Spelling suggestions: "subject:"algèbre"" "subject:"algèbres""
91 |
Utilisation de l'algèbre de Boole en logique mathématiqueDupraz, Mireille 19 October 1966 (has links) (PDF)
.
|
92 |
Mise en équations et résolution des réseaux électriques en régime transitoire par la méthode tensorielleKaufmann, Arnold 18 January 1954 (has links) (PDF)
.
|
93 |
Détermination d'équations différentielles ordinaires invariantes d'ordre quatre et leurs discrétisationsCloutier, Marc-Étienne January 2007 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
94 |
Design of survivable networks with bounded ringsFortz, Bernard January 1998 (has links)
Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
95 |
L'ensemble des EDO d'ordres 2 et 3 invariantes sous SL(2,R) et leur discrétisation préservant les symétriesVerge-Rebêlo, Raphaël January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
96 |
Discrétisation des équations différentielles ordinaires avec préservation de leurs symétriesCyr-Gagnon, Catherine January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
97 |
Enseignement introductif de l'algèbre et validationBarallobres, Gustavo January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
98 |
Interaction entre algèbre linéaire et analyse en formalisation des mathématiques / Interaction between linear algebra and analysis in formal mathematicsCano, Guillaume 04 April 2014 (has links)
Dans cette thèse nous présentons la formalisation de trois résultats principaux que sont la forme normale de Jordan d’une matrice, le théorème de Bolzano-Weierstraß et le théorème de Perron-Frobenius. Pour la formalisation de la forme normale de Jordan nous introduisons différents concepts d’algèbre linéaire tel que les matrices diagonales par blocs, les matrices compagnes, les facteurs invariants, ... Ensuite nous définissons et développons une théorie sur les espaces topologiques et métriques pour la formalisation du théorème de Bolzano-Weierstraß. La formalisation du théorème de Perron-Frobenius n’est pas terminée. La preuve de ce théorème utilise des résultats d’algèbre linéaire, mais aussi de topologie. Nous montrerons comment les précédents résultats seront réutilisés. / In this thesis we present the formalization of three principal results that are the Jordan normal form of a matrix, the Bolzano-Weierstraß theorem, and the Perron-Frobenius theorem. To formalize the Jordan normal form, we introduce many concepts of linear algebra like block diagonal matrices, companion matrices, invariant factors, ... The formalization of Bolzano-Weierstraß theorem needs to develop some theory about topological space and metric space. The Perron-Frobenius theorem is not completly formalized. The proof of this theorem uses both algebraic and topological results. We will show how we reuse the previous results.
|
99 |
Combinatoire énumérative et algébrique autour du PASEP / Enumerative and algebraic combinatorics related to the PASEPNunge, Arthur 11 December 2018 (has links)
Cette thèse se situe à l'interface de la combinatoire énumérative et algébrique et porte sur l'étude des probabilités du processus d'exclusion partiellement asymétrique (PASEP).Dans un premier temps, nous démontrons bijectivement une conjecture de Novelli-Thibon-Williams concernant l'interprétation combinatoire de coefficients de matrices de transition dans l'algèbre des fonctions symétriques non-commutatives. Plus précisément, ces matrices expriment les coefficients de changement de base des bases complètes et rubans d'une part vers les bases monomiales et fondamentales introduites par Tevlin d'autre part. Les coefficients de ces matrices donnent un raffinement des probabilités du PASEP et sont décrits en utilisant de nouvelles statistiques sur les permutations. La conjecture stipule que ce raffinement peut se formuler via des statistiques déjà connues dans le monde du PASEP. Nous nous intéressons ensuite à une généralisation du PASEP avec deux types de particules dans le modèle : le 2-PASEP. Nous donnons ainsi plusieurs interprétations combinatoires des probabilités de ce modèle. Pour ce faire, nous introduisons une nouvelle famille de chemins généralisant les histoires de Laguerre : les histoires de Laguerre marquées. Nous généralisons ensuite la bijection de Françon-Viennot entre les histoires de Laguerre et les permutations pour définir les permutations partiellement signées qui nous donneront une seconde interprétation combinatoire de ces probabilités. Dans une troisième partie, nous généralisons les travaux de Tevlin afin de définir des bases monomiales et fondamentales dans l'algèbre des compositions segmentées. Afin de décrire les matrices de changement de base entre ces bases et d'autres déjà connues dans cette algèbre, nous définissons une algèbre indexée par les permutations partiellement signées en utilisant les statistiques définies précédemment pour décrire la combinatoire du 2-PASEP. Nous définissons également des q-analogues de ces bases afin de faire le lien avec les probabilités du 2-PASEP en fonction du paramètre q de ce modèle. Enfin, en utilisant le fait que les permutations partiellement signées sont en bijection avec les permutations segmentées, nous nous inspirons des statistiques définies précédemment pour introduire des descentes sur ces objets et ainsi définir une généralisation des polynômes eulériens sur les permutations segmentées. Pour étudier ces polynômes, nous utilisons les outils algébriques développés dans la partie précédente / This thesis comes within the scope of enumerative and algebraic combinatorics and studies the probabilities of the partially asymmetric exclusion process (PASEP).First, we bijectively prove a conjecture of Novelli-Thibon-Williams concerning the combinatorial interpretation of the entries of the transition matrices between some bases of the noncommutative symmetric functions algebra. More precisely, these matrices correspond to the transition matrices of, on the one hand the complete and ribbon bases and on the other hand the monomial and fundamental bases, both introduced by Tevlin. The coefficients of these matrices provide a refinement of the probabilities of the PASEP and are described using new statistics on permutations. This conjecture states that this refinement can also be described using classical statistics of the PASEP. In the second part, we study a generalization of the PASEP using two kinds of particles: the 2-PASEP. Hence, we