Spelling suggestions: "subject:"advanced driver assistance"" "subject:"dvanced driver assistance""
31 |
Systematic Review of Driver Distraction in the Context of Advanced Driver Assistance Systems (ADAS) & Automated Driving Systems (ADS)Hungund, Apoorva Pramod 28 October 2022 (has links)
Advanced Vehicle Systems promise improved safety and comfort for drivers. Steady advancements in technology are resulting in increasing levels of vehicle automation capabilities, furthering safety benefits. In fact, some of these vehicle automation systems are already deployed and available, but with promised benefits, such systems can potentially change driving behaviors. There is evidence that drivers have increased secondary task engagements while driving with automated vehicle systems, but there is a need for a clearer scientific understanding of any potential correlations between the use of automated vehicle systems and potentially negative driver behaviors.
Therefore, this thesis aims to understand the state of knowledge on automated vehicle systems and their possible impact on drivers’ distraction behaviors. I have conducted two systematic literature reviews to examine this question. This thesis reports these reviews and examines the effects of secondary task engagement on driving behaviors such as take-over times, visual attention, trust, and workload, and discusses the implications on driver safety.
|
32 |
Development of a Driver Behavior Based Active Collision Avoidance SystemEvery, Joshua Lee 21 May 2015 (has links)
No description available.
|
33 |
Test Scenario Fusion: How to Fuse Scenarios From Accident and Traffic Observation DataBäumler, Maximilian, Prokop, Günther 25 November 2024 (has links)
Scenario-based testing will help to validate automated driving systems (ADS) and establish safer road traffic. To date, most data-driven test scenario generation methods rely primarily on one data source such as police accident data (PD), naturalistic driving studies, or video-based traffic observations (VOs). However, none of these data sources perfectly satisfies all the layers of the six-layer model for the description of test scenarios. Moreover, not all available data sources cover the same location and period of time. Therefore, we fused information from 1,648 scenarios extracted from a German VO with information from 74 scenarios extracted from German PD into a comprehensive new PD* database. Finally, PD* consisted of 74 accident scenarios extended, for example, by variables containing the dynamic information of the VO scenarios. Thus, PD* contained more than 350 variables, whereas PD contained only 269 and VO only 122 variables. For fusion, we followed the Find-Unify-Synthesize-Evaluation (FUSE) for Representativity (FUSE4Rep) process model using statistical matching. Subsequently, we derived three logical scenarios from PD* to test an autonomous emergency braking system (AEB) in a stochastic traffic simulation incorporating driver-behavior models. The quality of the fusion itself was satisfactory, and we propose improving the VO data collection process and observation time to obtain even better results.
|
34 |
Development of Predictive Vehicle Control System using Driving Environment Data for Autonomous Vehicles and Advanced Driver Assistance SystemsKang, Yong Suk 21 September 2018 (has links)
In the field of modern automotive engineering, many researchers are focusing on the development of advanced vehicle control systems such as autonomous vehicle systems and Advanced Driver Assistance Systems (ADAS). Furthermore, Driver Assistance Systems (DAS) such as cruise control, Anti-Lock Braking Systems (ABS), and Electronic Stability Control (ESC) have become widely popular in the automotive industry. Therefore, vehicle control research attracts attention from both academia and industry, and has been an active area of vehicle research for over 30 years, resulting in impressive DAS contributions. Although current vehicle control systems have improved vehicle safety and performance, there is room for improvement for dealing with various situations.
