• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 14
  • 7
  • Tagged with
  • 39
  • 31
  • 22
  • 17
  • 17
  • 14
  • 14
  • 14
  • 11
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries

Dörfler, Susanne, Hagen, Markus, Althues, Holger, Tübke, Jens, Kaskel, Stefan, Hoffmann, Michael J. 09 April 2014 (has links) (PDF)
Binder free vertical aligned (VA) CNT/sulfur composite electrodes with high sulfur loadings up to 70 wt% were synthesized delivering discharge capacities higher than 800 mAh g−1 of the total composite electrode mass. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
22

Metallmodifizierter Graphit - Ein innovativer Werkstoff für Systeme zur elektrochemischen Energieumwandlung

Mayer, Peter 23 July 2007 (has links)
Die Arbeit befasst sich mit der Metallmodifizierung von Graphitelektroden in wässriger saurer Elektrolytlösung. Ziel ist es die katalytischen Eigenschaften von Graphitelektroden wie sie in Redox­speicher­batterien zur Speicherung von elektrischer Energie eingesetzt werden zu verbessern. Für die Untersuchungen wurden unterschiedliche Kohlenstoff und Graphit­materialien eingesetzt, die elektrochemisch mit verschiedenen Metallen belegt wurden. Die Graphit- und Kohlenstoffelektroden wurden nach der Metallbelegung durch Impedanz­messung auf die Veränderung der katalytischen Eigenschaften hin untersucht. Es zeigte sich, dass eine Metallbelegung ohne eine vorher durchgeführte Aktivierung mit elektrochemischen Oxidations-Reduktions-Zyklen nur geringe oder keine Steigerung der katalytischen Eigenschaften bringt. Untersuchungen an dem Elektrodenmaterial Glaskohlenstoff zeigten, dass eine vorherige Aktivierung der Elektrodenoberfläche durch elektrochemische Oxidations-Reduktions-Zyklen den Durch­trittswiderstand ver­kleinert. Die Aktivierung der Glaskohlenstoffoberfläche vor der Belegung der Oberfläche mit Metallen wirkt sich außerdem günstig auf die elektrochemischen Eigen­schaften der metall­modifizierten Elektrode aus. Alle in dieser Arbeit eingesetzten Kohlenstoffarten konnten abhängig von der Kohlenstoff­sorte unterschiedlich stark durch elektrochemische Oxidations-Reduktions-Zyklen aktiviert werden. Die Untersuchungen zeigten weiterhin, dass durch die elektrochemische Oxidations-Reduktions-Zyklen die Kantenebenen des Kohlenstoffs aktiviert werden, an diesen aktivierten Positionen findet bevorzugt die Metallabscheidung statt.
23

High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium–sulfur batteries

Dörfler, Susanne, Hagen, Markus, Althues, Holger, Tübke, Jens, Kaskel, Stefan, Hoffmann, Michael J. January 2012 (has links)
Binder free vertical aligned (VA) CNT/sulfur composite electrodes with high sulfur loadings up to 70 wt% were synthesized delivering discharge capacities higher than 800 mAh g−1 of the total composite electrode mass. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
24

Micro- and mesoporous carbide-derived carbon prepared by a sacrificial template method in high performance lithium sulfur battery cathodes

Oschatz, Martin, Lee, J. T., Kim, H., Borchardt, Lars, Cho, W. I., Ziegler, C., Kaskel, Stefan, Yushin, G., Nickel, Winfrid 03 December 2014 (has links) (PDF)
Polymer-based carbide-derived carbons (CDCs) with combined micro- and mesopores are prepared by an advantageous sacrificial templating approach using poly(methylmethacrylate) (PMMA) spheres as the pore forming material. Resulting CDCs reveal uniform pore size and pore shape with a specific surface area of 2434 m2 g−1 and a total pore volume as high as 2.64 cm3 g−1. The bimodal CDC material is a highly attractive host structure for the active material in lithium–sulfur (Li–S) battery cathodes. It facilitates the utilization of high molarity electrolytes and therefore the cells exhibit good rate performance and stability. The cathodes in the 5 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte show the highest discharge capacities (up to 1404 mA h gs−1) and capacity retention (72% after 50 cycles at C/5). The unique network structure of the carbon host enables uniform distribution of sulfur through the conductive media and at the same time it facilitates rapid access for the electrolyte to the active material.
25

