Al Hillah city may face more frequent stormwater floods than before due to the climate change projections. All the results that have been taken from the Global Climate Models are in a daily resolution format and in order to run the Storm Water Management Model it is important to have all data in a minimum of one hour resolution. In order to fulfill this condition a disaggregation model has been used. Some hourly precipitation data were required to calibrate the temporal disaggregation model; however none of the climate stations and rain gauges in the area of interest have hourly resolution data, so the hourly data from Baghdad airport station have been used for that calibration. The changes in the flood return periods have been seen in the projected climate change results, and a return period will only remain valid over time if environmental conditions do not change. This means that return periods used for planning purposes may need to be updated more often than previously, because values calculated based on the past 30 years of data may become unrepresentative within a relatively short time span. While return periods provide useful guidance for planning the effects of flooding and related impacts, they need to be used with care, and allowances have to be made for extremes that may occur more often than may be expected. In the study area with separated stormwater systems, the Storm Water Management Model simulation shows that the number of surface floods as well as of the floods increases in the future time periods 2050s and 2080s. Future precipitation will also increase both the flooding frequency and the duration of floods; therefore the need to handle future situations in urban drainage systems and to have a well-planned strategy to cope with future conditions is evident. The overall impacts on urban drainage systems due to the increase of intensive precipitation events need to be adapted. For that reason, recommendations for climate change adaptation in the city of Al Hillah have been suggested. This has been accomplished by merging information from the review of five study cases, selected based on the amount and quality of information available. The cities reviewed are Seattle (USA), Odense (Denmark), Tehran (Iran), and Khulna (Bangladesh).:Preface Acknowledgment Abstract Kurzfassung Contents List of Figures List of Tables List of Listing List of Abbreviation Introduction 1.1. Background of The Research 1.2. The Climate Change Challenge 1.3. Urban Water Systems and Climate Change 1.4. Climate Change and Urban Drainage Adaptation Plan 1.5. Objectives of the Research 1.6. Research Problems and Hypothesis 1.7. Dissertation Structure 1.8. Delimitations Climate History and Climate Change Projections in Al Hillah City Chapter One: State of the Art on Climate Change 2.1.1. The Earth’s Climate System 2.1.2. Climate Change 2.1.3. Emission Scenarios 2.1.4. Global Climate Change 2.1.5. Climate Models 2.1.6. Downscaling Chapter Two: Topography and Climate of the Study Area 2.2.1. Location 2.2.2. Topography 2.2.3. Climate Chapter Three: Climate Change - Methodology and Data 2.3.1. Methodology 2.3.1.1. Stochastic Weather Generators 2.3.1.2. Description of Generators Used in the Comparison 2.3.1.3. Statistical Analysis Comparison Test 2.3.2. Data 2.3.2.1. Required data for modelling 2.3.2.2. Historical daily data required for the weather generators 2.3.2.3. Minimum requirements 2.3.2.4. Data Availability Chapter Four: Results Analysis and Evaluation of Climate Change 2.4.1. Weather Generators Comparison Test results 2.4.1.1.The p-value test Temperature Comparison results Precipitation Comparison Results 2.4.2. LARS Weather Generator Future