The objective of the research is to develop a predictive vehicle control system for improving vehicle safety and performance for autonomous vehicles and ADAS. In order to improve the vehicle control system, the proposed system utilizes information about the upcoming local driving environment such as terrain roughness, elevation grade, bank angle, curvature, and friction. The local driving environment is measured in advance with a terrain measurement system to provide terrain data. Furthermore, in order to obtain the information about road conditions that cannot be measured in advance, this work begins by analyzing the response measurements of a preceding vehicle. The response measurements of a preceding vehicle are acquired through Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) communication. The identification method analyzes the response measurements of a preceding vehicle to estimate road data. The estimated road data or the pre-measured road data is used as the upcoming driving environment information for the developed vehicle control system. The metric that objectively quantifies vehicle performance, the Performance Margin, is developed to accomplish the control objectives in an efficient manner. The metric is used as a control reference input and continuously estimated to predict current and future vehicle performance. Next, the predictive control algorithm is developed based on the upcoming driving environment and the performance metric. The developed system predicts future vehicle dynamics states using the upcoming driving environment and the Performance Margin. If the algorithm detects the risks of future vehicle dynamics, the control system intervenes between the driver's input commands based on estimated future vehicle states. The developed control system maintains vehicle handling capabilities based on the results of the prediction by regulating the metric into an acceptable range. By these processes, the developed control system ensures that the vehicle maintains stability consistently, and improves vehicle performance for the near future even if there are undesirable and unexpected driving circumstances. To implement and evaluate the integrated systems of this work, the real-time driving simulator, which uses precise real-world driving environment data, has been developed for advanced high computational vehicle control systems. The developed vehicle control system is implemented in the driving simulator, and the results show that the proposed system is a clear improvement on autonomous vehicle systems and ADAS. / Ph. D. / In the field of modern automotive engineering, many researchers are focusing on the development of advanced vehicle control systems such as autonomous vehicle systems and Advanced Driver Assistance Systems (ADAS). Furthermore, cruise control, Anti-Lock Braking Systems, and Electronic Stability Controls have become widely popular in the automotive industry. Although vehicle control systems have improved vehicle safety and performance, there is still room for improvement for dealing with various situations.
The objective of the research is to develop a predictive vehicle control system for improving vehicle safety and performance for autonomous vehicles and ADAS. In order to improve the vehicle control system, the proposed system utilizes information about the upcoming driving conditions such as road roughness, elevation grade, bank angle, and curvature. The driving environment is measured in advance with a terrain measurement system. Furthermore, in order to obtain the information about road conditions that cannot be measured in advance, this work begins by analyzing a preceding vehicle’s response to the road. The combined road data is used as the upcoming driving environment information. The measurement that indicates vehicle performance, the Performance Margin, is developed to accomplish the research objectives. It is used in the developed control system, which predicts future vehicle performance. If the system detects future risks, the control system will intervene to correct the driver’s input commands. By these processes, the developed system ensures that the vehicle maintains stability, and improves vehicle performance regardless of the upcoming and unexpected driving conditions. To implement and evaluate the proposed systems, a driving simulator has been developed. The results show that the proposed system is a clear improvement on autonomous vehicle systems and ADAS.
|
35 |
Situation Assessment at Intersections for Driver Assistance and Automated Vehicle ControlStreubel, Thomas 02 February 2016 (has links) (PDF)
The development of driver assistance and automated vehicle control is in process and finds its way more and more into urban traffic environments. Here, the complexity of traffic situations is highly challenging and requires system approaches to comprehend such situations. The key element is the process of situation assessment to identify critical situations in advance and derive adequate warning and intervention strategies.
This thesis introduces a system approach to establish a situation assessment process with the focus on the prediction of the driver intention. The system design is based on the Situation Awareness model by Endsley. Further, a prediction algorithm is created using Hidden Markov Models. To define the parameters of the models, an existing database is used and previously analyzed to identify reasonable variables that indicate an intended driving direction while approaching the intersection. Here, vehicle dynamics are used instead of driver inputs to enable a further extension of the prediction, i.e.\\ to predict the driving intention of other vehicles detected by sensors. High prediction rates at temporal distances of several seconds before entering the intersection are accomplished.
The prediction is integrated in a system for situation assessment including an intersection model. A Matlab tool is created with an interface to the vehicle CAN bus and the intersection modeling which uses digital map data to establish a representation of the intersection. To identify differences and similarities in the process of approaching an intersection dependent on the intersection shape and regulation, a naturalistic driving study is conducted. Here, the distance to the intersection and velocity is observed on driver inputs related to the upcoming intersection (leaving the gas pedal, pushing the brake, using the turn signal). The findings are used to determine separate prediction models dependent on shape and regulation of the upcoming intersection. The system runs in real-time and is tested in a real traffic environment. / Die Entwicklung von Fahrerassistenz und automatisiertem Fahren ist in vollem Gange und entwickelt sich zunehmend in Richtung urbanen Verkehrsraum. Hier stellen besonders komplexe Verkehrssituationen sowohl für den Fahrer als auch für Assistenzsysteme eine Herausforderung dar. Zur Bewältigung dieser Situationen sind neue Systemansätze notwendig, die eine Situationsanalyse und -bewertung beinhalten. Dieser Prozess der Situationseinschätzung ist der Schlüssel zum Erkennen von kritischen Situationen und daraus abgeleiteten Warnungs- und Eingriffsstrategien.
