• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 12
  • 10
  • 10
  • 8
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 116
  • 116
  • 50
  • 24
  • 22
  • 20
  • 17
  • 14
  • 14
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Estudo experimental de intermitência severa em um sistema água-ar. / Experimental study of severe slugging in an air-water system.

Yamaguchi, Alan Junji 27 October 2016 (has links)
O trabalho tem como objetivo realizar um estudo experimental na bancada do Laboratório Multipropósito de Escoamento Multifásico com o intuito de estudar o fenômeno de intermitência severa em um sistema pipeline-riser com os fluidos água e ar. A intermitência severa pode ocorrer em sistemas pipeline-riser onde o pipeline é descendente seguido de um riser vertical, além de ser necessário a presença de baixas vazões de fluidos. Esse fenômeno é caracterizado por ser cíclico em que há acúmulo de líquido na base do riser e por acabar causando perdas na produção de petróleo e gás devido a grandes flutuações de pressão e vazão que podem durar horas a depender do comprimento do sistema. Os picos de pressão e vazão também podem causar o desligamento do sistema de separação na plataforma. O estudo se dividiu em várias etapas onde inicialmente foram definidos os procedimentos experimentais a serem utilizados. A calibração de placas de orifício foi necessária para o controle de vazão mássica de gás. Os resultados experimentais foram divididos em casos estáveis e instáveis onde a instabilidade é caracterizada pela presença de ciclos de pressão que podem ser observados em históricos de pressão na base do riser. Mapas de estabilidade foram criados e a região instável obtida experimentalmente foi comparada com a curva de estabilidade obtida pelo uso da teoria de estabilidade linear. Os históricos de pressão na base do riser para os casos instáveis obtidos foram comparados com dois modelos numéricos. A variação da pressão no separador foi usada para verificar a mitigação da intermitência severa e/ou da condição instável obtida no sistema para alguns casos instáveis. / The objective of this work is to do an experimental study of the severe slugging phenomenon in the pipeline-riser system of the Multipurpose Multiphase Flow Laboratory by using the fluids air and water. Severe slugging may occur for low flow rates in pipeline-riser systems where a downward pipeline is followed by a vertical riser. In this phenomenon there is liquid accumulation at the bottom of the riser resulting in production losses due to the great fluctuations of pressure and flow rate during its cycles which may last for hours depending on the length of the system. The high pressure values can also cause shutdown of the platform separation system. The first stage of this study was to define the experimental procedure to be adopted. It was necessary to perform a calibration of the orifice plates in order to have a precise control of the gas mass flow rate. The experimental results were divided in stable and unstable cases. The instability is defined by the presence of pressure oscillations at the bottom of the riser. Stability maps were created to compare the stabiliy curve obtained by the stability linear theory with the experimental results. The experimental pressure oscillations were compared with two numerical models. The pressure variation at the separator was studied to verify the mitigation effects during unstable and/or severe slugging conditions.
72

Des réactions photochimiques aux interfaces atmosphériques / Photochemical reactions at atmospherically relevant interfaces