Scenario 2.4.2.1.1. Climate Change Scenarios for the region of Babylon governorate Storm Water System and Urban Flooding in Al Hillah City Chapter one: Urban Water Modelling 3.1.1. General Overview and Background 3.1.1.1. Storm water systems 3.1.2. Urban Runoff Models 3.1.3. An Overview of Runoff Estimation Methods 3.1.3.1. Computer Modelling in Urban Drainage 3.1.3.2.Statistical Rational Method (SRM) 3.1.4. Models Based on Statistical Rational Method 3.1.5. Urban Rainfall-Runoff Methods 3.1.6. Accuracy Level in Urban Catchment Models Chapter Two: Urban Water System in Al Hillah City and Data Requirement for Modelling 3.2.1. History 3.2.2. Current Situation 3.2.2.1. Urban water system Iraq 3.2.2.2. Urban Water description in Babylon governorate 3.2.2.3. Drinking water network 3.2.2.4. Sewerage infrastructure 3.2.3. Required data for modelling Chapter Three: Methodology to Disaggregate Daily Rain Data and Model Storm Water Runoff 3.3.1. Temporal Disaggregation (hourly from daily) 3.3.1.1. Background of Disaggregation 3.3.1.2. Disaggregation techniques 3.3.1.3. DiMoN Disaggregation Tool 3.3.1.4. Input Data 3.3.1.5. Methods Formerly Used 3.3.2. EPA Storm Water Management Model (SWMM) 3.3.2.1. Verification and Calibration 3.3.2.2. Stormwater Management Model PCSWMM 3.3.2.3. Complete support for all USEPA SWMM5 engine capabilities Chapter Four: Urban Flooding Results 3.4.1. Disaggregation of the daily rain data to hourly data 3.4.1.1.The 1 hour events properties 3.4.1.2. Estimating the rain events in each climate change scenario 3.4.1.3. Past, Current and future return periods 3.4.2. Storm Water Management Model PCSWMM Calibration 3.4.3.Return periods and Urban Floods 3.4.3.1.Network simulation 3.4.3.2.Properties with previous flooding problems 3.4.3.3.Storm water system simulation under 1 hour-2, 5 and 10 years return period 3.4.3.4.Storm water system simulation under 1 hour-25 years return period 3.4.3.5.Storm water system simulation under 1 hour-50 years return period 3.4.3.6. Storm water system simulation under 1 hour – 100, 200, 500 and 1000 years return period 3.4.3.7.Total Flooding Adaptation Plan for Al Hillah City Chapter One: International Case Studies 4.1.1. Historical precipitation analysis 4.1.2. Current and projected future climate change, impacts and adaptation plan for each selected city 4.1.2.1. Seattle 4.1.2.2. Odense 4.1.2.3. Tehran 4.1.2.4. Khulna 4.1.2.5. Melbourne 4.1.3. Drainage System of the Studied Cities 4.1.3.1. Drainage System in Seattle 4.1.3.2. Drainage System in Odense 4.1.3.3. Drainage System in Tehran 4.1.3.4. Drainage System in Khulna 4.1.3.5. Drainage System in Melbourne Chapter Two: Adaptation Plan for Al Hillah City 4.2.1. Conclusions from Adaptation Options Analysed 4.2.2. Suggestions for Al Hillah City 4.2.3. Adaptation Actions Overall Conclusion Bibliography / Die Auswirkungen des Klimawandels auf die Gestaltung der städtischen Wasserinfrastruktur wie Regenwasser, Kanalisation und Trinkwassersysteme werden immer wichtiger. Eine wachsende Anzahl von Belegen zeigt, dass der Wassersektor nicht nur durch den Klimawandel beeinflusst werden wird, aber er wird zu reflektieren und liefern viele seiner Auswirkungen durch Überschwemmungen, Dürren oder extreme Niederschlagsereignisse. Die Wasserressourcen werden sich in Quantität und Qualität verändern, und die Infrastruktur von Regen-und Abwasseranlagen kann einer größeren Gefahr von Schäden durch Stürme, Überschwemmungen und Dürren ausgesetzt sein. Die Auswirkungen des Klimawandels werden zu mehr Schwierigkeiten im Betrieb gestörter Dienstleistungen und zu erhöhten Kosten für Wasser-und Abwasserdienstleistungen führen. Regierungen, Stadtplaner, und