Spelling suggestions: "subject:"agrobacterium."" "subject:"grobacterium.""
161 |
Le plasmide Ti d’Agrobacterium fabrum C58 : analyse fonctionnelle d’ARN régulateurs / Agrobacterium fabrum C58 Ti plasmid : functional analysis of regulatory rnaDiel, Benjamin 18 September 2017 (has links)
L'expression des gènes peut être contrôlée à différents niveaux : transcriptionnel post-transcriptionnel, traductionnel et post-traductionnel. A ce jour la majorité des études se sont concentrées au niveau transcriptionnel, néanmoins l'importance des mécanismes de régulation post-transcriptionnels se fait de plus en plus évidente. Chez les procaryotes cette régulation post-transcriptionnelle est assurée par les ARN régulateurs dont le mécanisme d'action passe par l'interaction directe avec les ARN messagers ou les protéines. Grâce à l'essor des analyses transcriptomiques haut-débit (RNA-seq), l'identification de ces ARN est devenue accessible, en revanche leur caractérisation fonctionnelle demeure toujours un défi. Nous avons identifié de nombreux ARN régulateurs candidats chez Agrobacterium fabrum C58 (anciennement Agrobacterium tumefaciens C58). Cette bactérie commune du sol devient phytopathogène lorsqu'elle porte le plasmide Ti (pour Tumor inducing). Elle est alors responsable de la maladie dite de la galle du collet qui se traduit par la formation de tumeurs chez les plantes. Ces travaux de thèse ont eu pour objectif de caractériser fonctionnellement des ARN régulateurs présent sur le plasmide Ti. Deux candidats ont été étudiés en combinant prédiction de cibles et analyses phénotypiques. Le premier, nommé RNA1111, a été caractérisé tant que régulateur de la virulence. Quant au deuxième, nommé QfsR, nous avons démontré qu'il régulait des gènes responsables du transfert conjugatif du plasmide Ti et de la production du signal de quorum sensing associé, mais également des gènes chromosomiques responsables de la motilité et de la production de succinoglycane. En utilisant un système rapporteur, nous avons également démontré que QfsR agissait via une interaction directe avec les ARN messagers des gènes cibles. QfsR représente le premier exemple d'ARN régulateur plasmidique régulant des cibles chromosomiques. L'existence d'un tel régulateur chez un plasmide présent transitoirement au sein des populations d'Agrobacterium illustre le dialogue entre plasmide et chromosome / Gene expression can be controlled at different levels: transcriptional, post-transcriptional, translational and post-translational. To date, the majority of studies have been concentrated on the transcriptional level, but the importance of post-transcriptional regulation mechanisms is becoming more and more evident. In prokaryotes this post-transcriptional regulation is ensured by regulatory RNAs whose mechanism of action passes through direct interaction with messenger RNAs or proteins. With development of high-throughput transcriptomic analyzes (RNA-seq), the identification of these RNAs has become accessible, but their functional characterization remains challenging. We have identified many candidate regulatory RNAs in Agrobacterium fabrum C58 (formerly Agrobacterium tumefaciens C58). This common bacterium of the soil becomes phytopathogenic when carrying the plasmid Ti (for Tumor inducing). It is then responsible for the so-called grown gall disease which results in the formation of tumors in plants. The objective of this thesis was to characterize functionally regulatory RNAs present on the Ti plasmid. Two candidates were studied by combining target prediction and phenotypic analysis. The first, named RNA1111, was characterized as a regulator of virulence. As for the second, named QfsR, we demonstrated that it regulates genes responsible for the conjugative transfer of the Ti plasmid and the production of the associated quorum sensing signal, as well as chromosomal genes responsible for the motility and succinoglycan production. Using a reporter system, we also demonstrated that QfsR was acting via direct interaction with the messenger RNAs of the target genes. QfsR represents the first example of plasmid regulatory RNA regulating chromosomal targets. The existence of such a regulator in a plasmid transiently present in the populations of Agrobacterium illustrates the dialogue between the plasmid and the chromosome
|
162 |
Implication des ARN non codant dans la virulence du phytopathogène Agrobacterium fabrum C58 / Implication of non coding RNA in the virulence of the phytopathogene Agrobacterium fabrum C58Dequivre, Magali 20 February 2015 (has links)
