Spelling suggestions: "subject:"iir quality."" "subject:"rair quality.""
891 |
Evaluation of acoustic, visual and thermal comfort perception of students in the Educational Building at KTH Campus : A study case in a university building in StockholmKritikou, Sofia Kristina January 2018 (has links)
In recent years the focus and application of sustainability in buildings has risen. Both for environmental and human well-being reasons. The quality of the indoor environment affects the well-being, productivity and work performance, but it can also affect the occupants negatively, like increasing risks of different diseases and health issues. A good indoor environment alongside with sustainable materials, proper HVAC (Heating, ventilation, and air conditioning) installations and building code regulations contribute to a sustainable solution with low environmental impact and reduced energy consumption. Since buildings alone are responsible for 38% of all human GHG (Greenhouse gas) emissions (Wikipedia, 2017), most countries recommend new more sustainable solutions to reduce that percentage. For example, in the EU, the 2020 climate and energy package targets to: cut 20% in greenhouse gas emissions, 20% of EU energy from renewables and 20% improvement in energy efficiency (European Comission, n.d.). In addition to the positive aspect of low environmental impact new constructions have, they also create a good living or working environment for the users. Studies have shown that a better indoor quality increases the productivity and work performance, but most of all the occupants feel comfortable and satisfied with their environment. A great number of papers have reviewed the acoustic, visual, thermal comfort and indoor air quality, which are main aspects of the indoor climate. Most papers focus on the users’ perception of these four aspects as well as other parameters that influence the indoor environment (architectural geometry, materials, etc.). Similarly, in this study case I focus on two different methods of obtaining the results, the objective method that contains the indoor environment measurements and the subjective method which includes a questionnaire created specifically for this research project. By obtaining these two sets of data, key focus points are developed, such as if the building’s certification meets the recommendations of Miljöbyggnad, what aspects influence the students’ perception the most, and whether there are any distinct connections between measured and calculated data. This study case was developed in a university building in Stockholm, where the four main aspects of the indoor environment were evaluated. The physical parameters such as temperature, air velocity, relative humidity, CO2 concentration and acoustics were measured in five different classrooms. In addition, a survey was developed for this study which included perception questions of the thermal, visual, acoustic comfort and indoor air quality. As found in other studies, gender and climate zone origin affected the overall indoor environmental perception. Even though the majority of both genders voted for “no change”, the remaining females answered that they preferred the conditions warmer. Also, the majority of answers from all climate zones were “no change”. However, the second highest opinion for students from warmer climate zones was “warmer”, which has also been found in other studies. Significant negative correlations were found between the acoustics and the satisfaction level of the acoustic comfort. Similarly, high correlations were observed between the visual comfort satisfaction level and the three aspects influencing it. Furthermore, the results showed that all physical measurements influenced the students’ thermal comfort and indoor air quality perception. All measurements obtained indicated a good indoor environment in all classrooms, and all values were between the Swedish Standards recommendations. Low correlation was found between the measured PVM and the AMV from the questionnaires even though all the values were among the limitations. Lastly, this study reviews