Tinel, Liselotte 07 December 2015 (has links)
Les travaux présentés dans cette thèse portent premièrement sur la caractérisation de nouveaux photosensibilisateurs par des méthodes spectroscopiques. Ainsi les cinétiques de la réaction d'oxydation entre deux photosensibilisateurs à l'état triplet, imidazole-2-carboxaldehyde et 6-carboxypterine, et trois halogénures ont été déterminées par photolyse laser. La réactivité de l'état singulet de la 6- carboxypterine avec les halogénures et quatre acides organiques a été étudiée par fluorimétrie. Ces photosensibilisateurs sont relevants pour la photochimie à la surface de l'océan, mais également à la surface des particules atmosphériques. Les réactions mises en évidence mènent à la formation d'espèces radicalaires très réactives, influençant ainsi la composition de la phase condensée et gazeuse de l'environnement marin. La suite de cette étude s'est focalisée sur l'analyse des produits formés à partir de processus photo-induites à interface air-eau en présence d'une microcouche de surface d'un organique, utilisant deux organiques différents, l'octanol et l'acide nonanoique. En présence d'un photosensibilisateur et de lumière UVA, les changements en phase gaz ont été suivi par SRI-ToF-MS en ligne et en phase condensée par UPLC-(ESI)-HRMS. Ainsi on a démontré que la photochimie à la surface mène à la formation de produits fonctionnalisés et insaturés initiée par une abstraction d'hydrogène sur l'organique surfactant. Ces produits, observés en phase condensée et gazeuse, ont le potentiel de contribuer à la formation d'aérosols. Etonnamment, des produits ont également été observés dans les deux phases sans l'ajout d'un photosensibilisateur et montrant une activité photochimique de l'acide nonanoique seul à l'interface air-eau. Les mécanismes potentiels et les conséquences environnementales sont discutés / The works presented in this thesis concern firstly the characterization of two new photosensitizers by spectroscopic methods. This way the kinetics of the oxidation reaction between the triplet state of the photosensitizers, imidazole-2-carboxaldehyde and 6-carboxypterin, and three halides have been determined by laser flash photolysis. Also, the reactivity of the singlet state of 6-carboxypterin with halides and four organic acids has been studied by static fluorimetry. These photosensitizers are relevant for the photochemistry at the surface of the ocean, but also at the surface of atmospheric particles. The reactions evidenced by these studies lead to the formation of very reactive radical species influencing the composition of the condensed and gas phase of the marine environment. This study then focalized on the analysis of the products formed at the organic coated air-water interface through photo-induced processes. Two different organics were used as surfactants, octanol and nonanoic acid. In the presence of a photosensitizer and UVA light, the changes in the gas phase were monitored online by SRI-ToF-MS and in the condensed bulk phase by UPLC-(ESI)-HRMS offline analysis. These analysis showed that photochemical reactions at the interface lead to the formation of functionalized and unsaturated compounds initiated by a hydrogen abstraction on the organic surfactant. These products, observed in the condensed and gas phase have the potential to contribute to the formation of aerosols. Surprisingly, some of these products were also observed in the two phases without the presence of a photosensitizer, bringing into evidence a photochemistry of nonanoic acid at the air-water interface. Potential formation mechanisms of the products and environmental consequences are discussed
73

Experiments investigating momentum transfer, turbulence and air-water gas transfer in a wind wave tank

Mukto, Moniz 06 1900 (has links)
A series of laboratory experiments were conducted at three fetches of 4.8, 8.8 and 12.4 m, and at six wind speeds ranging from 4.1 to 9.6 m/s at each fetch in a wind-wave-current research facility. In addition, five surfactant-influenced experiments were conducted at concentrations ranging from 0.1 to 5.0 ppm at a wind speed of 7.9 m/s and a fetch of 4.8 m. The goals were to examine the momentum transfer and to characterize the turbulent flow structure beneath wind waves, and to investigate the relationship between wind waves and the gas transfer rate at the air-water interface. Digital particle image velocimetry (DPIV) was used to measure two-dimensional instantaneous velocity fields beneath the wind waves. The friction velocities and roughness lengths of the coupled boundary layers were used to characterize the flow regime and momentum transfer. The air-side flows were found to be aerodynamically rough and the water-side flows were found to be in transition and then become hydrodynamically smooth as wind speed increased. Airflow separation from the crests of breaking waves may be responsible for making the air-side boundary layer rougher and water-side boundary layer smoother. Momentum transfer was studied by examining the partitioning of the wind stress into the viscous tangential stress and wave-induced stress. It was found that the wave steepness was the most important wind-wave property that controls the momentum transfer in the coupled boundary layers. Two distinct layers were observed in the near-surface turbulence in the presence of a surfactant and three layers in clean water. In the surfactant-influenced experiments, the energy dissipation rate decayed as zeta^(-0.3) in the upper layer and in the lower layer energy dissipation rate decayed as zeta^(-1.0) similar to a wall-layer. For clean experiments, the energy dissipation rate could be scaled using the depth, friction velocity, wave height and phase speed as proposed by Terray et al. (1996) provided that layer based friction velocities were used. In the upper layer, the near-surface turbulence was dominated by wave-induced motions and the dissipation rates decayed as zeta^(-0.2) at all fetches. Below this in the transition layer turbulence was generated by both wave-induced motions and shear currents and the dissipation rate decayed as zeta^(-2.0) at a fetch of 4.8 m. However, at fetches of 8.8 and 12.4 m, the dissipation rate decayed at two different rates; as zeta^(-2.0) in the upper region and as zeta^(-4.0) in the lower region. In the third layer, the dissipation rate decayed as zeta^(-1.0) similar to a wall-layer at a fetch of 4.8 m. Four empirical relationships commonly used to predict the gas transfer rate were evaluated using laboratory measurements. The gas transfer rate was found to correlate most closely with the total mean square wave slope and varied linearly with this parameter. The three other parameterizations using wind speed, wind friction velocity and energy dissipation did not correlate as well. / Water Resources Engineering
74