L'une des caractéristiques majeures des microorganismes, et donc des bactéries, est qu'ils sont en contact direct avec l'environnement et doivent donc percevoir et répondre rapidement à ses variations. Pour cela, plusieurs niveaux de contrôle existent, et récemment le rôle des ARN non codants régulateurs, ou riborégulateurs, a été mis en lumière comme un mécanisme de contrôle peu couteux et rapide pour la cellule. Chez le phytopathogène Agrobacterium fabrum (anciennement appelé Agrobaterium tumefaciens), la virulence est principalement régulée au niveau transcriptionnel par le système à deux composants VirANirG. L'implication des riborégulateurs dans la virulence d'A.fabrum est encore mal connue et ces travaux de thèse ont eu pour objectif de déterminer l'implication de riborégulateurs dans le cycle infectieux de cette bactérie.Pour cela, nous avons identifié l'ensemble des transcrits d 'A. fabrum C58 en combinant l'utilisation de plusieurs méthodes d'analyses globales et nous avons étudié la fonction de différents candidats transcrits à partir du plasmide Ti (plasmide de virulence). Des souches modifiées dans la production des riborégulateurs candidats ont été construites, Jeurs ARNm cibles ont été prédits et validés, et des tests phénotypiques, en particulier des tests de virulence, ont été réalisés. Ainsi, le séquençage des transcrits de petite taille a permis d'identifier plus d'un millier de riborégulateurs potentiels dont plusieurs sont exprimés à partir de régions en relation avec le cycle infectieux. Nous avons validé 4 de ces petits transcrits comme étant des riborégulateurs puisqu'ils sont de petite taille, non traduits en protéine et fortement structurés (RNAI 111, RNA1083, RNA1059 et RNA1051) . Plus particulièrement, nous avons montré que le riborégulateur RNAI 111 était nécessaire pour la virulence d'A.fabrum C58, et que son action semblait se faire au travers du contrôle post-transcriptionnel de gènes impliqués dans les fonctions de virulence et de transfert du plasmide Ti. Un rôle plus modéré du riborégulateur RNA1083 dans le contrôle du cycle infectieux a également été observé, potentiellement au travers de la modulation de la mobilité et du transfert conjugatif du plasmide Ti. D'autre part, nous avons mis en évidence deux autres riborégulateurs, RNA1059 et RNA1051, qui sont impliqués dans le contrôle du maintien du plasmide Ti via une implication dans la réplication du plasmide (RNA 1059) et via une implication dans un nouveau system de toxine-antitoxine présent sur le plasmide Ti (RNA1051). Ainsi à partir d'une analyse globale nous avons mis en évidence le rôle des riboregulateurs dans les systèmes de mise en place de l'infection bactérienne , soit via le contrôle de facteurs de virulence, soit via le contrôle de la persistance du plasmide responsable de la virulence / One of the main characteristics of microorganisms, including bacteria., is their direct interaction with their environment. They thus need to perceive and quickly answer to its variations. Several steps of control exist, and recently the role of regulatory non-coding RNA, or riboregulator, was highlighted as a fast and economic mechanism of regulation. In the phytopathogen Agrobacterium fabrum (previously named Agrobacterium tumefaciens), the virulence is mainly controlled transcriptionally by the two components system VirANirG. The implication of riboregulators in the virulence of this bacterium is still unknown . The objectives of this thesis were to identify A .fabrum riboregulators and to determine their involvement in the infectious cycle of the bacteria. To this end, we identified small transcripts of A . fabrum C58 strain by combining several global analyses, and we studied the function of different candidates transcribed from the Ti plasmid (the virulence plasmid). Strains modified in the production of these candidates were constructed, their mRNA targets were predicted and validated, and phenotypic analyses -especially virulence tests were realized.Thereby, small transcript deep-sequencing allowed the identification of a thousand potential riboregulators, some of them being transcribed from regions related to the infectious cycle. We validated 4 of these transcripts as riboregulators according to their small size, their strong secondary structure and their non-translation into protein (RNAIOS I, RNA1059, RNA1083 and RNAl ll l). In particular, we showed that RNA 1111 was necessary for the virulence of A. fabrum C58, and that it seems to act through the posttranscriptional control of genes implicated in virulence functions and in Ti plasmid conjugation. A more moderated role of RNA 1083 was also observed, potentially by the modulation of the bacterial mobility and of the plasmid conjugation. Furthermore, we highlighted two riboregulators, RNA1059 and RNA1051, involved in the control of the Ti plasmid persistence, through their implication in the replication of the plasmid (RNA1059) and in a toxin-antitoxin system present on the Ti plasmid (RNA1051) .Thus, from a global analysis, we brought out the role of riboregulators in the control of several steps of the infectious cycle of A. fabrum C58, through the control of virulence factors, or through the contrai of the persistence of the main actor of the virulence, the Ti plasmid
|
163 |
Anaerobic respiration diversification in Agrobacterium fabrum C58 / Diversification de l'adaptation à la vie anaérobie chez Agrobacterium fabrum C58Lecomte, Solène 18 November 2019 (has links)