Diese Arbeit stellt einen Systemansatz vor, welcher den Prozess der Situationseinschätzung abbildet mit einem Fokus auf die Prädiktion der Fahrerintention. Das Systemdesign basiert dabei auf dem Situation Awareness Model von Endsley. Der Prädiktionsalgorithmus ist mit Hilfe von Hidden Markov Modellen umgesetzt. Zur Bestimmung der Modellparameter wurde eine existierende Datenbasis genutzt und zur Bestimmung von relevanten Variablen für die Prädiktion der Fahrtrichtung während der Kreuzungsannäherung analysiert. Dabei wurden Daten zur Fahrdynamik ausgewählt anstelle von Fahrereingaben um die Prädiktion später auf externe Fahrzeuge mittels Sensorinformationen zu erweitern. Es wurden hohe Prädiktionsraten bei zeitlichen Abständen von mehreren Sekunden bis zum Kreuzungseintritt erzielt.
Die Prädiktion wurde in das System zur Situationseinschätzung integriert. Weiterhin beinhaltet das System eine statische Kreuzungsmodellierung. Dabei werden digitale Kartendaten genutzt um eine Repräsentation der Kreuzung und ihrer statischen Attribute zu erzeugen und die der Kreuzungsform entsprechenden Prädiktionsmodelle auszuwählen. Das Gesamtsystem ist als Matlab Tool mit einer Schnittstelle zum CAN Bus implementiert. Weiterhin wurde eine Fahrstudie zum natürlichen Fahrverhalten durchgeführt um mögliche Unterschiede und Gemeinsamkeiten bei der Annäherung an Kreuzungen in Abhängigkeit der Form und Regulierung zu identifizieren. Hierbei wurde die Distanz zur Kreuzung und die Geschwindigkeit bei Fahrereingaben im Bezug zur folgenden Kreuzung gemessen (Gaspedalverlassen, Bremspedalbetätigung, Blinkeraktivierung). Die Ergebnisse der Studie wurden genutzt um die Notwendigkeit verschiedener Prädiktionsmodelle in Abhängigkeit von Form der Kreuzung zu bestimmen. Das System läuft in Echtzeit und wurde im realen Straßenverkehr getestet.
|
36 |
Object detection and classication in outdoor environments for autonomous passenger vehicle navigation based on Data Fusion of Articial Vision System and LiDAR sensor / Detecção e classificação de objetos em ambientes externos para navegação de um veículo de passeio autônomo utilizando fusão de dados de visão artificial e sensor laserRoncancio Velandia, Henry 30 May 2014 (has links)
This research project took part in the SENA project (Autonomous Embedded Navigation System), which was developed at the Mobile Robotics Lab of the Mechatronics Group at the Engineering School of São Carlos, University of São Paulo (EESC - USP) in collaboration with the São Carlos Institute of Physics. Aiming for an autonomous behavior in the prototype vehicle this dissertation focused on deploying some machine learning algorithms to support its perception. These algorithms enabled the vehicle to execute articial-intelligence tasks, such as prediction and memory retrieval for object classication. Even though in autonomous navigation there are several perception, cognition and actuation tasks, this dissertation focused only on perception, which provides the vehicle control system with information about the environment around it. The most basic information to be provided is the existence of objects (obstacles) around the vehicle. In formation about the sort of object it is also provided, i.e., its classication among cars, pedestrians, stakes, the road, as well as the scale of such an object and its position in front of the vehicle. The environmental data was acquired by using a camera and a Velodyne LiDAR. A ceiling analysis of the object detection pipeline was used to simulate the proposed methodology. As a result, this analysis estimated that processing specic regions in the PDF Compressor Pro xii image (i.e., Regions of Interest, or RoIs), where it is more likely to nd an object, would be the best way of improving our recognition system, a process called image normalization. Consequently, experimental results in a data-fusion approach using laser data and images, in which RoIs were found using the LiDAR data, showed that the fusion approach can provide better object detection and classication compared with the use of either camera or LiDAR alone. Deploying a data-fusion classication using RoI method can be executed at 6 Hz and with 100% precision in pedestrians and 92.3% in cars. The fusion also enabled road estimation even when there were shadows and colored road markers in the image. Vision-based classier supported by LiDAR data provided a good solution for multi-scale object detection and even for the non-uniform illumination problem. / Este projeto de pesquisa fez parte do projeto SENA (Sistema Embarcado de Navegação Autônoma), ele foi realizado no Laboratório de Robótica Móvel do Grupo de Mecatrônica da Escola de Engenharia de São Carlos (EESC), em colaboração com o Instituto de Física de São Carlos (IFSC). A grande motivação do projeto SENA é o desenvolvimento de tecnologias assistidas e autônomas que possam atender às necessidades de diferentes tipos de motoristas (inexperientes, idosos, portadores de limitações, etc.). Vislumbra-se que a aplicação em larga escala desse tipo de tecnologia, em um futuro próximo, certamente reduzirá drasticamente a quantidade de pessoas feridas e mortas em acidentes automobilísticos em estradas e em ambientes urbanos. Nesse contexto, este projeto de