Wasser-Manager sollten daher die Entwicklungsprozesse für kommunale Wasser-und Abwasserdienstleistungen erneut überprüfen und Strategien anpassen, um den Klimawandel in Infrastruktur-Design, Investitionsprojekte, Planung von Leistungserbringung, sowie Betrieb und Wartung einzuarbeiten. Nach Angaben des Intergovernmental Panel on Climate Change hat die globale Mitteltemperatur in den letzten 100 Jahren um 0,7 °C zugenommen, und in der Folge hat sich der hydrologische Zyklus intensiviert mit, zum Beispiel, stärkeren Niederschlagsereignisse. Da die städtischen Entwässerungssysteme über einen langen Zeitraum entwickelt wurden und Design-Kriterien auf klimatischen Eigenschaften beruhen, werden diese Veränderungen die Systeme und die Stadt entsprechend beeinflussen. Das übergeordnete Ziel dieser Arbeit ist es, das Wissen über die Auswirkungen des Klimawandels auf das Regenwasser-System in der Stadt Hilla / Irak zu bereichern. Im Detail ist das Ziel, zu untersuchen, wie der Klimawandel die Siedlungsentwässerung und insbesondere die Regenwasser-Infrastruktur betreffen könnte. Desweiteren soll ein Anpassungsplan für diese Änderungen auf der Grundlage von beispielhaften Anpassungsplänen aus internationalen Fallstudienvorgeschlagen werden. Drei stochastische Wettergeneratoren wurden untersucht, um das Klima und den Klimawandel in Hilla zu verstehen. Stochastische Wettergeneratoren wurden in verschiedenen Untersuchungen und Studien zum Beispiel in der Hydrologie sowie im Hochwasser-Management, Siedlungswasser-Design- und Analyse, und Umweltschutz eingesetzt. Damit solche Studien effizient sind, ist es wichtig, lange Datensätze (in der Regel Tageswerte) haben, so dass der Wettergenerator synthetische tägliche Wetterdaten erzeugen kann, dieauf einem soliden statistischen Hintergrund basieren. Einige Wettergeneratoren können Klimaszenarien für verschiedene Arten von globalen Klimamodellen erzeugen. Sie können unter Verwendung von Interpolationsverfahren auch synthetische Daten für einen Standort generieren, für den nicht genügend Daten vorliegen. Um sicherzustellen, dass der Wettergenerator dem Klima der Region optimal entspricht, sollte gegen die beobachteten Daten geprüft werden, ob die synthetischen Daten ausreichend ähnlich sind. Gleichzeitig unterscheidet sich die Genauigkeit des Wettergenerator von Region zu Region und abhängig von den jeweiligen Klimaeigenschaften. Der Zweck des ersten Teils dieser Studie ist es daher, drei Wettergeneratoren, namentlich GEM6, ClimGen und LARS-WG, an acht Klimastationen in der Region des Gouvernements Babylon / Irak zu testen. LARS-WG verwendet eine semi-parametrische Verteilung (entwickelte Verteilung), wohingegen GEM6 und ClimGen eine parametrische Verteilung (weniger komplizierte Verteilung) verwenden. Verschiedene statistische Tests wurden ausgewählt, um die beobachteten und synthetischen Wetterdaten für identische Parameter zu vergleichen, zum Beispiel die Niederschlags- und Temperaturverteilung (Nass-und Trockenzeit). Das Ergebnis zeigt, dass LARS-WG die beobachteten Daten für die Region Babylon akkurater abzeichnet, als ClimGen, wobei GEM6 die beobachteten Daten zu verfehlen scheint. Die synthetischen Daten werden für eine erste Simulation des städtischen Run-offs in der Regenzeit sowie der Folgen des Klimawandels für das Design und Re-Design des städtischen Entwässerungssystems in Hilla verwendet. Der stochastische Wettergenerator LARS wird dann verwendet, um Gruppen zukünftiger Wetterdaten unter Verwendung von fünf globalen Klimamodellen (GCM), die das gesamte Spektrum der Unsicherheit am besten abdecken, zu generieren. Diese globalen Klimamodelle werden verwendet, um zukünftige Klimaszenarien der