La respiration anaérobie peut être un trait essentiel dans le mode de vie, la colonisation de l'environnement et la survie. Jusqu'à présent, la seule respiration anaérobie confirmée chez Agrobacterium spp. est la dénitrification. De façon intéressante, cette voie est inégalement répandue chez les agrobactéries. Ces observations m'ont amené à mon hypothèse, à savoir la respiration anaérobie et notamment la dénitrification pourraient expliquer la coexistence d'agrobactéries et leur distribution dans des niches spécifiques de la rhizosphère. Ma thèse visait à explorer les stratégies de respiration anaérobie d’Agrobacterium spp. et de les relier à l'adaptation de niche écologiques différentes. Les objectifs de ma thèse étaient (1) de caractériser tous les gènes impliqués dans la dénitrification chez A. fabrum C58 in vitro, (2) d'explorer les gènes de la dénitrification nécessaires à la colonisation des racines du maïs et (3) de découvrir de nouvelles respirations anaérobies pendant la colonisation racinaire du maïs (Figure 16). Réaliser des mutants et les tester dans des conditions particulières est le moyen classique de déterminer l'implication d'un gène dans une voie spécifique. Cependant, cette méthode implique une vision à priori et des connaissances solides sur les gènes cibles et ne peut pas être appliquée à toutes les situations. Nous avons alors dû développer une méthode plus adaptée pour identifier les gènes essentiels impliqués dans la croissance dans des conditions anaérobies spécifiques. - Gènes de dénitrification chez A. fabrum C58 in vitro. Pour compléter la voie de dénitrification chez A. fabrum C58 et identifier tous les gènes et régulateurs impliqués dans la dénitrification, nous avons adopté deux stratégies : Premièrement, une vision à priori pour (1) identifier la nitrate réductase impliquée dans la première étape de la dénitrification et (2) valider le rôle d'un ARN non codant dans le contrôle de la dénitrification. Pour ce faire, nous avons construit un mutant napA de A. fabrum C58 et un mutant de l'ARN non codant NopR et nous avons évalué leur croissance et leur capacité à produire du N2O dans des conditions anoxiques. Deuxièmement, pour identifier tous les gènes impliqués dans la dénitrification, nous avons construit une banque de transposons mutants de C58 et testé sa croissance dans des conditions de dénitrification in vitro en présence de nitrate ou de nitrite. - Rôle des gènes de la denitrification de A. fabrum C58 dans la colonisation racinaire du maïs. Il est bien connu que le séquençage de transposons (Tn-Seq) est une méthode très puissante pour déterminer les gènes nécessaires à la croissance bactérienne en présence de leur hôte. Pour déterminer les gènes de dénitrification impliqués dans la colonisation des racines en anoxie, nous avons utilisé la banque construite chez C58 et l’avons inoculée sur les plants de maï cultivées sur un sol fertile et cultivées dans des conditions inondées mimant des conditions anaérobies. Le séquençage des cellules d ‘A. fabrum C58 récupérées mettra en évidence les gènes impliqués dans la colonisation anaérobie de cette niche spécifique. - Découverte de nouvelles voies de respiration anaérobie chez A. fabrum C58. Pour découvrir de nouvelles voies de respiration anaérobie, nous avons mis en place des tests de croissance de C58 dans des conditions anoxiques en présence de sources de C et de N en tant qu'accepteurs terminaux d'électrons. De façon interéssante, en cultivant des souches WT et mutée dans le gène napA au contact de la racine de maïs dans des conditions anoxiques (chapitre 1), nous avons montré une croissance des deux souches. Ce résultats suggère que les exsudats de racine servent d'accepteurs d'électrons terminaux pour la croissance anaérobie de C58. Pour déterminer quels composés exsudés du maïs peuvent servir de TEA, les principaux métabolites ont été identifiés par HPLC et certains ont été testés en tant que TEA dans des conditions anoxiques / Anaerobic respiration may be an essential trait in lifestyle, environment colonization and survival. Until now, the only confirmed anaerobic respiration in Agrobacterium spp. is denitrification. Interestingly, this pathway is unequally widespread among Agrobacteria. These observations led me to my hypothesis which is anaerobic respiration and notably denitrification could explain the coexistence of Agrobacteria and their distribution in specific niches in the rhizosphere. My thesis was undertaken to explore the anaerobic respiration strategies of Agrobacterium spp. and to relate them to niche adaptation. The objectives of my thesis were to (1) characterize all the genes involved in denitrification in A. fabrum C58 in vitro, (2) explore the genes of denitrification that are needed during maize root colonization and (3) discover new anaerobic respirations that occur during maize root colonization (Figure 16). Mutational analysis is the classic way to determine the involvement of a gene in specific pathway. However, this method implies an a priori view and solid knowledge on target