Nanomembranes Based on Nickel Oxide and Germanium as Anode Materials for Lithium-Ion Batteries

Sun, Xiaolei 27 September 2017 (has links) (PDF)
Rechargeable lithium-ion batteries are now attracting great attention for applications in portable electronic devices and electrical vehicles, because of their high energy density, long cycle and great convenience. For new generations of rechargeable lithium-ion batteries, they applied not only to consumer electronics but also especially to clean energy storage and hybrid electric vehicles. Therefore, further breakthroughs in electrode materials that open up a new important avenue are essential. Graphite, the most commonly used commercial anode material, has a limited reversible lithium intercalation capacity (372 mAh g-1). In this regard, tremendous efforts have been made towards even further improving high capacity, excellent rate capability, and cycling stability by developing advanced anode materials. This work focuses on the lithium storage properties of nickel oxide (NiO) and germanium (Ge) nanomembranes anodes mainly fabricated by electron-beam evaporation. Specifically, NiO is selected for conversion-type material because of high theoretical specific capacity of 718 mAh g-1 and easily obtained material. The resultant curved NiO nanomembranes anodes exhibit ultrafast power rate of 50 C (1 C = 718 mA g-1) and good capacity retention (721 mAh g-1, 1400 cycles). Remarkably, multifunctional Ni/NiO hybrid nanomembranes were further fabricated and investigated. Benefiting from the advantages of the intrinsic architecture and the electrochemical catalysis of metallic nickel, the hybrid Ni/NiO anodes could be tested at an ultrahigh rate of ~115 C. With Ge as active alloying-type material (1624 mAh g-1), the effect of the incorporated oxygen to the lithium storage properties of amorphous Ge nanomembranes is well studied. The oxygen-enabled Ge (GeOx) nanomembranes exhibit improved electrochemical properties of highly reversible capacity (1200 mAh g-1), and robust cycling performance.
26

Preparation and in-situ Spectroscopic Characterization of High-Energy Density Lithium-Sulphur Batteries

Grätz, Olga 16 June 2020 (has links)
This work was composed of two main parts. In a first step, a electrochemical cell was developed, which could allow the in-situ, in-operando analysis of the functioning battery. The processes taking place inside a running lithium-sulphur cell were then observed and identified with the help of Raman spectroscopy. In a second step, the performance of the cell was studied while using novel cathode materials, as well as modified commercial separators.
27

Nickel-Iron Oxide-based Nanomembranes as Anodes for Micro-Lithium-Ion Batteries

Liu, Lixiang 29 September 2020 (has links)
Development of microsized batteries plays an important role in the design of in-situ electrochemical investigation systems and portable/wearable electronics. This emerging field intimately correlates with the topics of rechargeable batteries, nanomaterials, on-chip microfabrication, flexibility with reliable mechanical properties etc. Among the various energy materials, conversion-type materials have been proposed as high-energy-density alternatives to traditional intercalation-based materials. However, these materials usually show complex reaction processes accompanied by multi-reaction intermediates, which poses a great challenge to understand the chemical mechanisms. Benefiting from the merits of microsized battery devices, we develop a novel strategy to investigate and then optimize the electrochemical performance of a specific conversion-type material: nickel-iron oxide (NFO). Subsequently, this kind of materials are employed for flexible minimized energy storage systems. Unlike traditional characterization methods based on slurry-coated electrodes, micro-platforms directly probe the intrinsic electrochemical properties of a single active material in real-time due to the elimination of other additives. In this thesis, we firstly design a micro-lithium batteries (MLBs), based on a single “Swiss-roll” microtubular nanomembrane electrode. This platform enables us to investigate the electrochemical mechanisms of electrode materials in lithium batteries by in-situ Raman spectroscopy, electrical conductivity measurements, and electrochemistry characterization. With this designed MLBs, we systematically studied NFO nanomembranes. Using in-situ Raman spectroscopy during the delithiation/lithiation process, we monitored the transition of the chemical component directly. Guided by our investigations of micro-batteries, composite NFO nanomembrane electrodes were fabricated and tested in coin cells, which showed an excellent rate performance: 440 mAh g-1 at a high rate of 20 A g-1 and a long-term stable cycling performance over 1600 cycles. One step further, a flexible energy storage micro-device is achieved using such optimized materials. We demonstrate a thin, lightweight, and flexible micro-full lithium-ion battery based on nickel-iron oxide with a high-rate performance and energy density that can be repeatedly bent to 180° without structural failure and performance loss. It delivers a stable output capacity of 140 mAh g-1 over 1000 charge/discharge cycles. Meanwhile, the excellent rate performance guarantees high energy output up to 255 W h kg-1 at a high power density of 12000 W kg-1 at the microscale.
28