pesquisa teve como objetivo proporcionar informações relativas ao ambiente ao redor do veículo, ao sistema de controle e de tomada de decisão embarcado no veículo autônomo. As informações mais básicas fornecidas são as posições dos objetos (obstáculos) ao redor do veículo; além disso, informações como o tipo de objeto (ou seja, sua classificação em carros, pedestres, postes e a própria rua mesma), assim como o tamanho deles. Os dados do ambiente são adquiridos através do emprego de uma câmera e um Velodyne LiDAR. Um estudo do tipo ceiling foi usado para simular a metodologia da detecção dos obstáculos. Estima-se que , após realizar o estudo, que analisar regiões especificas da imagem, chamadas de regiões de interesse, onde é mais provável encontrar um obstáculo, é o melhor jeito de melhorar o sistema de reconhecimento. Observou-se na implementação da fusão dos sensores que encontrar regiões de interesse usando LiDAR, e classificá-las usando visão artificial fornece um melhor resultado na hora de compará-lo com os resultados ao usar apenas câmera ou LiDAR. Obteve-se uma classificação com precisão de 100% para pedestres e 92,3% para carros, rodando em uma frequência de 6 Hz. A fusão dos sensores também forneceu um método para estimar a estrada mesmo quando esta tinha sombra ou faixas de cor. Em geral, a classificação baseada em visão artificial e LiDAR mostrou uma solução para detecção de objetos em várias escalas e mesmo para o problema da iluminação não uniforme do ambiente.
|
37 |
Consideration of dynamic traffic conditions in the estimation of industrial vehicules energy consumption while integrating driving assistance strategies / Prise en compte des conditions de trafic dynamique dans l'évaluation des consommations énergétiques des véhicules industriels en intégrant les stratégies d'aide à la conduiteCattin, Johana 18 April 2019 (has links)
Le monde industriel, et en particulier l’industrie automobile, cherche à représenter au mieux le réel pour concevoir des outils et produits les plus adaptés aux enjeux et marchés actuels. Dans cette optique, le groupe Volvo a développé de puissants outils pour la simulation de la dynamique des véhicules industriels. Ces outils permettent notamment l’optimisation de composants véhicules ou de stratégies de contrôle. De nombreuses activités de recherche portent sur des technologies innovantes permettant de réduire la consommation des véhicules industriels et d’accroitre la sécurité de leurs usages dans différents environnements. En particulier, le développement des systèmes d’aide à la conduite automobile ITS et ADAS. Afin de pouvoir développer ces systèmes, un environnement de simulation permettant de prendre en compte les différents facteurs pouvant influencer la conduite d’un véhicule doit être mis en place. L’étude se concentre sur la simulation de l’environnement du véhicule et des interactions entre le véhicule et son environnement direct, i.e. le véhicule qui le précède. Les interactions entre le véhicule étudié et le véhicule qui le précède sont modélisées à l’aide de modèles mathématiques, nommés lois de poursuites. De nombreux modèles existent dans la littérature mais peu concernent le comportement des véhicules industriels. Une étude détaillée de ces modèles et des méthodes de calage est réalisée. L’environnement du véhicule peut être représenté par deux catégories de paramètres : statiques (intersections, nombre de voies…) et dynamiques (état du réseau). A partir d’une base de données de trajets usuels, ces paramètres sont calculés, puis utilisés pour générer de manière automatisée des scénarios de simulation réalistes. / The industrial world, and in particular the automotive industry, is seeking to best represent the real world in order to design tools and products that are best adapted to current challenges and markets, by reducing development times and prototyping costs. With this in mind, the Volvo Group has developed powerful tools to simulate the dynamics of industrial vehicles. These tools allow the optimization of vehicle components or control strategies. Many research activities focus on innovative technologies to reduce the consumption of industrial vehicles and increase the safety of their use in different environments. Particularly, the development of ITS and ADAS is booming. In order to be able to develop these systems, a simulation environment must be set up to take into account the various factors that can influence the driving of a vehicle. The work focuses on simulating the vehicle environment and the interactions between the vehicle and its direct environment, i.e. the vehicle in front of it. The interactions between the vehicle under study and the vehicle in front of it are modelled using mathematical models, called car-following models. Many models exist in the literature, but few of them deals specifically with heavy duty vehicles. A specific focus on these models and their calibration is realized. The vehicle environment can be represented by two categories of parameters: static (intersections, number of lanes) and dynamic parameters (state of the network). From a database of usuals roads, these parameters are computed, then, they are used to automatically generate realist traffic simulation scenarios.