methods that could be applied to similar future studies and, discusses what kind of errors to avoid in the future. There is still a lot of research that can be developed in order to gain a deeper understanding of the indoor environment and how humans perceive it. / Under senare år har fokus och tillämpning av hållbarhet i byggnader ökat, både för miljö och mänskligt välbefinnande. Kvaliteten på inomhusmiljön påverkar välbefinnandet, produktiviteten och arbetsprestandan. Tyvärr kan det också påverka de anställda negativt, som ökad risk för olika sjukdomar och hälsoproblem. En bra inomhusmiljö tillsammans med applikationer av hållbara material, ordentliga HVAC-installationer och byggregler bidrar till en hållbar lösning med låg miljöpåverkan och minskad energiförbrukning. Eftersom byggnader ensamma svarar för 38% av alla mänskliga växthusgasutsläpp (Wikipedia, 2017), rekommenderar de flesta länder nya mer hållbara lösningar för att minska den procentuella andelen. I EU strävar EUs klimat- och energipaket 2020 till att; minska 20% av växthusgasutsläppen, 20% av EUs energi från förnybara energikällor och 20% förbättrad energieffektivitet (European Commission, n.d.). Förutom den positiva aspekten av låg miljöpåverkan har nya konstruktioner skapat en bra levnads- och arbetsmiljö för användarna. Studier har visat att en bättre inomhuskvalitet ökar produktiviteten och arbetsprestandan men framförallt känner sig brukarna bekväma och nöjda med sin miljö. Ett stort antal rapporter har granskats enligt akustisk, visuell, termisk komfort och inomhusluftkvalitet, som är huvudaspekterna av inomhusklimatet. De flesta rapporter fokuserar på användarnas uppfattning om dessa fyra aspekter samt andra parametrar som påverkar inomhusmiljön (arkitektonisk geometri, material osv.). På samma sätt fokuserar jag på två olika metoder för att erhålla resultaten. Den objektiva metoden som innehåller innemiljömätningar och den subjektiva metoden som innehåller ett frågeformulär som skapats specifikt för detta forskningsprojekt. Genom att erhålla dessa två uppsättningar data utvecklas viktiga fokuspunkter, till exempel om byggnadens certifiering uppfyller Miljöbyggnads rekommendationer, vilka aspekter som i huvudsak påverkar elevernas uppfattning och om det finns några tydliga samband mellan uppmätta och beräknade data. Studiefallet utvecklades i en universitetsbyggnad i Stockholm, där de fyra huvudaspekterna av inomhusmiljön utvärderades. De fysiska parametrarna mättes såsom temperatur, lufthastighet, relativ fuktighet, CO2-koncentration och akustiken i fem olika klassrum. Dessutom har en undersökning utvecklats för detta studieprojekt som inkluderade uppfattningsfrågor inom termisk, visuell, akustisk komfort och inomhusluftkvalitet. Kön och klimatzonens ursprung var två andra parametrar som påverkade den övergripande inomhusmiljöuppfattningen, enligt andra studier. Även om majoriteten av båda könen röstade för "ingen förändring" svarade restrerande kvinnor att de föredrog klasrummet varmare. Dessutom svarade flertalet från alla klimatzoner "ingen förändring", även om den näst högsta åsikten för studenter från varmare klimatzoner var "varmare", vilket också har hittats i andra studier. Höga negativa korrelationer hittades mellan akustiken och tillfredsställningsnivån för den akustiska komforten. På samma sätt observerades höga korrelationer mellan den visuella komfortnöjdhetsnivån och de tre aspekter som påverkar den. Vidare visade resultaten att alla fysiska mätningar påverkade elevernas termiska komfort och upplevelse av inomhusluftkvalitet. Alla erhållna mätningar indikerade en bra inomhusmiljö i alla klassrum och att alla värden var inom svensk standards rekommendationer. Låg korrelation hittades mellan den uppmätta PVM (predicted mean vote) och AMV (actual mean vote) från frågeformulären även om alla värden var inom gränserna. Dessutom granskar studien metoder som kan tillämpas på liknande framtida studier liksom vilka slags fel som bör undvikas i framtiden. Det finns fortfarande mycket forskning som kan utvecklas för att förstå mer om inomhusmiljön och hur människor uppfattar den.