Temperatur und des Niederschlags für die Region Babylon zu konstruieren. Die Ergebnisse zeigen, eine Steigerung der monatlichen Temperaturen und eine Abnahme der Gesamtmenge der Regen, wobei es jedoch extremere Regenereignissen mit höherer Intensivität in kürzerer Zeit geben wird. Veränderungen der Höhe, des Zeitpunkt und der Intensität der Regenereignisse können die Menge des Abflusses von Regenwasser, die kontrolliert werden muss, beeinflussen. Die Klimawandel-Prognosen können bestehende regenwasserbedingte Überschwemmungen verschlimmern. Verschiedene Bezirke in Hilla können stärker von Regenfluten betroffen werden als bisher aufgrund der Prognosen. Alle Ergebnisse, die von den globalen Klimamodellen übernommen wurden, sind in täglicher Auflösung und um das Regenwasser-Management-Modell anzuwenden, ist es wichtig, dass alle Daten in einer Mindestauflösung von einer Stunde vorliegen. Zur Erfüllung dieser Bedingung wurde ein eine Aufschlüsselungs-Modell verwendet. Einige Stunden-Niederschlagsdaten waren erforderlich, um das zeitliche Aufschlüsselungs-Modell zu kalibrieren. Da weder die Klimastationen noch die Regen-Messgeräte im Interessenbereich über stundenauflösende Daten verfügt, wurden die Stundendaten von Flughäfen in Bagdad verwendet. Die Veränderungen in den Hochwasserrückkehrperioden sind in den projizierten Ergebnissen des Klimawandels ersichtlich, und eine Rückkehrperiode wird nur dann über Zeit gültig bleiben, wenn sich die Umweltbedingungen nicht ändern. Dies bedeutet, dass Wiederkehrperioden, die für Planungszwecke verwendet werden, öfter als bisher aktualisiert werden müssen, da die auf Grundlage von Daten der letzten 30 Jahre berechneten Werte innerhalb einer relativ kurzen Zeitspanneunrepräsentativ werden können. Während Wiederkehrperioden bieten nützliche Hinweise für die Planung die Effekte von Überschwemmungen und die damit verbundenen Auswirkungen, müssen aber mit Vorsicht verwendet werden, und Extreme, die öfter eintreten könnten als erwartet, sollten berücksichtigt werden. Im Studienbereich mit getrennten Regenwassersystemen zeigt die Simulation des Regenwasser-Management-Modells, dass sich die Anzahl der Oberflächenhochwasser sowie der Überschwemmungen im Zeitraum 2050e-2080 erhöhen wird. Zukünftige Niederschläge werdensowohl die Hochwasser-Frequenz als auch die Dauer von Überschwemmungen erhöhen. Daher ist die Notwendigkeit offensichtlich, zukünftige Situationen in städtischen Entwässerungssystemen zu berücksichtigen und eine gut geplante Strategie zu haben, um zukünftige Bedingungen zu bewältigen. Die gesamten Auswirkungen auf die Siedlungsentwässerungssyteme aufgrund der Zunahme von intensiven Niederschlagsereignissen müssen angepasst werden. Aus diesem Grund wurden Empfehlungen für die Anpassung an den Klimawandel in der Stadt Hilla vorgeschlagen. Diese wurden durch die Zusammenführung von Informationen aus der Prüfung von fünf Fallstudien, ausgewählt aufgrund der Menge und Qualität der verfügbaren Informationen, erarbeitet,. Die bewerteten Städte sind Seattle (USA), Odense (Dänemark), Teheran (Iran), und Khulna (Bangladesch).:Preface Acknowledgment Abstract Kurzfassung Contents List of Figures List of Tables List of Listing List of Abbreviation Introduction 1.1. Background of The Research 1.2. The Climate Change Challenge 1.3. Urban Water Systems and Climate Change 1.4. Climate Change and Urban Drainage Adaptation Plan 1.5. Objectives of the Research 1.6. Research Problems and Hypothesis 1.7. Dissertation Structure 1.8. Delimitations Climate History and Climate Change Projections in Al Hillah City Chapter One: State of the Art on Climate Change 2.1.1. The Earth’s Climate System 2.1.2. Climate Change 