Advanced power cycles with mixture as the working fluid

Jonsson, Maria January 2003 (has links)
The world demand for electrical power increasescontinuously, requiring efficient and low-cost methods forpower generation. This thesis investigates two advanced powercycles with mixtures as the working fluid: the Kalina cycle,alternatively called the ammonia-water cycle, and theevaporative gas turbine cycle. These cycles have the potentialof improved performance regarding electrical efficiency,specific power output, specific investment cost and cost ofelectricity compared with the conventional technology, sincethe mixture working fluids enable efficient energyrecovery. This thesis shows that the ammonia-water cycle has a betterthermodynamic performance than the steam Rankine cycle as abottoming process for natural gas-fired gas and gas-dieselengines, since the majority of the ammonia-water cycleconfigurations investigated generated more power than steamcycles. The best ammonia-water cycle produced approximately40-50 % more power than a single-pressure steam cycle and 20-24% more power than a dual-pressure steam cycle. The investmentcost for an ammonia-water bottoming cycle is probably higherthan for a steam cycle; however, the specific investment costmay be lower due to the higher power output. A comparison between combined cycles with ammonia-waterbottoming processes and evaporative gas turbine cycles showedthat the ammonia-water cycle could recover the exhaust gasenergy of a high pressure ratio gas turbine more efficientlythan a part-flow evaporative gas turbine cycle. For a mediumpressure ratio gas turbine, the situation was the opposite,except when a complex ammonia-water cycle configuration withreheat was used. An exergy analysis showed that evaporativecycles with part-flow humidification could recover energy asefficiently as, or more efficiently than, full-flow cycles. Aneconomic analysis confirmed that the specific investment costfor part-flow cycles was lower than for full-flow cycles, sincepart-flow humidification reduces the heat exchanger area andhumidification tower volume. In addition, the part-flow cycleshad lower or similar costs of electricity compared with thefull-flow cycles. Compared with combined cycles, the part-flowevaporative cycles had significantly lower total and specificinvestment costs and lower or almost equal costs ofelectricity; thus, part-flow evaporative cycles could competewith the combined cycle for mid-size power generation. <b>Keywords:</b>power cycle, mixture working fluid, Kalinacycle, ammonia-water mixture, reciprocating internal combustionengine, bottoming cycle, gas turbine, evaporative gas turbine,air-water mixture, exergy
75

Thermodynamic properties of humid air and their application in advanced power generation cycles

Ji, Xiaoyan January 2006 (has links)
Water or steam is added into the working fluid (often air) in gas turbines to improve the performance of gas turbine cycles. A typical application is the humidified gas turbine that has the potential to give high efficiencies, high specific power output, low emissions and low specific investment. A heat recovery system is integrated in the cycle with a humidifier for moisturizing the high-pressure air from the compressor as a kernel. Based on today’s gas turbines, the operating temperature and pressure in the humidifier are up to about 523 K and 40 bar, respectively. The operating temperature of the heat exchanger after the humidifier is up to 1773 K. The technology of water or steam addition is also used in the process of compressed air energy storage (CAES), and the operating pressure is up to 150 bar. Reliable thermodynamic properties of humid air are crucial for the process simulation and the traceable performance tests of turbomachinery and heat exchanger in the cycles. Several models have been proposed. However, the application range is limited to 400 K and 100 bar because of the limited experimental data for humid air. It is necessary to investigate the thermodynamic properties of humid air at elevated temperatures and pressures to fill in the knowledge gap. In this thesis, a new model is proposed based on the modified Redlich-Kwong equation of state in which a new cross interaction parameter between molecular oxygen and water is obtained from the fitting of the experimental data of oxygen-water system. The liquid phase is assumed to follow Henry’s law to calculate the saturated composition. The results of the new model are verified by the experimental data of nitrogen-water and oxygen-water systems from ambient temperature and pressure to 523 K and 200 bar, respectively. Properties of air-water system are predicted without any additional parameter and compared with the available experimental data to demonstrate the reliability of the new model for air-water system. The results of air-water system predicted using the new model are compared with those calculated using other real models. The comparison reveals that the new model has the same calculation accuracy as the best available model but can be used to a wider temperature and pressure range. The results of the new model are also compared with those of the ideal model and the ideal mixing model from ambient temperature and pressure to 1773 K and 200 bar to investigate the effect of the models on the thermodynamic properties of humid air. To investigate the impact of thermodynamic properties on the simulation of systems and their components, different models (ideal model, ideal mixing model and two real models) are used to calculate the thermodynamic properties of humid air in the simulation of the compressor, humidification tower, and heat exchanger in a humidified gas turbine cycle. The simulation reveals that a careful selection of a thermodynamic property model is crucial for the cycle design. The simulation results provide a useful tool for predicting the performance of the system and designing the humidified cycle components and systems. / QC 20100902
76