|
892 |
CFD Study of An Office Room Equipped with Corner Impinging Jet VentilationWodaje, Getiye January 2022 (has links)
A CFD validation study was made using corner supplied impinging jet ventilation operating in cooling mode. The air distribution system has two equilateral triangle shaped inlets placed 80cm above the floor at the two that share a common wall. The supply air was introduced at 2.26m/s. The temperature of the supply air at one of the inlets was slightly higher than the other. The room air velocity and temperature profiles were studied using realizable k-e, RNG k-e, k-e SST and v2-f turbulence models and compared with experimental values. Generally, the agreement between the experimental measurement data of the room air temperatures and velocities and the CFD results was very good in all turbulence models. However, the RNG k-e turbulence model showed better correlation with average errors of 1.9% and 2.8% in predicting temperature and velocity respectively. Possibility of local thermal discomfort with the indoor air were investigated using the Fanger’s thermal comfort indices and draught rate while the air quality was evaluated by the mean age of air and the diffusion coefficient. The thermal comfort indices were computed using a user-defined function and the mean age of air was computed by user- defined scalar that solves a partial differential equation that uses the source diffusivity and calculate the residence time of air in the room. The results show that there is a higher risk of draft at the ankle level (close to 20%) and the room air is freshest near the lower region at the centre of the room. The room air is oldest at the region close to the ceiling in the area between the two mannequins. The study concludes that a satisfactory prediction of thermal stratification and velocity fields can made for evaluating the indoor thermal comfort and air quality using RANS based turbulence models.
|
893 |
Indoor atmospheric radon in Hamadan, Iran. Atmospheric radon indoors and around Hamadan city in Iran.Jabarivasal, Naghi January 2010 (has links)
Radon gas may be a major air quality hazard issue inside the home. Radon (222Rn) comes from the natural breakdown of radioactive uranium (238U) via radium (226Ra) in soil, rocks, and water. Radon and its progeny contribute more than 50% of the total radiation dose to the human population due to inhalation; it can result in severe and fatal lung disease. This investigation has determined the radon concentrations in seventy-seven domestic houses in a mountainous area of Hamadan in Iran which were monitored using track-etch detectors of type CR-39 exposed for three month periods. The arithmetic mean radon concentration in Hamadan buildings was determined to be 80 Bqm-3 and also an average indoor annual effective dose equivalent for the Hamadan city population was calculated as 1.5 mSv. Maximum radon concentrations were noted during the winter and spring season. In addition to this, 28 water wells were monitored by utilizing a Sarad Doseman detector at hourly intervals over extended periods. Radon measurements were also carried out in the nearby Alisadr show cave, using Solid State Nuclear Track etch Detectors (SSNTDs) during the winter and the spring periods. In the cave, the average annual effective geometric and arithmetic mean dose for guides was 28.1 and 34.2 mSv respectively. The dose received by visitors was very low. Hamadan city is built on alluvial fan deposits which are the source of the local water supply. The data from the wells shows that the groundwater in these alluvial deposits influences the flux of radon. The atmospheric radon concentration measurement in wells above the water surface ranged from 1,000 Bqm-3 to 36,600 Bqm-3. There is evidence that radon-rich ground waters play a significant role in the transport of radon through the alluvial fan system. There is evidence that the radon concentrations in homes in Hamadan are greatly influenced by the porous nature of the underlying geology and the movement of groundwater within the alluvial fan. / The Ministry of Health and Education; the University of Hamadan in Iran: University of Bradford: University of Kingston
|
894 |
Analys av luftkvaliteten på Hornsgatan med hjälp av maskininlärning utifrån trafikflödesvariabler / Air Quality Analysis on Hornsgatan using Machine Learning with regards to Traffic Flow VariablesTreskog, Paulina, Teurnberg, Ellinor January 2023 (has links)
Denna studie har syftet att undersöka sambandet mellan luftföroreningar och olika fordonsvariabler, såsom årsmodell, bränsletyp och fordonstyp, på Hornsgatan i Stockholm. Studien avser att besvara vilka faktorer som har störst inverkan på luftkvaliteten. Utförandet baseras på maskininlärningsalgoritmerna Random Forest och Support Vector Regression, vilka jämförs utifrån R^2 och RMSE. Modellerna skapade med Random Forest överträffar Support Vector Regression för de olika luftföroreningarna. Den modell som presterade bäst var modellen för kolmonoxid vilken hade ett R^2-värde på 99.7%. Den modell som gav prediktioner med lägst R^2-värde, 68.4%, var modellen för kvävedioxid. Överlag var resultaten goda i relation till tidigare studier. Utifrån modellerna diskuteras variablers inverkan och olika åtgärder som kan införas i Stockholm Stad och på Hornsgatan för att förbättra luftkvaliteten. / This study aims to investigate the relationship between multiple air pollution and different vehicle variables, such as vehicle year, fuel type and vehicle type, on Hornsgatan in Stockholm. The study intends to answer which factors have the greatest impact on air quality. The implementation is based on the two machine learning algorithms Random Forest and Support Vector Regression, which are compared based on R^2 and RMSE. The models created with Random Forest outperform Support Vector Regression for the various air pollutants. The best performing model was the carbon monoxide model which had an R^2-value of 99.7%. The model that gave predictions with the lowest R^2-value, 68.4%, was the model for nitrogen dioxide. Overall, the results were good in relation to previous studies. With regards to these models, the impact of variables and different measures that can be introduced in the City of Stockholm and on Hornsgatan to improve air quality are discussed.