2.1.3. Emission Scenarios 2.1.4. Global Climate Change 2.1.5. Climate Models 2.1.6. Downscaling Chapter Two: Topography and Climate of the Study Area 2.2.1. Location 2.2.2. Topography 2.2.3. Climate Chapter Three: Climate Change - Methodology and Data 2.3.1. Methodology 2.3.1.1. Stochastic Weather Generators 2.3.1.2. Description of Generators Used in the Comparison 2.3.1.3. Statistical Analysis Comparison Test 2.3.2. Data 2.3.2.1. Required data for modelling 2.3.2.2. Historical daily data required for the weather generators 2.3.2.3. Minimum requirements 2.3.2.4. Data Availability Chapter Four: Results Analysis and Evaluation of Climate Change 2.4.1. Weather Generators Comparison Test results 2.4.1.1.The p-value test Temperature Comparison results Precipitation Comparison Results 2.4.2. LARS Weather Generator Future Scenario 2.4.2.1.1. Climate Change Scenarios for the region of Babylon governorate Storm Water System and Urban Flooding in Al Hillah City Chapter one: Urban Water Modelling 3.1.1. General Overview and Background 3.1.1.1. Storm water systems 3.1.2. Urban Runoff Models 3.1.3. An Overview of Runoff Estimation Methods 3.1.3.1. Computer Modelling in Urban Drainage 3.1.3.2.Statistical Rational Method (SRM) 3.1.4. Models Based on Statistical Rational Method 3.1.5. Urban Rainfall-Runoff Methods 3.1.6. Accuracy Level in Urban Catchment Models Chapter Two: Urban Water System in Al Hillah City and Data Requirement for Modelling 3.2.1. History 3.2.2. Current Situation 3.2.2.1. Urban water system Iraq 3.2.2.2. Urban Water description in Babylon governorate 3.2.2.3. Drinking water network 3.2.2.4. Sewerage infrastructure 3.2.3. Required data for modelling Chapter Three: Methodology to Disaggregate Daily Rain Data and Model Storm Water Runoff 3.3.1. Temporal Disaggregation (hourly from daily) 3.3.1.1. Background of Disaggregation 3.3.1.2. Disaggregation techniques 3.3.1.3. DiMoN Disaggregation Tool 3.3.1.4. Input Data 3.3.1.5. Methods Formerly Used 3.3.2. EPA Storm Water Management Model (SWMM) 3.3.2.1. Verification and Calibration 3.3.2.2. Stormwater Management Model PCSWMM 3.3.2.3. Complete support for all USEPA SWMM5 engine capabilities Chapter Four: Urban Flooding Results 3.4.1. Disaggregation of the daily rain data to hourly data 3.4.1.1.The 1 hour events properties 3.4.1.2. Estimating the rain events in each climate change scenario 3.4.1.3. Past, Current and future return periods 3.4.2. Storm Water Management Model PCSWMM Calibration 3.4.3.Return periods and Urban Floods 3.4.3.1.Network simulation 3.4.3.2.Properties with previous flooding problems 3.4.3.3.Storm water system simulation under 1 hour-2, 5 and 10 years return period 3.4.3.4.Storm water system simulation under 1 hour-25 years return period 3.4.3.5.Storm water system simulation under 1 hour-50 years return period 3.4.3.6. Storm water system simulation under 1 hour – 100, 200, 500 and 1000 years return period 3.4.3.7.Total Flooding Adaptation Plan for Al Hillah City Chapter One: International Case Studies 4.1.1. Historical precipitation analysis 4.1.2. Current and projected future climate change, impacts and adaptation plan for each selected city 4.1.2.1. Seattle 4.1.2.2. Odense 4.1.2.3. Tehran 4.1.2.4. Khulna 4.1.2.5. Melbourne 4.1.3. Drainage System of the Studied Cities 4.1.3.1. Drainage System in Seattle 4.1.3.2. Drainage System in Odense 4.1.3.3. Drainage System in Tehran 4.1.3.4. Drainage System in Khulna 4.1.3.5. Drainage System in Melbourne Chapter Two: Adaptation Plan for Al Hillah City 4.2.1. Conclusions from Adaptation Options Analysed 4.2.2. Suggestions for Al Hillah City 4.2.3. Adaptation Actions Overall Conclusion Bibliography

Page generated in 0.1011 seconds