genes and cannot be applied for every situation. We have to develop a more adapted method to identify essential genes involved in growth in specific anaerobic conditions. - Denitrification genes in A. fabrum C58 in vitro. To complete denitrification pathway in A. fabrum C58 and identify all the genes and regulators involved in the denitrification function, we adopted two strategies: Firstly, an a priori view to (1) identify the nitrate reductase involved in the first step of denitrification and (2) validate the role of a non-coding RNA in denitrification control. To do so, we constructed a mutant of napA of A. fabrum C58 and a mutant of the non-coding RNA NopR and we evaluated their growth and capacity to produce N2O under anoxic conditions. Secondly, to identify all the genes involved in denitrification, we constructed a mutant transposon library of C58 and tested its growth under denitrification conditions in vitro in the presence of either nitrate or nitrite. - Role of A. fabrum C58 denitrifying genes in the root colonization of maize. It is well known that Transposon-sequencing (Tn-Seq) is a very powerful method to determine genes required for bacterial growth in the presence of their host. To determine denitrifying genes involved in root colonization under anaerobic conditions, we used the library constructed in C58 and performed in planta assays. The mutant library was inoculated on maize plants grown on fertile-ground and cultured under flooded conditions miming anaerobic conditions. Sequencing the recovered A. fabrum C58 cells will evidence the genes involved in this anaerobically specific niche colonization. - Discovery of new anaerobic respiration pathways in A. fabrum C58. To discover new anaerobic respiration pathways, we set-up growth assays of C58 under anoxic conditions in the presence C and N sources as terminal electrons acceptors. Interestingly, by culturing WT and NapA-deficient strains in contact with maize root under anoxic conditions (Chapter 1), we showed growth of both strains, suggesting that root exudates serve as terminal electrons acceptors for anaerobic growth of C58. To determine which maize exuded compounds can serve as TEAs, primary metabolites were identified by HPLC and some were tested as TEAs under the set-up conditions
|
164 |
Novel Role of the Agrobacterium Virulence Effector Protein VirE2 in Modulating Plant Gene ExpressionRachelle Amanda Lapham (6838424) 14 August 2019 (has links)
<p><i>Agrobacterium
tumefaciens </i>transfers
virulence effector proteins to infected host plants to facilitate the transfer
and trafficking of a piece of its tumor inducing (Ti) plasmid, (T-[transfer]
DNA), into and through plant cells.<sup> </sup>T-DNA integrates into the host
genome where it uses the host’s gene expression machinery to express
transgenes. Scientists have used this process to insert beneficial genes into
plants by replacing native T-DNA in the bacteria with engineered T-DNA, making <i>Agrobacterium</i>-mediated transformation
the preferred method for crop genetic engineering. In spite of its wide-spread use in research and agriculture, we still do
not have a complete understanding of the transformation process. Consequently,
many important crop species remain highly resistant to transformation. One of
my lab’s major goals is to define the molecular interactions between <i>Agrobacterium</i> and its host plants which
mediate transformation. I study the role of the <i>Agrobacterium</i> effector protein, VirE2, which is important for plant
transformation. VirE2 likely coats the transferred DNA (T-DNA) after it enters
the plant cell and protects it from degradation. VIP1 is a host transcription
factor that interacts with VirE2 and is involved in activating plant defense
responses. VIP1 localizes to both the cytoplasm and the nucleus.<sup> </sup>Under
stress, VIP1 localizes to the nucleus where it activates expression of defense
response genes.<sup> </sup>This observation led to the model that T-DNA-bound
VirE2 binds VIP1 and uses VIP1 nuclear localization to deliver T-DNA into the
nucleus (the “Trojan Horse” model). In contrast to this model, our lab has
obtained data showing that VirE2 holds at least a portion of the VIP1 pool
outside the nucleus. We also showed that VIP1 and its homologs are not
necessary for transformation. VirE2 interacts with several host proteins in
addition to VIP1, and these interactions could lead to changes in host gene
expression and protein levels, possibly facilitating transformation. We
investigated this model by placing VirE2 under the control of an inducible
promoter in <i>Arabidopsis</i> and
performing RNA-seq and proteomics under non-induced and induced conditions, and
in the presence of <i>Agrobacterium</i> to
determine its individual effect on plant RNA and protein levels during
infection. Some genes differentially expressed after VirE2 induction are known
to be important for transformation. Knockout mutant lines of some VirE2
differentially expressed genes showed altered transformation phenotypes.