|
895 |
Evaluation of Indoor Aerosol and Bioaerosol Methods and a HEPA InterventionCox, Jennie D. 22 May 2018 (has links)
No description available.
|
896 |
Theoretical and experimental study of a high rise hog building for improved utilization and environmental quality protectionSun, Huawei 17 March 2004 (has links)
No description available.
|
897 |
Analysis of Ozone Data Trends as an Effect of Meteorology and Development of Forecasting Models for Predicting Hourly Ozone Concentrations and Exceedances for Dayton, OH, Using MM5 Real-Time ForecastsKalapati, Raga S. 25 August 2004 (has links)
No description available.
|
898 |
Identification of Factors Affecting Contaminant Levels and Determination of Infiltration of Ambient Contaminants in Public Transport Buses Operating on Biodiesel and ULSD FuelsKadiyala, Akhil 30 September 2008 (has links)
No description available.
|
899 |
<b>How human activities and ventilation systems impact indoor air composition and chemistry in buildings</b>Jinglin Jiang (5930687) 19 July 2024 (has links)
<p dir="ltr">As people in the U.S. spend 90% of their time indoors, their exposure to indoor air pollutants released during the use of household consumer products cannot be overlooked. Studies have shown that consumer products such as disinfectants, cleaning agents, and personal care products (PCPs) contain complex mixtures of volatile organic compounds (VOCs). Monoterpenes, added as active ingredients in cleaning agents and fragrances, are commonly detected in these products. Monoterpenes can react with ozone (O<sub>3</sub>) and initiate the formation of secondary organic aerosol (SOA). Siloxanes, another category of compounds commonly found in PCPs, can bioaccumulate and may adversely impact the environment and human health.</p><p><br></p><p dir="ltr">Most prior studies have evaluated chemical emissions from these products using offline techniques, such as sorbent tube sampling followed by gas chromatography-mass spectrometry (GC-MS). Few studies have been conducted during real-life use of these products in indoor environments. Considering that many indoor activities are often transient, the composition of indoor air can be rapidly altered. Real-time monitoring of indoor VOCs and aerosols is necessary to capture the temporal variations in emissions during indoor activities and to evaluate their impact on indoor air chemistry, human exposure, and outdoor air quality. In addition, O<sub>3 </sub>also plays an important role in indoor chemistry. Indoor O<sub>3 </sub>concentrations are strongly linked to ventilation system operation and occupancy patterns, as the ventilation from outdoors is the major source of indoor O<sub>3</sub> and occupants are a major sink of indoor O<sub>3</sub>. However, studies on how ventilation modes and occupancy impact spatiotemporal distributions of indoor O<sub>3 </sub>are limited.</p><p><br></p><p dir="ltr">Hazardous chemical incidents can potentially be another unexpected source of indoor pollutants, releasing volatile chemicals which can be transported to indoor environments via building ventilation. Evaluation of air, water, and soil contamination and human exposure risks is critical in the emergency response to hazardous chemical incidents, to develop effective remediation strategies. An effective and reliable approach to assess air, water, and soil contamination, and subsequent human exposures, is urgently needed.</p><p dir="ltr">To fill these research gaps, this dissertation aims to: (1.) characterize gas- and particle-phase emissions in real-time during common indoor activities, including surface disinfection, cleaning, and hair styling; (2.) evaluate the impact of indoor emissions on human health and the atmospheric environment; (3.) map the spatiotemporal distribution of O<sub>3</sub> and CO<sub>2</sub> concentrations throughout a building ventilation system; (4.) develop a methodology for rapid screening of VOCs in surface water samples collected from a chemical disaster site.