• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 284
  • 100
  • 40
  • 2
  • 2
  • 1
  • Tagged with
  • 440
  • 157
  • 120
  • 82
  • 80
  • 80
  • 68
  • 66
  • 66
  • 47
  • 46
  • 44
  • 43
  • 43
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Interacting Hopf Algebras- the Theory of Linear Systems / Interacting Hopf Algebras - la théorie des systèmes linéaires

Zanasi, Fabio 05 October 2015 (has links)
Dans cette thèse, on présente la théorie algébrique IH par le biais de générateurs et d’équations.Le modèle libre de IH est la catégorie des sous-espaces linéaires sur un corps k. Les termes de IH sont des diagrammes de cordes, qui, selon le choix de k, peuvent exprimer différents types de réseaux et de formalismes graphiques, que l’on retrouve dans des domaines scientifiques divers, tels que les circuits quantiques, les circuits électriques et les réseaux de Petri. Les équations de IH sont obtenues via des lois distributives entre algèbres de Hopf – d’où le nom “Interacting Hopf algebras” (algèbres de Hopf interagissantes). La caractérisation via les sous-espaces permet de voir IH comme une syntaxe fondée sur les diagrammes de cordes pour l’algèbre linéaire: les applications linéaires, les espaces et leurs transformations ont chacun leur représentation fidèle dans le langage graphique. Cela aboutit à un point de vue alternatif, souvent fructueux, sur le domaine.On illustre cela en particulier en utilisant IH pour axiomatiser la sémantique formelle de circuits de calculs de signaux, pour lesquels on s’intéresse aux questions de la complète adéquation et de la réalisabilité. Notre analyse suggère un certain nombre d’enseignements au sujet du rôle de la causalité dans la sémantique des systèmes de calcul. / We present by generators and equations the algebraic theory IH whose free model is the category oflinear subspaces over a field k. Terms of IH are string diagrams which, for different choices of k, expressdifferent kinds of networks and graphical formalisms used by scientists in various fields, such as quantumcircuits, electrical circuits and Petri nets. The equations of IH arise by distributive laws between Hopfalgebras - from which the name interacting Hopf algebras. The characterisation in terms of subspacesallows to think of IH as a string diagrammatic syntax for linear algebra: linear maps, spaces and theirtransformations are all faithfully represented in the graphical language, resulting in an alternative, ofteninsightful perspective on the subject matter. As main application, we use IH to axiomatise a formalsemantics of signal processing circuits, for which we study full abstraction and realisability. Our analysissuggests a reflection about the role of causality in the semantics of computing devices.
72

Approche fonctorielle et combinatoire de la propérade des algèbres double Poisson / A functorial and combinatorial approach to double Poisson algebras and their properad

Leray, Johan 05 December 2017 (has links)
On construit et étudie la généralisation des algèbres double Poisson décalées à toute catégorie monoïdale symétrique additive. On s’intéresse notamment aux algèbres double Poisson linéaires et quadratiques. Dans un second temps, on étudie la koszulité des propérades DLie et DPois = As ⮽c DLie qui encodent respectivement les algèbres double Lie et les algèbres doubles Poisson. On associe à chacune de ces propérades, un S-module muni d’une structure de monoïde pour un nouveau produit monoïdal dit de composition connexe : on appelle de tels monoïdes protopérades. On montre notamment l’existence, pour toutS-module, d’une protopérade libre associée et l’on explicite la combinatoire sous-jacente en terme de briques et de murs. On définit une adjonction bar-cobar, une dualité de Koszul et une notion de base PBW pour les protopérades. On présente également une tentative de théorème PBW à la Hoffbeck pour les protopérades, de laquelle on déduit la koszulité de la diopérade associée à la propérade DLie. / We construct and study the generalization of shifted double Poisson algebras to all additive symmetric monoidal categories. We are especially interested in linear and quadratic double Poisson algebras. We then study the koszulity of the properads DLie and DPois = As ⮽c DLie which encode double Lie algebras and double Poisson algebras respectively. We associate to each, a S-module with a monoidal structure for a new monoïdal product call the connected composition product : we call such monoids protoperads. We show, for any S-module, the existence of the associated free protoperad and we make explicit the underlying combinatorics. We define a bar-cobar adjunction, the notion of Koszul duality and PBW bases for protoperads. We present an attempt of prove a PBW theorem à la Hoffbeck for protoperads, and prove the koszulity of the dioperad associated to the properad DLie.
73

Propriétés algébriques d'une algèbre de convolution

Magnifo Kahou, Florence Laure January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
74

Le concept informatique de « compilation généralisée » dans les sciences cognitives (linguistique, logique et intelligence artificielle) : contribution aux rapports entre la logique combinatoire et les T[Σ]-algèbres / The computational notion of general compilation in cognitive science