Protein levels of genes known to be important for transformation were also
increased in response to VirE2 induction, and overexpression of some of these
genes resulted in increased transformation susceptibility. We therefore
conclude that VirE2 modulates both plant RNA and protein levels to facilitate transformation.</p>
|
165 |
Improving barley for biofuel production : efficient transformation for lignin manipulationMaluk, Marta January 2014 (has links)
Cost effective production of biofuel from plant biomass (second generation biofuels) is currently a key challenge. To achieve this, accessibility of plant cell wall polysaccharides to chemical, enzymatic and microbial digestion could be improved by altering lignin structure and composition or by reducing lignin content, as lignin is one cell wall component that has already been shown to contribute to biomass recalcitrance. Therefore, this thesis reports the genetic manipulation of lignin biosynthesis through down-regulation of cinnamyl alcohol dehydrogenase (CAD) genes in barley (Hordeum vulgare L.). Barley has been chosen as the target plant for lignin manipulation for a few reasons: it is a major cereal crop that produces large amounts of lignocellulosic plant biomass that can potentially be used as animal feed or to produce second generation biofuels and also because it is a model grass for other bioenergy crops. CAD, as the final enzyme in the lignin pathway, is a perfect target for lignin manipulation. Characterised CAD mutants and transgenics have shown that down-regulation of CAD improves digestibility and does not influence plant growth and fertility. Due to the difficulty and complexity of transformation of monocot species, there are only a few reports describing down-regulation of CAD in monocots, and none in barley. Here, in this thesis, lignin was altered by down-regulating CAD genes using an RNAi construct with part of the HvCAD2 gene, the gene which has the highest expression level of all CAD genes. Transgenic barley plants showed reduced enzyme activity in the T0 generation (31% compared to EV plants) and enzyme activity was reduced even more in the T1 (to 3%) and T2 (to 2%) generations. The HvCAD2 RNAi barley lines had similar or slightly reduced Klason total lignin contents relative to control plants, but lignin structure and composition were altered. The RNAi plants had lower thioacidolysis yields, S/G ratio was reduced (1.59 in the empty vector controls versus 0.96–1.21 in the transgenic barley plants), the relative frequency of S units was reduced by 11–20%, the proportion of G units was increased by 17–32%, there was increased sinapaldehyde accumulation in lignin and ferulic acid abundance was reduced relative to control plants. Analysed transgenic barley plants had an orange stem phenotype. Growth season and conditions hugely affected the intensity of the phenotype. Because lignin plays a major role in culm strength and pathogen resistance, the influence of down-regulation of CAD on these features was characterised. The changed physicochemical nature of cell walls in HvCAD2 RNAi lines does not decrease the strength of the straw and does not decrease the resistance to the biotrophic Blumeria graminis and to the hemibiotrophic Rhynchosporium commune pathogens. The modified cell walls in the HvCAD2 RNAi lines had moderately improved sugar release for biofuel production. This study proves that it is possible to down-regulate CAD in cereal crops in order to change lignin structure and composition in plants without a negative impact on plant growth, fertility or pathogen resistance.