Micro- and mesoporous carbide-derived carbon prepared by a sacrificial template method in high performance lithium sulfur battery cathodes

Oschatz, Martin, Lee, J. T., Kim, H., Borchardt, Lars, Cho, W. I., Ziegler, C., Kaskel, Stefan, Yushin, G., Nickel, Winfrid January 2014 (has links)
Polymer-based carbide-derived carbons (CDCs) with combined micro- and mesopores are prepared by an advantageous sacrificial templating approach using poly(methylmethacrylate) (PMMA) spheres as the pore forming material. Resulting CDCs reveal uniform pore size and pore shape with a specific surface area of 2434 m2 g−1 and a total pore volume as high as 2.64 cm3 g−1. The bimodal CDC material is a highly attractive host structure for the active material in lithium–sulfur (Li–S) battery cathodes. It facilitates the utilization of high molarity electrolytes and therefore the cells exhibit good rate performance and stability. The cathodes in the 5 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte show the highest discharge capacities (up to 1404 mA h gs−1) and capacity retention (72% after 50 cycles at C/5). The unique network structure of the carbon host enables uniform distribution of sulfur through the conductive media and at the same time it facilitates rapid access for the electrolyte to the active material.
29

Streamlining-Berechnung des erweiterten Zeitkonstantendichtespektrums aus Zeitdaten für die Diagnose von Lithium-Ionen-Batterien