Sauzay, Benoit 26 October 2013 (has links)
La compilation en informatique est abordée par la littérature dans ses aspects techniques, et non sous la forme d’un concept à part entière. Si l’on regarde plus précisément les transformations effectuées par un compilateur, ce dernier synthétise un ensemble de définitions en une seule unité appelée « programme », en fonction des propriétés mêmes associées à ces définitions et indépendamment du compilateur lui-même. La notion de compilation peut ainsi être pensée pour elle-même indépendamment du langage ou des représentations de haut niveau et du modèle de machine cible. Les transformations d’arbres doublement orientés, appelés treilles, et non plus celles des arbres de la théorie des graphes qui sont simplement orientés, caractérisent le noyau dur de la compilation. Une structure algébrique, appelée T[Σ]-algèbre, isomorphe aux transformations de treilles, permet de formaliser ces transformations directement à partir des notions de sorte et d’opérateur et non plus à partir de celle de terme. Des rapports entre cette structure algébrique (J.-P. Desclés, 1980) et l’algèbre de combinateurs (H. Curry, 1958) sont établis à partir des treilles, indépendamment de tout support technique. En s’appuyant sur une dualité entre opérateur et opération, ce concept de compilation ainsi formalisé, permet d’éclairer sous un angle nouveau les rapports entre interprétation et syntaxe, logiciel et matériel, pensée et cerveau. En traversant les domaines de la chimie, de la biologie et de la linguistique, la compilation dès lors généralisée, offre un cadre formel opératoire et explicatif en sciences cognitives, exprimé par la formule de J. Ladrière : « l’esprit est adhérent à la matière ». / Compilation in computer science is more often introduced by its technical side rather than in terms of a notion as a whole. If we look more precisely at the transformations performed by a compiler, it synthetizes a set of definitions in a single unit called “program”, using properties of the definitions themselves and independently of the compiler itself. Thus, compilation may be though by itself, independently of high level representations or formal languages and of targeted computers. Bi-ordered tree transformations, called treille (in French) form the core of compilers that we distinguish from simply ordered trees of the graph theory. An algebraic structure, called T[Σ]-algebra, which is isomorphic to treille transformations, build the formalism with sorts and operators, instead of terms algebra. Relationships between this algebraic structure (J.-P. Desclés, 1980) and the algebra of combinators (H. Curry, 1958) are established thanks to the formalism of treille, independently of any technical architecture. Relying on a duality between operator and operation, this concept of compilation thereby formalized, allows shedding light on the relationship between interpretation and syntax, software and hardware, thought and brain. Through the various fields of chemistry, biology and computational linguistic, general compilation gives an explanatory and operational formal framework for cognitive science, that J. Ladrière expressed by “Mind adheres to material”.
75

Structures de Nambu et super-théorème d'Amitsur-Levitzki

GIÉ, Pierre-Alexandre 19 November 2004 (has links) (PDF)
Dans cette étude, nous cherchons à établir des identités polynomiales dans le cadre de la combinatoire non-commutative. Dans un premier temps, nous présentons de nouvelles structures de Nambu-Lie, en classifiant totalement les (n-1)-structures sur l'espace R^n, et en donnant une méthode permettant de construire des crochets de tout ordre sur une algèbre de Lie. Nous proposons également une quantification de l'une de nos structures, grâce aux polynômes standards et aux algèbres de Clifford d'indice pair. Dans un second moment, en généralisant la notion de polynôme standard au cas des algèbres graduées, nous cherchons à démontrer une version du théorème d'Amitsur-Levitzki sur les superalgèbres de Lie osp(1,2n) en suivant une démonstration de Kostant dans le cas classique. Nous sommes amenés à démontrer des super-versions des propriétés et résultats nécessaires à la démonstration dans le cas classique, notamment en définissant un super-opérateur de transgression de Cartan-Chevalley.
76

Géométrie non-commutative, théorie de jauge et renormalisation

De Goursac, Axel 10 June 2009 (has links) (PDF)
De nos jours, la géométrie non-commutative est un domaine grandissant des mathématiques, qui peut apparaître comme un cadre prometteur pour la physique moderne. Les théories quantiques des champs sur des "espaces non-commutatifs" ont en effet été très étudiées, et sont sujettes à un nouveau type de divergence, le mélange ultraviolet-infrarouge. Cependant, une solution a récemment été apportée à ce problème par H. Grosse et R. Wulkenhaar en ajoutant à l'action d'un modèle scalaire sur l'espace non-commutatif de Moyal, un terme harmonique qui la rend renormalisable. Un des buts de cette thèse est l'extension de cette procédure aux théories de jauge sur l'espace de Moyal. En effet, nous avons introduit une nouvelle théorie de jauge non-commutative, fortement reliée au modèle de Grosse-Wulkenhaar, et candidate à la renormalisabilité. Nous avons ensuite étudié ses propriétés les plus importantes, notamment ses configurations du vide. Finalement, nous donnons une interprétation mathématique de cette nouvelle action en terme de calcul différentiel basé sur les dérivations, associé à une superalgèbre. Ce travail contient, outre les résultats mentionnés ci-dessus, une introduction à la géométrie non-commutative, une introduction aux algèbres epsilon-graduées, définies dans cette thèse, et une introduction à la renormalisation des théories quantiques de champs scalaires (point de vue wilsonien et BPHZ) et de jauge.
77