Two-phase flow in a large diameter vertical riser

Ali, Shazia Farman 02 1900 (has links)
The rapid depletion of hydrocarbon fields around the world has led the industry to search for these resources in ever increasing water depths. In this context, the large diameter (D > 100mm) vertical riser has become a subject of great interest. In this research work, a major investigation was undertaken to determine the two phase flow hydrodynamics in a 254mm vertical riser. Two types of experiments were performed for range of air-water superficial velocities. The first experimental campaign addresses the issue of the two gas injector’s performances (conventional vs. novel design gas injector) in the large diameter vertical riser. The experimental results show that the novel design gas injector should be the preferential choice. The second set of the experimental work investigates the two phase flow hydrodynamics in the vertical riser in detail. The two phase flow patterns and their transitions were identified by combination of visual observations and statistical features. Based on the results, the experimental flow regime map was developed and compared with the existing vertical upflow regime maps/models. None of the flow regime transition models adequately predicted the flow regimes transitions in large diameter vertical risers as a whole. In this regard, the Taitel et al. (1980) bubble to slug flow transition model has been modified for large diameter vertical upflow conditions, based on the physical mechanism observed. The general trends of modified criteria agreed well with the current and other large diameter experimental results. The effect of upstream conditions on the vertical riser flow behaviour was also investigated in detail by two different inlet configurations (i) near riser base injection and (ii) upstream flowline injection. It was found that no significant differences exist in flow behaviour at low air-water superficial velocities for both the inlet configuration, at high air-water superficial velocities, the intermittent flow behavior in flowline influences the riser flow pattern characteristics and thereby controls the riser dynamics. It is found that liquid slugs from the flowline naturally dissipate to some extent in the riser as a consequence of compression of succeeding bubble that rapidly expands and break through the liquid slug preceding it when it enters the riser. The experimental work corroborates the general consensus that slug flow does not exist in large diameter vertical upflow condition. Experimental data has been further compared to increase the confidence on the existing two phase flow knowledge on large diameter vertical riser: (a) by comparing with other experimental studies on large diameter vertical upflow in which generally, a good agreement was found, (b) by assessing the predictive capability of void fraction correlations/pressure gradient methods. The important implication of this assessment is that the mechanistic approach based on specific flow regime in determining the void fraction and pressure gradient is more successful than conventional empirical based approaches. The assessment also proposes a proposed set a of flow regime specific correlations that recommends void fraction correlations based on their performances in the individual flow regimes. Finally, a numerical model to study the hydrodynamic behaviour in the large diameter horizontal flowline-vertical riser system is developed using multiphase flow simulator OLGA. The simulated results show satisfactory agreement for the stable flows while discrepancies were noted for highly intermittent flows. The real time boundary application was partially successful in qualitatively reproducing the trends. The discrepancies between the predicted results and experimental data are likely to be related to the incorrect closure relations used based on incorrect flow regimes predictions. The existence of the multiple roots in the OLGA code is also reported for the first time.
77

Advanced power cycles with mixture as the working fluid

Jonsson, Maria January 2003 (has links)
<p>The world demand for electrical power increasescontinuously, requiring efficient and low-cost methods forpower generation. This thesis investigates two advanced powercycles with mixtures as the working fluid: the Kalina cycle,alternatively called the ammonia-water cycle, and theevaporative gas turbine cycle. These cycles have the potentialof improved performance regarding electrical efficiency,specific power output, specific investment cost and cost ofelectricity compared with the conventional technology, sincethe mixture working fluids enable efficient energyrecovery.</p><p>This thesis shows that the ammonia-water cycle has a betterthermodynamic performance than the steam Rankine cycle as abottoming process for natural gas-fired gas and gas-dieselengines, since the majority of the ammonia-water cycleconfigurations investigated generated more power than steamcycles. The best ammonia-water cycle produced approximately40-50 % more power than a single-pressure steam cycle and 20-24% more power than a dual-pressure steam cycle. The investmentcost for an ammonia-water bottoming cycle is probably higherthan for a steam cycle; however, the specific investment costmay be lower due to the higher power output.</p><p>A comparison between combined cycles with ammonia-waterbottoming processes and evaporative gas turbine cycles showedthat the ammonia-water cycle could recover the exhaust gasenergy of a high pressure ratio gas turbine more efficientlythan a part-flow evaporative gas turbine cycle. For a mediumpressure ratio gas turbine, the situation was the opposite,except when a complex ammonia-water cycle configuration withreheat was used. An exergy analysis showed that evaporativecycles with part-flow humidification could recover energy asefficiently as, or more efficiently than, full-flow cycles. Aneconomic analysis confirmed that the specific investment costfor part-flow cycles was lower than for full-flow cycles, sincepart-flow humidification reduces the heat exchanger area andhumidification tower volume. In addition, the part-flow cycleshad lower or similar costs of electricity compared with thefull-flow cycles. Compared with combined cycles, the part-flowevaporative cycles had significantly lower total and specificinvestment costs and lower or almost equal costs ofelectricity; thus, part-flow evaporative cycles could competewith the combined cycle for mid-size power generation.</p><p><b>Keywords:</b>power cycle, mixture working fluid, Kalinacycle, ammonia-water mixture, reciprocating internal combustionengine, bottoming cycle, gas turbine, evaporative gas turbine,air-water mixture, exergy</p>
78