Büschel, Paul 09 February 2022 (has links)
Die stark zunehmende Verbreitung leistungsfähiger Akkumulatoren im Rahmen der Energiewende erfordert elektrische Diagnoseverfahren für Batterien wie die Impedanzspektroskopie. Sie ermöglicht durch die Messung des elektrischen Verhaltens einen Einblick ins Innere einer Batterie. Die Auswertung der gemessenen Impedanzspektren mit Modellen stellt aufgrund der Komplexität der ablaufenden elektrochemischen Vorgänge, einer damit verbundenen hohen Modellkomplexität und dem resultierenden Regressionsaufwand eine große Hürde dar. Einen Ausweg bieten Zeitkonstantendichtespektren (DRT), die sich aus Impedanzdaten berechnen lassen. Sie ermöglichen eine schnelle Identifikation der Anzahl der wirkenden Mechanismen zusammen mit deren Stärken und Zeitkonstanten und vereinfachen durch die erleichterte Trennbarkeit der Mechanismen die weitere Auswertung. Bei der Berechnung aus Impedanzdaten ist die Lösung eines unterbestimmten Gleichungssystems unter Nebenbedingungen notwendig. Insbesondere die Zahl der für die Berechnung zur Verfügung stehenden Impedanzmesspunkte schränken die Lösungsqualität stark ein und machen stabilisierende Regularisierungsverfahren erforderlich. Ein weiteres Problem stellen induktive Effekte dar, die mit der klassischen DRT nicht analysiert werden können. Um eine einfache Berechnung zu ermöglichen wurde im Rahmen der Arbeit ein Berechnungsverfahren entwickelt, dass digitale Filter mit einem iterativen Lösungsupdate kombiniert, um die DRT direkt aus Zeitdaten zu berechnen. Das Verfahren zeichnet sich durch seine numerische Einfachheit bei gleichzeitig stabiler Berechnung der DRT aus. Durch die große Datenbasis wird keine aufwendige Regularisierung bei der DRT Berechnung benötigt, die Auflösung verbessert sich und das Verfahren ist durch seine minimalen Anforderung für die Implementierung in Embedded Systemen geeignet. Um auch Spektren mit induktiven Anteilen auswerten zu können, wurde die DRT und die zugehörige Berechnung erweitert. Im Ergebnis erhält man zusätzlich zum bekannten kapazitiven ein induktives Zeitkonstantendichtespektrum, mit dem sich induktives Verhalten analog der klassischen DRT beschreiben lässt. / The rapidly increasing spread of powerful accumulators requires electrical diagnostic methods for batteries such as impedance spectroscopy. By measuring the electrical behavior, it provides an insight into the interior of a battery. The evaluation of the measured impedance spectra with models is a complicated task, due to the complexity of the electrochemical processes taking place, an associated high model complexity and the resulting regression effort. Distribution of Relaxation Times spectra (DRT), which can be calculated from impedance data, offer a way out. They allow a quick identification of the number of acting mechanisms together with their strengths and time constants and simplify further analysis by facilitating the separability of the mechanisms. The calculation from impedance data requires the solution of an underdetermined system of equations under constraints. In particular, the number of impedance measurement points available for the calculation severely limits the solution quality and necessitates regularization procedures during calculation. Another problem is posed by inductive effects, which cannot be analyzed with classical DRT. In order to enable a simple computation, a computational method was developed in this thesis that combines digital filters with an iterative solution update to compute the DRT directly from time domain measurement data. The method is characterized by its numerical simplicity while providing a stable computation of the DRT. Due to the large number of measurement points, no regularization is needed in the DRT calculation, the resolution improves and the method is suitable for implementation in embedded systems due to its minimal requirement. In order to be able to evaluate spectra with inductive components, the DRT and the associated calculation were extended. As a result, an inductive DRT spectrum is obtained in addition to the known capacitive one, with which inductive behavior can be described analogously to the classical DRT.
30

Mehrlingspolymerisation in Substanz und an Oberflächen zur Synthese nanostrukturierter und poröser Materialien

Ebert, Thomas 12 December 2016 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung von unterschiedlichen nanostrukturierten Hybridmaterialien ausgehend von nur einem Monomer. Dabei wird ein neuartiges Monomer vorgestellt, welches in einem Prozessschritt ein Hybridmaterial bestehend aus drei Polymeren bilden kann. Dies erweitert das Konzept der Zwillingspolymerisation, bei der zwei Polymere aus einem Monomer erhalten werden. Aus diesem Grund wurde der Überbegriff „Mehrlingspolymerisation“ für die Synthese von zwei oder mehr Polymeren aus nur einem Monomer eingeführt. Ein weiterer Schwerpunkt lag auf der gezielten Beschichtung verschiedener Partikeloberflächen mit nanostrukturierten Hybridmaterialien mittels Zwillingspolymerisation. Dabei wird der Einfluss der Oberfläche auf die Polymerisation verschiedener Zwillingsmonomere untersucht. Durch Nachbehandlung sind daraus poröse Kompositmaterialien zugänglich. Je nach Beständigkeit der Substrate sind diese in den Nachbehandlungsschritten stabil oder werden entfernt und dienen nur als Template zur Strukturierung der porösen Materialien. Es wurden unterschiedliche poröse Kohlenstoffe und Kohlenstoffkompositmaterialien hergestellt und charakterisiert. Ausgewählte Materialien wurden mit Schwefel verschmolzen und in Lithium-Schwefel-Zellen untersucht (Kooperation Dr. S. Choudhury, Leibniz-Institut für neue Materialien Saarbrücken). Die Charakterisierung der Proben erfolgte unter anderem mithilfe der Festkörper-NMR-Spektroskopie, Elektronenmikroskopie, dynamischen Differenzkalorimetrie, Röntgenpulver-diffraktometrie, Infrarotspektroskopie, Raman-Spektroskopie, Thermogravimetrie und Stickstoffsorption.

Page generated in 0.0357 seconds