|
38 |
Preparation for lane change manoeuvres: Behavioural indicators and underlying cognitive processesHenning, Matthias 21 July 2010 (has links) (PDF)
Die vorliegende Arbeit widmet sich der Erforschung der Fahrer-Fahrzeug-Interaktion mit dem Ziel der Fahrerabsichtserkennung bei Spurwechselmanövern. Diese Fahrmanöver sind mit einer überproportionalen Unfallhäufigkeit verbunden, die sich in den Unfallstatistiken widerspiegelt. Laut Statistischem Bundesamt (2008) kamen im Jahr 2007 12,0% (1857) aller Unfälle mit schwerem Sachschaden auf Autobahnen in Deutschland aufgrund von Zusammenstößen mit seitlich in die gleiche Richtung fahrenden Fahrzeugen zustande (S. 65). Mit Hilfe der Information über einen intendierten Spurwechsel kann ein System an das zukünftige Fahrerverhalten angepasst werden, um so die Funktionalität und damit das Sicherheitspotential des Gesamtsystems zu erhöhen. Zusätzlich können mit dieser Information auch unerwünschte Systemeingriffe unterdrückt werden, die den Fahrer stören und so zu einer Minderung der Akzeptanz des jeweiligen Fahrerassistenz- und Informationssystems führen könnten. So kann einerseits ein Assistenzsystem eingeschaltet werden, das den Spurwechsel erleichtert (z.B. Side Blind Zone Alert, Kiefer & Hankey, 2008). Zum anderen kann ein Assistenzsystem abgeschaltet werden, das den Fahrer irrtümlich warnen würde, wie zum Beispiel ein Spurverlassenswarner im Falle eines beabsichtigten Überfahrens der Fahrspur (Henning, Beyreuther et al., 2007).
In diesem Zusammenhang bilden drei Untersuchungen das Herzstück der vorliegenden Arbeit. In einer Feldstudie untersuchten Henning, Georgeon, Dapzol und Krems (2009) Indikatoren, die auf die Vorbereitung eines Spurwechsels hindeuten und fanden dabei vor allem Blickverhalten in den linken Außenspiegel als einen geeigneten und sehr frühen Indikator. Dieser dient wahrscheinlich vor allem dem Aufbau einer mentalen Repräsentation des rückwärtigen Verkehrs. In einer anschließenden Fahrsimulatorstudie wurde experimentell erforscht, wie diese mentale Repräsentation beschaffen ist und in welchen Komponenten des Arbeitsgedächtnisses sie gespeichert wird (Henning, Beyreuther, & Krems, 2009). In einer dritten Studie, bestehend aus zwei Laborexperimenten, wurde nach einer Schwelle für den Übergang von einer statischen in eine dynamische mentale Repräsentation sich nähernder Fahrzeuge mit Hilfe des Paradigmas des Representational Momentum (Freyd & Finke, 1984) gesucht und ebenfalls deren Lokalisation im Arbeitsgedächtnis erforscht (Henning & Krems, 2009).
Die den drei Manuskripten vorangestellte Einleitung dient der allgemeinen Einführung in das Thema und der Einordnung der Befunde. Dabei wird zuerst der Spurwechselprozess dargestellt, gefolgt von einer Diskussion der zugrundeliegenden kognitiven Prozesse und einem Exkurs über die Möglichkeiten der Spurwechselabsichtserkennung und deren Verbesserung im Lichte der Befunde.
|
39 |
Verfahren zur Analyse des Nutzens von Fahrerassistenzsystemen mit Hilfe stochastischer SimulationsmethodenNeubauer, Michael 11 June 2015 (has links) (PDF)
Um die Fahrzeugsicherheit auch weiterhin zu verbessern, können Systeme der Aktiven Sicherheit ihren Beitrag leisten. Zu diesem Zweck werden u. a. Unfalldatenbanken mit precrash relevanten Parametern herangezogen, mit welchen der Systemnutzen frühzeitig auf das Unfallgeschehen analysiert wird.