</p><p><br></p><p dir="ltr">To achieve research goals (1.) and (2.), a field campaign was conducted at the Indiana University Research and Teaching Preserve (IURTP) field laboratory in summer 2019 and two field campaigns were conducted at the Purdue zero Energy Design Guidance for Engineers (zEDGE) Tiny House in fall 2020 and summer 2021 to characterize emissions from the use of cleaning agents, disinfectants, and hair care products in indoor environments, respectively. A proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) was used to monitor the mixing ratios of VOCs in real-time. To achieve research goal (3.), a multi-point sampling system was created at the Herrick Living Laboratories and its ventilation system in spring and summer 2019 to monitor spatiotemporal trends in O<sub>3 </sub>concentrations. To achieve goal (4.), a controlled static headspace sampling system, in conjunction with a high-resolution PTR-TOF-MS was developed to analyze surface water samples collected from East Palestine, Ohio, U.S. in the weeks after a train derailment and subsequent chemical spill and burn.</p>
|
900 |
Incidencia de la calidad el aire en el desarrollo urbano sostenible. Metodología de pronóstico basado en herramientas de aprendizaje automáticoMolina Gómez, Nidia Isabel 24 November 2021 (has links)
Tesis por compendio / [ES] La calidad del aire es un determinante de la salud y bienestar de las poblaciones; su mejora es parte de algunas metas de los objetivos de desarrollo sostenible (ODS) con la Agenda 2030. Al respecto, se han definido a nivel mundial protocolos, acuerdos, convenios y lineamientos de política para lograr avanzar en el cumplimiento de los ODS. Existen además reportes nacionales de avance en la implementación de metas específicas, según la agenda de cada país y en algunos casos en el ámbito de ciudad, cuyos indicadores pueden integrarse en las dimensiones más conocidas del desarrollo sostenible: la dimensión ambiental, la social y la económica.
Existe información sobre el monitoreo del estado de la calidad de los recursos y de condiciones del territorio en diversos temas. Sin embargo, no en todos los territorios, en sus diferentes escalas espaciales, se realiza una continua evaluación de su desempeño sostenible y, además factores de deterioro ambiental como la contaminación del aire, son tratados como determinantes aislados con la generación de reportes de su comportamiento y el desarrollo de planes de monitoreo y de mitigación. Del mismo modo, para los diferentes temas que hacen parte de las dimensiones de la sostenibilidad, existen herramientas de modelación para evaluar el comportamiento de sus indicadores; sin embargo, no se cuenta con un instrumento que pronostique el nivel de avance en el desarrollo sostenible y además que identifique la influencia de la calidad del aire en su comportamiento. Las herramientas de aprendizaje automático pueden aportar en la respuesta a dicha situación, al ser instrumentos útiles en el pronóstico del comportamiento de un conjunto de datos.
Por consiguiente, el objetivo central de este trabajo doctoral es establecer la incidencia de la calidad del aire sobre el desarrollo urbano sostenible, en sus dimensiones ambiental, social y económica, mediante el uso de herramientas de aprendizaje automático, como soporte para la toma de decisiones. Este objetivo involucra el diseño y ejecución de una metodología para identificar la influencia de indicadores en materia de calidad del aire, sobre el desarrollo urbano sostenible.