Discrétisation des modèles sigma invariants conformes sur des supersphères et superespaces projectifs

Candu, Constantin 31 October 2008 (has links) (PDF)
Le but de cette thèse a été l'étude de quelques représentants des modèles sigma en deux dimensions invariants conformes et avec symétrie continue qui sortent du cadre traditionnel, établie par la recherche des dernières décennies dans le domaine des théories conformes, des modèles sigma de Wess-Zumino-Witten ou des modèles gaussiens. Les modèles sigma sur des superespaces symétriques, définis par une action métrique standard, offrent de tels exemples. La difficulté de résoudre ces modèles sigma est relié au fait qu'ils ne possèdent pas de symétrie de Kac-Moody, qui est normalement nécessaire pour intégrer les théories conformes nongaussiennes avec symétrie continue. Dans cette thèse on considère les modèles sigma sur les supersphères S^(2S+1/2S) et sur les superespaces projectifs). Les deux modèles continus admettent une discrétisation par un gaz de boucles denses qui s'intersectent et dont l'algèbre des matrices de transfert est une algèbre de type Brauer. La stratégie principale qu'on a adoptée dans la recherche des résultats exacts sur ces modèles sigma est l'étude détaillée des symétries de la théorie continue, d'un coté, et du modèle discret, de l'autre. Cette analyse permet de faire le pont entre le comportement du modèle discret et la théorie continue. L'analyse détaillée des symétries discrètes - en particulier la structure des blocs de l'algèbre de Brauer - combinée à des calculs perturbatifs donne lieu à une proposition pour, selon les cas, le spectre partiel ou complet de la théorie conforme. Une dualité exacte du type couplage faible/couplage fort est également conjecturée dans les cas des modèles sigma sur les supersphères.
78

Propriétés algébriques d'une algèbre de convolution

Magnifo Kahou, Florence Laure January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
79

Contributions à l'étude algébrique et géométrique des structures et théories du premier ordre

Berthet, Jean 03 December 2010 (has links) (PDF)
La notion de T-radical d'un idéal permet à G.Cherlin de démontrer un Nullstellensatz dans les théories inductives d'anneaux. Nous proposons une analyse modèle-théorique de phénomènes connexes. En premier lieu, une réciproque de ce théorème nous conduit à une caractérisation des corps algébriquement clos, suggérant une version "positive" du travail de Cherlin, la théorie des idéaux T-radiciels. Ceux-ci se caractérisent par un théorème de représentation et sont associés à un théorème des zéros "positif". Ces résultats se généralisent à la logique du premier ordre : grâce à la notion de classe spéciale, nous développons ensuite une théorie logique des idéaux. On peut encore parler d'idéaux premiers et radiciels, relativement à une classe de structures. Dans ce cadre, le théorème de représentation est une propriété intrinsèque des classes spéciales et le théorème des zéros une propriété de préservation logique, que nous appelons "complétude géométrique" et qui entretient des rapports étroits avec la modèle-complétude positive. Les algèbres basées en groupes de P.Higgins permettent d'appliquer ces résultats aux théories modèle-complètes de corps avec opérateurs additionnels. Dans certains cas "noethériens", l'algèbre de coordonnées est un invariant algébrique des "variétés affines". Enfin, il est possible à partir d'un ensemble de formules E de généraliser les classes spéciales et autres classes de structures. Notre théorie des idéaux logiques est de plus un cas particulier du phénomène de localisation étudié par M.Coste ; dans certaines situations, un bon choix de formules permet d'identifier les types complets d'une "algèbre" à des types de localisation
80

Propriétés algébriques et homotopiques des opérades sur une algèbre de Hopf

Bellier, Olivia 16 October 2012 (has links) (PDF)
Dans cette thèse, nous démontrons de nouvelles propriétés algébriques et homotpiques des opérades : probème du scindage des opérations et dualité de Koszul sur une algbre de Hopf. Dans une première partie, nous fournissons une construction opéradique qui donne un cadre général répondant au problème du scindage des opérations définissant des structures algébriques. Nous montrons que cette construction est équivalente au produit noir de Manin et qu'elle est reliée aux opérateurs de Rota-Baxter. Nous obtenons ainsi une méthode plus efficace pour calculer des produits noirs de Manin, illustrée par plusieurs exemples. Ceci nous permet de décrire une structure algébrique canonique sur l'espace des matrices carrées à coefficients dans une algèbre sur un certain type d'opérades. Dans une seconde partie, nous étendons la dualité de Koszul classique de opérades aux catégories de modules sur une algèbre de Hopf. Ceci nous permet d'obtenir une nouvelle version optimale du théorème de transfert homotopique. Dans ce cas, nous pouvons décrire la structure d'algèbre de Batalin-Vilkovisky, par exemple, transférée à travers une équivalence d'homotopie lorsqu'il y a compatibilité entre les données homotopique et algébrique.

Page generated in 0.0223 seconds