Aufgrund von Informationsdefiziten in der bisherigen Unfallrekonstruktion stellt das Treffen von fundierten Aussagen zur precrash Phase eine Schwierigkeit dar, wie z. B. die genaue Ausgangsgeschwindigkeit. Deshalb sind zum Teil ungesicherte Annahmen notwendig, um eine precrash Phase rekonstruieren zu können. Bisher ist in Unfalldatenbanken zu jeweils einem analysierten Unfall eine einzelne mögliche precrash Phase dokumentiert, so wie der Unfall möglicherweise ablief. Weitere mögliche Varianten der precrash Phasen, die ebenso zu selben Unfall geführt hätten bleiben unberücksichtigt.
Um detaillierte Aussagen zum tatsächlichen Nutzungsgrad eines Systems in einem realen Unfall abzuleiten, wird ein automatisiertes Simulationstool vorgestellt, welches mit Hilfe stochastischer Methoden auf mögliche Varianten an precrash Phasen schließt, die zum selben realen Unfall führen. Für das Tool dienen als Eingangsgröße rekonstruierte Unfälle, die in den precrash Phasen zum Teil Informationsdefizite aufweisen. Hierbei variiert die Monte Carlo Methode, ein Zufallszahlengenerator, die unterschiedlichen Ausprägungen von ausgewählten Einflussparametern entsprechend deren Häufigkeit. Dieses Tool kompensiert somit die Informationsdefizite in precrash Phasen und baut zugleich eine synthetische Unfalldatenbank mit Varianten an precrash Phasen auf, mit dem Ziel, die Vorunfallphase statistisch repräsentativ und unabhängig von einer konkreten Rekonstruktionsvariante abzubilden.
In anschließenden Simulationen jeweils mit den soeben variierten precrash Phasen werden die unterschiedlichen Auswirkungen eines vorausschauenden Systems ermittelt. Die verschiedenen Einflüsse eines Systems werden auch hier mit der Monte Carlo Methode berücksichtigt, wie z. B. die Reaktionszeit des Fahrers auf eine Warnung. Im Falle eines Systemeingriffes ist eine mögliche Veränderung der Unfallschwere bzw. wahrscheinlichen Verletzungsschwere zu betrachten.
Mit dieser vorgestellten Methodik ist der tatsächliche Nutzen eines vorausschauenden Systems für die Unfallbeteiligten noch genauer feststellbar, da das Simulationstool ein breites mögliches Spektrum an precrash Phasen und Systemauswirkungen betrachtet.
|
40 |
Eignung von objektiven und subjektiven Daten im Fahrsimulator am Beispiel der Aktiven Gefahrenbremsung - eine vergleichende UntersuchungJentsch, Martin 09 July 2014 (has links) (PDF)
Fahrerassistenzsysteme (FAS), wie zum Beispiel die „Aktive Gefahrenbremsung“, sollen dazu beitragen, das Fahren sicherer zu machen und die Anzahl an Unfällen und Verunglückten im Straßenverkehr weiter zu senken.
Bei der Entwicklung von FAS muss neben der funktionalen Zuverlässigkeit des FAS sichergestellt werden, dass der Fahrer die Assistenzfunktion versteht und fehlerfrei benutzen kann. Zur Bestimmung geeigneter Systemauslegungen kommen in der Entwicklung Probandenversuche zum Einsatz, bei denen die zukünftigen Nutzer das FAS erleben und anschließend beurteilen.
In dieser Arbeit wird die Eignung eines statischen Fahrsimulators für die Durchführung von Probandenversuchen zur Bewertung aktiv eingreifender FAS untersucht. Hierzu wurde ein Fahrversuch auf der Teststrecke und im statischen Fahrsimulator konzipiert, mit jeweils ca. 80 Probanden durchgeführt und die Ergebnisse bezüglich der Auswirkung des FAS „Aktive Gefahrenbremsung“ auf ausgewählte objektive und subjektive Kennwerte in der jeweiligen Versuchsumgebung vergleichend gegenübergestellt.
Es zeigt sich, dass der statische Fahrsimulator prinzipiell für die Durchführung von Studien zur Bewertung aktiv eingreifender FAS geeignet ist. Als Ergebnis der Arbeit werden Erkenntnisse zur Aussagekraft der betrachteten Kennwerte sowie Empfehlungen zur Versuchsdurchführung im statischen Fahrsimulator gegeben.
|
Page generated in 0.0992 seconds