Este trabajo doctoral se desarrolló como compendio de un conjunto de publicaciones que incluyen 1) la revisión del estado del arte para la identificación de las variables y parámetros que podrían calificar las dimensiones individuales del desempeño sostenible, 2) la evaluación del nivel de avance en el desarrollo sostenible de una zona urbana y el análisis estadístico de su desempeño sostenible según las variables analizadas; 3) la identificación, selección y aplicación de las herramientas de aprendizaje automático y por último 4) la identificación del grado de influencia de la calidad del aire en el pronóstico del nivel de sostenibilidad establecido. Para ello se hizo uso del software ArcGIS para el análisis espacial y del software de acceso libre R para los análisis estadísticos y la aplicación de las herramientas de aprendizaje automático.
Esta investigación se realizó a partir de un estudio de caso en una localidad de la ciudad de Bogotá, en Colombia que es la capital del país, situada sobre una planicie altitudinal en la cordillera oriental y a 2625 metros sobre el nivel del mar. Bogotá es una de las ciudades más pobladas en América Latina y es una de las capitales mundiales que ha presentado altos niveles de contaminación por material particulado, siendo éste un factor de riesgo para su población.
La metodología construida permite evaluar la influencia de la calidad del aire en el desarrollo urbano sostenible mediante herramientas de aprendizaje automático. Es aplicable a zonas urbanas y orienta el paso a paso para la determinación de los factores de mayor relevancia en cada una de las dimensiones de la sostenibilidad, constituyéndose en un instrumento de soporte para la toma de decisiones respecto a la implem / [CA] La qualitat de l'aire és un determinant de la salut i benestar de les poblacions; la seua millora és part d'algunes metes dels objectius de desenvolupament sostenible (ODS) amb l'Agenda 2030. Sobre aquest tema, s'han definit a nivell mundial protocols, acords, convenis i alineaments de política per a aconseguir avançar en el compliment dels ODS. Existeixen reportes nacionals d'avanç sobre la implementació de metes específiques, segons l'agenda de cada país i en alguns casos en l'àmbit de ciutat, els indicadors de la qual poden integrar-se en les dimensions més conegudes del desenvolupament sostenible: la dimensió ambiental, la social i l'econòmica.
Existeix informació sobre el monitoratge de l'estat de la qualitat dels recursos i de les condicions del territori en diversos temes. No obstant això, no en tots els territoris, en les seues diferents escales espacials, es realitza contínua avaluació del seu acompliment sostenible i, a més a més, factors de deterioració ambiental com la contaminació de l'aire, són tractats com a determinants aïllats amb la generació de reportes del seu comportament i el desenvolupament de plans de monitoratge i de mitigació. De la mateixa manera, per als diferents temes que fan part de les dimensions de la sostenibilitat, existeixen eines de modelatge per a avaluar el comportament dels seus indicadors; no obstant això, no es compta amb un instrument que pronostique el nivell d'avanç en el desenvolupament sostenible i a més que identifique la influència de la qualitat de l'aire en el seu comportament. Les eines d'aprenentatge automàtic poden aportar en la resposta a aquesta situació, en ser instruments útils en el pronòstic del comportament d'un conjunt de dades.
Per consegüent, l'objectiu central d'aquest treball doctoral és establir la incidència de la qualitat de l'aire sobre el desenvolupament urbà sostenible, en les seues dimensions ambiental, social i econòmica, mitjançant l'ús d'eines d'aprenentatge automàtic, com a suport per a la presa de decisions. Aquest objectiu involucra el disseny i execució d'una metodologia per a identificar la influència d'indicadors en matèria de qualitat de l'aire, sobre el desenvolupament urbà sostenible.
Aquest treball doctoral es va desenvolupar com a compendi d'un conjunt de publicacions que inclouen 1) la revisió de l'estat de l'art per a la identificació de les variables i paràmetres que podrien qualificar les dimensions individuals de l'acompliment sostenible, 2) l'avaluació del nivell d'avanç en el desenvolupament sostenible d'una zona urbana i l'anàlisi estadística del seu acompliment sostenible segons les variables analitzades; 3) la identificació, selecció i aplicació de les eines d'aprenentatge automàtic i finalment 4) la identificació del grau d'influència de la qualitat de l'aire en el pronòstic del nivell de sostenibilitat establit. Per a això es va fer ús del programari ArcGIS per a l'anàlisi espacial i del programari d'accés lliure R per a les anàlisis estadístiques i l'aplicació de les eines d'aprenentatge automàtic.