|
166 |
Genetic manipulation of Grain storage protein digestibility in sorghum.Phuong Mai Hoang Unknown Date (has links)
Abstract Sorghum (Sorghum bicolor L. Moench) is the world’s fifth most common cereal crop and provides an important source of staple food in the semi-arid tropics and feed in many other countries. The plant has the ability to grow and yield in hot and dry climates. However, sorghum grain is less digestible than the other major staple crops such as rice, wheat and maize. Therefore, the aim of this project is to improve the nutritional quality of sorghum grain by applying cutting-edge biotechnologies which involve the use of tissue culture and genetic transformation. Recently, Agrobacterium has been used by many researchers to introduce foreign genes into the sorghum genome. This method has some advantages compared to particle bombardment, however, one limitation is the regeneration of transgenic tissues. In this study successfully transformed sorghum using Agrobacterium and regenerated transgenic plants via an organogenic tissue culture system is reported. The results of transformation efficiency were achieved with co-cultivation after 48 hours. Regeneration of the sorghum transgenic plants was improved by using organogenic tissues. The GUS reporter gene and the Hpt and bar selectable markers were used. Southern blots and PCR were used to confirm transgene presence in the T0 and T1 generations. In this study, stable transgenic sorghum plants have been produced. The factors found to most influence Agrobacterium transformation were the type of organogenic tissue from different genotypes. The genotypes and the period of co-cultivation, as well as the selectable marker gene and selection strategy used. However, the transformation efficiency from this method was low (1.12%) compared with the previous efficiencies published for Agrobacterium-mediated sorghum transformation. Therefore, to improve the transformation efficiency for this method further work may need to be done. Thioredoxin genes were transformed into the sorghum genotype 296B by particle bombardment. In the first experiment no transgenics over-expressing trx and ntr were confirmed by Southern blot. In subsequent experiments, a limited number of transgenics of the T1 generation were confirmed and used for further analysis. A transgenic line with both trx & ntr was created by crossing a trx line and a ntr line. The 2 genes in this line were confirmed and showed different levels of expression by Real Time PCR. Also, the level of expression in the T2 hybrid plants was higher compared to the T1 parents. The grains from the transgenic lines were different in gelatinization, viscosity, pasting properties and in-vitro digestibility. The ntr line was confirmed to be more digestible than the other transgenic lines and a non-transgenic line. There was a significant increase of 11% (P=0.02) in digestibility of the sorghum ntr line over the non-transgenic. However, the transgenic sorghum seeds did not germinate after storage for more than 6 months. Differences in the morphology of the starch granules and protein matrix of the transgenic lines when compared to non-transgenic were observed with Scanning Electron microscopy. The difference was observed from the transition to the central zone. Pores appeared in the starch granules of the sorghum transgenic lines, but not in the non-transgenic. This may be directly related to the changes in gelatinization, viscosity, pasting and digestibility. To find regulatory sequences which can direct expression of transgenes in developing endosperm, the β-kafirin promoter was identified and cloned. Two constructs of varying length were made to test tissue specificity of the promoter, by replacing the Ubi promoter of the pUBIGUS vector. The GUS gene was used as the marker gene under the control of the amplified β-kafirin promoter. The result was determined on different explants of sorghum by transient expression via particle bombardment. The result shows the successful identification of the β-kafirin promoter region and its effect on transient expression levels. Agrobacterium transformation of sorghum organogenic tissue was developed. The digestibility of grain sorghum was improved by over-expressing the thioredoxin genes. In conclusion, the sorghum grain digestibility can be improved by transforming sorghum with thioredoxin genes, via Agrobacterium-mediated transformation. Further experimentation is required to identify regulatory sequences to optimise transgene expression in sorghum endosperm. In order to determine the reason behind the difficulties of seed germination, larger numbers of independent transgenic lines need to be generated and tested to determine whether over-expression of trx & ntr always has detrimental effects on seed longevity and germination.
|
167 |
Sélection d'écotypes bactériens pathogènes et non-pathogènes par la plante en relation avec la différenciation en espèces génomiques chez Agrobacterium spp.Portier, Perrine 22 September 2004 (has links) (PDF)
Ce travail avait pour but : 1) de vérifier l'existence d'une relation entre espèces génomiques et écotypes associés aux plantes chez Agrobacterium spp.; 2) d'identifier les zones génomiques impliquées dans la différentiation en écotypes et, partant, en espèces génomiques dans ce taxon. Nous avons d'abord cherché et caractérisé au niveau génomique (par AFLP) des écotypes non-pathogènes et pathogènes (hébergeant un plasmide Ti), dans différents biotopes. Nos résultats montrent que la plante sélectionne des écotypes spécifiques au sein de la communauté des agrobactéries du sol. De plus, il apparaît que c'est parmis les écotypes spécifiques d'une plante donnée que sont recrutées certaines agrobactéries pathogènes isolées des tumeurs. L'AFLP prédictive réalisée sur le génome de la souche C58 nous a ensuite permis d'identifier les fragments AFLP caractéristiques de l'espèce G8. Les gènes et fonctions ainsi révèlées pourraient effectivement concerner des relations plantes-bactéries.