give several combinatorial interpretations of the probabilities of this model. In order to do so, we define a new family of paths generalizing the Laguerre histories: the marked Laguerre histories. We also generalize the Françon-Viennot bijection between Laguerre histories and permutations to define partially signed permutations giving another combinatorial interpretation of these probabilities. In a third part, we generalize Tevlin's work in order to define a monomial basis and a fundamental basis on the algebra over segmented compositions. In order to describe the transition matrices between these bases and other bases already known in this algebra, we define an algebra indexed by partially signed permutations using the statistics previously defined to describe the combinatorics of the 2-PASEP. We also define some q-analogues of these bases related to the probabilities of the 2-PASEP according to the q parameter of this model. Finally, using the fact that partially signed permutations and segmented permutations are in bijection, we use the statistics defined previously to define descents on these objects and get a generalization of the Eulerian polynomials on segmented permutations. To study these polynomials, we use the algebraic tools introduced in the previous part
|
100 |
Structures algorithmiques pour les opérateurs d'algèbre géométrique et application aux surfaces quadriques / Algorithmic structure for geometric algebra operators and application to quadric surfacesBreuils, Stéphane 17 December 2018 (has links)
L'algèbre géométrique est un outil permettant de représenter et manipuler les objets géométriques de manière générique, efficace et intuitive. A titre d'exemple, l'Algèbre Géométrique Conforme (CGA), permet de représenter des cercles, des sphères, des plans et des droites comme des objets algébriques. Les intersections entre ces objets sont incluses dans la même algèbre. Il est possible d'exprimer et de traiter des objets géométriques plus complexes comme des coniques, des surfaces quadriques en utilisant une extension de CGA. Cependant due à leur représentation requérant un espace vectoriel de haute dimension, les implantations de l'algèbre géométrique, actuellement disponible, n'autorisent pas une utilisation efficace de ces objets. Dans ce manuscrit, nous présentons tout d'abord une implantation de l'algèbre géométrique dédiée aux espaces vectoriels aussi bien basses que hautes dimensions. L'approche suivie est basée sur une solution hybride de code pré-calculé en vue d'une exécution rapide pour des espaces vectoriels de basses dimensions, ce qui est similaire aux approches de l'état de l'art. Pour des espaces vectoriels de haute dimension, nous proposons des méthodes de calculs ne nécessitant que peu de mémoire. Pour ces espaces, nous introduisons un formalisme récursif et prouvons que les algorithmes associés sont efficaces en termes de complexité de calcul et complexité de mémoire. Par ailleurs, des règles sont définies pour sélectionner la méthode la plus appropriée. Ces règles sont basées sur la dimension de l'espace vectoriel considéré. Nous montrons que l'implantation obtenue est bien adaptée pour les espaces vectoriels de hautes dimensions (espace vectoriel de dimension 15) et ceux de basses dimensions. La dernière partie est dédiée à une représentation efficace des surfaces quadriques en utilisant l'algèbre géométrique. Nous étudions un nouveau modèle en algèbre géométrique de l'espace vectoriel $mathbb{R}^{9,6}$ pour manipuler les surfaces quadriques. Dans ce modèle, une surface quadrique est construite par l'intermédiaire de neuf points. Nous montrerons que ce modèle permet non seulement de représenter de manière intuitive des surfaces quadriques mais aussi de construire des objets en utilisant les définitions de CGA. Nous présentons le calcul de l'intersection de surfaces quadriques, du vecteur normal, du plan tangent à une surface en un point de cette surface. Enfin, un modèle complet de traitement des surfaces quadriques est détaillé / Geometric Algebra is considered as a very intuitive tool to deal with geometric problems and it appears to be increasingly efficient and useful to deal with computer graphics problems. The Conformal Geometric Algebra includes circles, spheres, planes and lines as algebraic objects, and intersections between these objects are also algebraic objects. More complex objects such as conics, quadric surfaces can also be expressed and be manipulated using an extension of the conformal Geometric Algebra. However due to the high dimension of their representations in Geometric Algebra, implementations of Geometric Algebra that are currently available do not allow efficient realizations of these objects. In this thesis, we first present a Geometric Algebra implementation dedicated for both low and high dimensions. The proposed method is a hybrid solution that includes precomputed code with fast execution for low dimensional vector space, which is somehow equivalent to the state of the art method. For high dimensional vector spaces, we propose runtime computations with low memory requirement. For these high dimensional vector spaces, we introduce new recursive scheme and we prove that associated algorithms are efficient both in terms of computationnal and memory complexity. Furthermore, some rules are defined to select the most appropriate choice, according to the dimension of the algebra and the type of multivectors involved in the product. We will show that the resulting implementation is well suited for high dimensional spaces (e.g. algebra of dimension 15) as well as for lower dimensional spaces. The next part presents an efficient representation of quadric surfaces using Geometric Algebra. We define a novel Geometric Algebra framework, the Geometric Algebra of $mathbb{R}^{9,6}$ to deal with quadric surfaces where an arbitrary quadric surface is constructed by merely the outer product of nine points. We show that the proposed framework enables us not only to intuitively represent quadric surfaces but also to construct objects using Conformal Geometric Algebra. In the proposed framework, the computation of the intersection of quadric surfaces, the normal vector, and the tangent plane of a quadric surface are provided. Finally, a computational framework of the quadric surfaces will be presented with the main operations required in computer graphics
|
Page generated in 0.0198 seconds