Experiments investigating momentum transfer, turbulence and air-water gas transfer in a wind wave tank

Mukto, Moniz Unknown Date
No description available.
79

Two-phase flow in a large diameter vertical riser

Ali, Shazia Farman January 2009 (has links)
The rapid depletion of hydrocarbon fields around the world has led the industry to search for these resources in ever increasing water depths. In this context, the large diameter (D > 100mm) vertical riser has become a subject of great interest. In this research work, a major investigation was undertaken to determine the two phase flow hydrodynamics in a 254mm vertical riser. Two types of experiments were performed for range of air-water superficial velocities. The first experimental campaign addresses the issue of the two gas injector’s performances (conventional vs. novel design gas injector) in the large diameter vertical riser. The experimental results show that the novel design gas injector should be the preferential choice. The second set of the experimental work investigates the two phase flow hydrodynamics in the vertical riser in detail. The two phase flow patterns and their transitions were identified by combination of visual observations and statistical features. Based on the results, the experimental flow regime map was developed and compared with the existing vertical upflow regime maps/models. None of the flow regime transition models adequately predicted the flow regimes transitions in large diameter vertical risers as a whole. In this regard, the Taitel et al. (1980) bubble to slug flow transition model has been modified for large diameter vertical upflow conditions, based on the physical mechanism observed. The general trends of modified criteria agreed well with the current and other large diameter experimental results. The effect of upstream conditions on the vertical riser flow behaviour was also investigated in detail by two different inlet configurations (i) near riser base injection and (ii) upstream flowline injection. It was found that no significant differences exist in flow behaviour at low air-water superficial velocities for both the inlet configuration, at high air-water superficial velocities, the intermittent flow behavior in flowline influences the riser flow pattern characteristics and thereby controls the riser dynamics. It is found that liquid slugs from the flowline naturally dissipate to some extent in the riser as a consequence of compression of succeeding bubble that rapidly expands and break through the liquid slug preceding it when it enters the riser. The experimental work corroborates the general consensus that slug flow does not exist in large diameter vertical upflow condition. Experimental data has been further compared to increase the confidence on the existing two phase flow knowledge on large diameter vertical riser: (a) by comparing with other experimental studies on large diameter vertical upflow in which generally, a good agreement was found, (b) by assessing the predictive capability of void fraction correlations/pressure gradient methods. The important implication of this assessment is that the mechanistic approach based on specific flow regime in determining the void fraction and pressure gradient is more successful than conventional empirical based approaches. The assessment also proposes a proposed set a of flow regime specific correlations that recommends void fraction correlations based on their performances in the individual flow regimes. Finally, a numerical model to study the hydrodynamic behaviour in the large diameter horizontal flowline-vertical riser system is developed using multiphase flow simulator OLGA. The simulated results show satisfactory agreement for the stable flows while discrepancies were noted for highly intermittent flows. The real time boundary application was partially successful in qualitatively reproducing the trends. The discrepancies between the predicted results and experimental data are likely to be related to the incorrect closure relations used based on incorrect flow regimes predictions. The existence of the multiple roots in the OLGA code is also reported for the first time.
80

Relaxação em sistemas moleculares complexos / Relaxation in complex molecular systems

Sonoda, Milton Taidi 29 July 2005 (has links)
Orientador: Munir Salomão Skaf / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica / Made available in DSpace on 2018-08-05T22:46:02Z (GMT). No. of bitstreams: 1 Sonoda_MiltonTaidi_D.pdf: 3606314 bytes, checksum: dd30d5b14e2acb05e75ed7277f70cead (MD5) Previous issue date: 2005 / Doutorado / Físico-Química / Doutor em Ciências

Page generated in 0.0528 seconds