|
168 |
Isolation of putative pAgK84 transconjugants from commerical cherry and raspberry plants treated with Agrobacterium radiobacter strain K84Lu, Shu-Fen 25 August 1994 (has links)
Graduation date: 1995
|
169 |
Desarrollo de un protocolo de transformación genética de albaricoquero independiente del genotipoWang, Hong 27 May 2011 (has links)
En este trabajo se ha estudiado la posibilidad de desarrollar un método de regeneración y transformación para producir plantas transgénicas de albaricoquero con cotiledones y secciones de hipocotilo a partir de semillas maduras de las variedades de albaricoquero
‘Canino’, ‘Moniquí’ y ‘Dorada’ y de la subespecie de albaricoquero, Prunus armeniaca L. var. ansu Maxim, cuyas semillas se utilizan para producir patrones paraalbaricoquero y otros frutales en China.
Se ha conseguido establecer un protocolo de regeneración con los cotiledones de semillas de ‘Canino’ y del patrón, Prunus armeniaca L. var. ansu Maxim obteniendo
porcentajes de regeneración muy elevados (66%) que no se vieron afectados por el
genotipo. Sin embargo, la falta de coincidencia de las células que regeneran con las
células que son transformadas por Agrobacterium ha impedido la obtención de plantas
transformadas hasta el momento.
Utilizando los explantos de secciones de hipocotilos de semillas maduras de tres
variedades comerciales de albaricoquero, ‘Dorada’, ‘Moniquí’ y ‘Canino’, se ha
establecido un protocolo de regeneración eficiente, con un mínimo del 32% de
regeneración para las tres variedades estudiadas, que ha permitido abordar experimentos
de transformación. Además, se han conseguido plantas transgénicas de las variedades
‘Dorada’ y ‘Moniquí’.
El principal interés de la transformación genética de especies frutales reside en la
posibilidad de transformar variedades comerciales con interés agronómico y
ampliamente aceptadas. Sin embargo, para que la transformación genética se convierta
en una herramienta de uso común en los programas de mejora de frutales leñosos se
requiere que los procedimientos sean reproducibles, de elevada eficiencia e
independientes del genotipo. La utilización de material adulto garantiza la identidad
genética del material vegetal y evita los problemas de juvenilidad en aquellas especies
en las que estos periodos son muy largos. Con el fin de explorar la posibilidad de
desarrollar un protocolo de transformación independiente del genotipo, en esta tesis se
ha estudiado el desarrollo de una nueva metodología basada en la transformación de
células con capacidad meristemática. Se ha conseguido transformar cuatro variedades
de albaricoquero, ‘Helena’, ‘Canino’, ‘Rojo Pasión’ y ‘Lorna’, con eficiencias de
transformación que se encuentran entre las más elevadas descritas en especies de
Prunus. Las ventajas de esta metodología son la sencillez del protocolo utilizado, su
consistencia y rapidez. Sin embargo, hemos detectado que con mucha frecuencia se
producen plantas quiméricas al transformar las células meristemáticas.
Otro inconveniente en los protocolos de transformación es la utilización de genes
marcadores de resistencia a antibióticos o herbicidas. Estos genes producen un rechazo
social e incluso existe una directiva europea (2001/18/CE) que regula las plantas
transformadas con genes de resistencia a antibióticos. El uso del gen pmi como
marcador de selección podría reducir el rechazo de la opinión pública y facilitar los
trámites legales para la comercialización de plantas transgénicas, ya que la proteína que
codifica este gen no representa un riesgo para la salud humana ni para el medio
ambiente. En la presente tesis se ha estudiado el desarrollo de un protocolo de
transformación genética de albaricoquero que utiliza el sistema pmi/manosa para
seleccionar las plantas transformadas. Con este sistema se ha conseguido producir
plantas transgénicas de albaricoquero con una eficiencia similar a la obtenida con genes
marcadores de selección que confieren resistencia a antibióticos, demostrando que
puede ser un sistema de selección alternativo al uso de antibióticos. / In this Ph.D. thesis a methodology to develop such a
procedure has been studied, based in cells with meristematic capability. We have
transformed the apricot cultivars ‘Helena’, ‘Canino’, ‘Rojo Pasión’ and ‘Lorna’, with
transformation efficiencies, based on PCR analysis, among the highest reported after
transformation of other Prunus species. The advantages of this methodology are that is
simple, fast and consistent. However, a large frequency of chimerical plants has been
detected when transforming meristematic cells.