Aquesta investigació es va realitzar a partir d'un estudi de cas en una localitat de la ciutat de Bogotà, a Colòmbia que és la capital del país, situada sobre una planícia altitudinal en la serralada oriental i a 2625 metres sobre el nivell de la mar. Bogotà és una de les ciutats més poblades a Amèrica Llatina i és una de les capitals mundials que ha presentat alts nivells de contaminació per material particulat, sent aquest un factor de risc per a la seua població.
La metodologia construïda permet avaluar la influència de la qualitat de l'aire en el desenvolupament urbà sostenible mitjançant l'ús d'eines d'aprenentatge automàtic. És aplicable a zones urbanes i orienta el pas a pas per a la determinació dels factors de major rellevància en cadascuna de les dimensions de la sostenibilitat, constituint-se en un instrument de suport per a la presa d / [EN] Air quality is a determinant to the health and well-being of populations; its improvement is part of some of the targets of the Sustainable Development Goals (SDGs) with the 2030 Agenda. In this regard, protocols, agreements, pacts, and policy guidelines have been defined worldwide to progress in the SDGs' achievement. Additionally, there are national progress reports on reaching specific goals, based on each country's agenda. In certain cases, these include city-level reports, whose indicators, both at the national and city levels, can be integrated into the central and best-known dimensions of sustainable development, namely the environmental, social, and economic dimensions.
There is information concerning the monitoring of the state of resource quality and territorial conditions in various areas. However, not all territories in their different spatial scales are continuously evaluated for their sustainable performance. Moreover, environmental deterioration factors such as air pollution are handled as isolated determinants with reports generated on their behavior, in addition to developing monitoring and mitigation plans. Likewise, there are modeling tools to evaluate the behavior of different components that are part of the dimensions of sustainability. However, there is no instrument that forecasts the level of progress in sustainable development that also identifies the influence of air quality on its behavior. Machine learning tools can contribute to responding to this situation, as they are able to predict the behavior of a data set.
Therefore, the primary objective of this doctoral work is to establish the incidence of air quality on urban sustainable development, in its environmental, social, and economic dimensions, through the use of machine learning tools to support decision-making. This objective entails designing and implementing a methodology to identify the influence of air quality indicators on urban sustainable development.
This doctoral thesis was developed as a compendium of a set of publications which include: 1) the review of the state of the art for identifying variables and parameters that could qualify the individual dimensions of sustainable performance; 2) the evaluation of the level of progress of the sustainable development of an urban area, and the statistical analysis of its sustainable performance based on the variables analyzed; 3) the identification, selection, and use of machine learning tools, and lastly 4) the identification of the influence of air quality on the prediction of the established sustainability level. The ArcGIS program was used for the spatial analysis, and the free-access software R for the statistical analysis, and the use of the machine learning tools.
This research was performed based on a case study of a locality in the capital of Colombia; Bogotá, which is located on an altitudinal plain in the eastern mountain range at 2625 meters above sea level. Bogotá is one of the most populated cities in Latin America and is one of the world capitals with the highest levels of air pollution from particulate matter, which is a risk factor for its population.
The methodology developed enables evaluating the influence of air quality on urban sustainable development with machine learning tools. This methodology is valid in urban areas, and through a step-by-step approach, determines the most relevant factors for each sustainability dimension. It has become a tool to support decision-making regarding the implementation and progress of the SDGs from the micro-territory level. / Molina Gómez, NI. (2021). Incidencia de la calidad el aire en el desarrollo urbano sostenible. Metodología de pronóstico basado en herramientas de aprendizaje automático [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/168398 / Compendio
|
Page generated in 0.1051 seconds