Another problem of most transformation procedures is that they use antibiotic resistance
marker genes. These genes produce a social rejection and there is an European law that
neither allow deliberate release of plants carrying antibiotic resistance genes, used in
veterinary or medicine, after 2004 nor their commercialisation after 2008 (Directive
2001/18/EEC of the European Parliament and the Council of the European Union).
Since the PMI protein has revealed no adverse effects on human health and on the
environment, the use of the pmi gen as a selectable marker could reduce the social
rejection, facilitating legalisation and commercialisation of transgenic plants.
In this Ph.D. thesis we have evaluated a transformation procedure using the
pmi/mannose system for selecting apricot transgenic plants. Transformation efficiencies
were similar to those obtained using antibiotic selection, demonstrating that this system
could be an alternative for producing apricot transgenic plants under safe conditions for
human health and the environment.
|
170 |
Two of the Mechanims Used by Bacteria to Modify the Environment: Quorum Sensing and ACC DeaminaseHao, Youai January 2009 (has links)
Quorum sensing (QS) cell-cell communication systems are utilized by bacteria to coordinate their behaviour according to cell density. Several different types of QS signal molecules have been identified, among which acyl-homoserine lactones (AHLs) produced by Proteobacteria have been studied to the greatest extent. QS has been shown to be involved in many aspects of bacterial life, including virulence, bioluminescence, symbiosis, antibiotic production, swarming and swimming motility, biofilm formation, conjugation and growth inhibition. Although QS has been studied extensively in cultured microorganisms, little is known about the QS systems of uncultured microorganisms and the roles of these systems in microbial communities. To extend our knowledge of QS systems and to better understand the signalling that takes place in the natural environment, in the first part of this thesis, isolation and characterization of new QS systems from metagenomic libraries constructed using DNA from activated sludge and soil were described. Using an Agrobacterium biosensor strain, three cosmids (QS6-1, QS10-1 and QS10-2) that encode the production of QS signals were identified and DNA sequence analysis revealed that all three clones encode a novel luxI family AHL synthase and a luxR family transcriptional regulator. Thin layer chromatography revealed that these LuxI homolog proteins are able to synthesize multiple AHL signals. Tandem mass spectrometry analysis revealed that LuxIQS6-1 directs the synthesis of at least three AHLs, 3-O-C14:1 HSL, 3-O-C16:1 HSL and 3-O-C14 HSL; LuxIQS10-1 directs the synthesis of at least 3-O-C12 HSL and 3-O-C14 HSL; while LuxIQS10-2 directs the synthesis of at least C8 HSL and C10 HSL. Two possible new AHLs, C14:3 HSL and (?)-hydroxymethyl-3-O-C14 HSL, were also found to be synthesized by LuxIQS6-1.
Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease. Its ability to transfer and integrate foreign DNA into plant genome also makes it a useful tool for plant genetic engineering. Ethylene, the gaseous plant hormone, has been reported to be important for both crown gall development and A. tumefaciens mediated transformation efficiency to plants. ACC deaminase, an enzyme that can break down ACC, the direct precursor of ethylene biosynthesis in plants, is a mechanism used by some plant growth promoting bacteria (PGPB) to promote plant growth by reducing stress ethylene levels. In the second part of this thesis, the effect of ACC deaminase on A. tumefaciens induced crown gall development and on A. tumefaciens mediated transformation efficiency was studied. By either introduction of an ACC deaminase encoding gene into the virulent strain A. tumefaciens C58 or co-inoculation of A. tumefaciens C58 with an ACC deaminase containing PGPB P. putida UW4, using different plant systems including tomato plants and castor bean plants, it was found that the presence of an ACC deaminase significantly inhibited crown gall development. It was also found that introduction of an acdS gene into the disarmed A. tumefaciens strain GV3101::pMP90 reduced the ethylene levels evolved by plants during infection and cocultivation process and increased the transformation efficiency of commercialized canola cultivars. The A. tumefaciens D3 strain was reported to contain an ACC deaminase encoding gene (acdS). In this study it was determined that this strain is an avirulent strain and shows plant growth promoting activity. When co-inoculated with A. tumefaciens C58 on castor bean stems, both the wild type and the acdS knockout mutant showed biocontrol activity and were able to significantly inhibit crown gall formation, with the wild type strain showing slightly better tumor inhibition effects. The mutation of acdS and its regulatory gene lrpL in A. tumefaciens D3 was also found to affect QS signal production of this strain, which indicates a cross talk between the two sets of genes.
|
Page generated in 0.0749 seconds