• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A geometria das mÃtricas tipo-Einstein / The geometric of like-Einstein metrics

Ernani de Sousa Ribeiro Junior 29 August 2011 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / O objetivo deste trabalho à estudar a geometria das mÃtricas tipo-Einstein (solitons de Ricci, quase solitons de Ricci e mÃtricas quasi-Einstein). Mais especificamente, vamos obter equaÃÃes de estrutura, exemplos, fÃrmulas integrais e estimativas que permitirÃo caracterizar estas classes de mÃtricas. / The purpose of this work is study the geometric of the like-Einstein metrics (Ricci soliton, almost Ricci solitons and quasi-Einstein metrics). More specifically, we obtain structure equations, examples, integral formulae and estimates that will enable characterize these classes of metrics.
2

Sobre rigidez de gradiente quase Ricci Soliton / About rigidity of gradient almost Ricci Soliton

Gomes, Maria Francisca de Sousa 20 April 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-05-04T20:17:22Z No. of bitstreams: 2 Dissertação - Maria Francisca de Sousa Gomes - 2017.pdf: 1138083 bytes, checksum: ec11ffa7d803dc5e840f5b216f1aaba3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-05-05T13:03:10Z (GMT) No. of bitstreams: 2 Dissertação - Maria Francisca de Sousa Gomes - 2017.pdf: 1138083 bytes, checksum: ec11ffa7d803dc5e840f5b216f1aaba3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-05-05T13:03:10Z (GMT). No. of bitstreams: 2 Dissertação - Maria Francisca de Sousa Gomes - 2017.pdf: 1138083 bytes, checksum: ec11ffa7d803dc5e840f5b216f1aaba3 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-04-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work is based on [1] and aims to show a result of rigidity for gradient almost Ricci soliton. We will prove that an almost Ricci soliton gradient with nonnegative scalar curvature, where ∇ f is a non-trivial conformal field, is either a Euclidean space R n or the sphere S n . Moreover, we have that, in the Spherical case, the potential function is given by first eigenfunction of the Laplacian. Finally, we will find necessary and sufficient conditions for that a compact locally conformally flat gradient almost Ricci soliton is isometric the sphere Sn. / Este trabalho está baseado em [1] e tem por objetivo apresentar um resultado de rigidez para gradiente quase Ricci soliton. Provaremos que um gradiente quase Ricci soliton com curvatura escalar não-negativa, em que ∇ f é um campo conforme não-trivial, é ou o espaço Euclidiano R n ou a Esfera S n . Além disso, temos que no caso Esférico, a função potencial é dada pela primeira auto função do Laplaciano. Por fim, encontraremos condições necessárias e suficientes para que um gradiente quase Ricci soliton compacto localmente conformemente flat seja isométrico a esfera Sn.
3

Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimates / Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimates

Evangelista, Israel de Sousa 04 July 2017 (has links)
EVANGELISTA, I. S. Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimates. 2017. 75 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-10T12:41:32Z No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-07-10T14:06:18Z (GMT) No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5) / Made available in DSpace on 2017-07-10T14:06:18Z (GMT). No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5) Previous issue date: 2017-07-04 / The present thesis is divided in three different parts. The aim of the first part is to prove that a compact almost Ricci soliton with null Cotton tensor is isometric to a standard sphere provided one of the following conditions associated to the Schouten tensor holds: the second symmetric function is constant and positive; two consecutive symmetric functions are non null multiple or some symmetric function is constant and the quoted tensor is positive. The aim of the second part is to study the critical metrics of the total scalar curvature funcional on compact manifolds with constant scalar curvature and unit volume, for simplicity, CPE metrics. It has been conjectured that every CPE metric must be Einstein. We prove that the Conjecture is true for CPE metrics under a suitable integral condition and we also prove that it suffices the metric to be conformal to an Einstein metric. In the third part we estimate the p-fundamental tone of submanifolds in a Cartan-Hadamard manifold. First we obtain lower bounds for the p-fundamental tone of geodesic balls and submanifolds with bounded mean curvature. Moreover, we provide the p-fundamental tone estimates of minimal submanifolds with certain conditions on the norm of the second fundamental form. Finally, we study transversely oriented codimension one C 2-foliations of open subsets Ω of Riemannian manifolds M and obtain lower bounds estimates for the infimum of the mean curvature of the leaves in terms of the p-fundamental tone of Ω. / A presente tese está dividida em três partes diferentes. O objetivo da primeira parte é provar que um quase soliton de Ricci compacto com tensor de Cotton nulo é isométrico a uma esfera canônica desde que uma das seguintes condições associadas ao tensor de Schouten seja válida: a segunda função simétrica é constante e positiva; duas funções simétricas consecutivas são múltiplas, não nulas, ou alguma função simétrica é constante e o tensor de Schouten é positivo. O objetivo da segunda parte é estudar as métricas críticas do funcional curvatura escalar total em variedades compactas com curvatura escalar constante e volume unitário, por simplicidade, métricas CPE. Foi conjecturado que toda métrica CPE deve ser Einstein. Prova-se que a conjectura é verdadeira para as métricas CPE sob uma condição integral adequada e também se prova que é suficiente que a métrica seja conforme a uma métrica Einstein. Na terceira parte, estima-se o p-tom fundamental de subvariedades em uma variedade tipo Cartan-Hadamard. Primeiramente, obtém-se estimativas por baixo para o p-tom fundamental de bolas geodésicas e em subvariedades com curvatura média limitada. Além disso, obtém-se estimativas do p-tom fundamental de subvariedades mínimas com certas condições sobre a norma da segunda forma fundamental. Por fim, estudam-se folheações de classe C 2 transversalmente orientadas de codimensão 1 de subconjuntos abertos Ω de variedades riemannianas M e obtêm-se estimativas por baixo para o ínfimo da curvatura média das folhas em termos do p-tom fundamental de Ω.
4

Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial / Rigidity of the contact surfaces and characterization of Riemannian manifolds carrying a conformal vector fields or some special metric

Josà Nazareno Vieira Gomes 29 June 2012 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / FundaÃÃo de Amparo à Pesquisa do Estado do Amazonas / Esta tese està composta de quatro partes distintas. Na primeira parte, vamos dar uma nova caracterizaÃÃo da esfera euclidiana como a Ãnica variedade Riemanniana compacta com curvatura escalar constante e admitindo um campo de vetores conforme nÃo trivial que à tambÃm Ricci conforme. Na segunda parte, provaremos algumas propriedades dos quase sÃlitons de Ricci, as quais permitem estabelecer condiÃÃes de rigidez desses objetos, bem como caracterizar as estruturas de quase sÃlitons de Ricci gradiente na esfera euclidiana. ImersÃes isomÃtricas tambÃm serÃo consideradas; classificaremos os quase sÃlitons de Ricci imersos em formas espaciais, atravÃs de uma condiÃÃo algÃbrica sobre a funÃÃo sÃliton. AlÃm disso, vamos caracterizar, atravÃs de uma condiÃÃo sobre o operador de umbilicidade, as hipersuperfÃcies n-dimensionais de uma forma espacial, com curvatura mÃdia constante, tendo duas curvaturas principais distintas e com multiplicidades p e n - p. Na terceira parte, provaremos um resultado de rigidez e algumas fÃrmulas integrais para uma mÃtrica m-quasi-Einstein generalizada compacta. Na Ãltima parte, vamos apresentar uma relaÃÃo entre a curvatura gaussiana e o Ãngulo de contato de superfÃcies imersas na esfera euclidiana tridimensional,a qual permite concluir que a superfÃcie à plana, se o Ãngulo de contato for constante. AlÃm disso, deduziremos que o toro de Clifford à a Ãnica superfÃcie compacta com curvatura mÃdia constante tendo tal propriedade. / This thesis is composed of four distinct parts. In the first part, we shall give a new characterization of the Euclidean sphere as the only compact Riemannian manifold with constant scalar curvature carrying a conformal vector eld non-trivial which is also Ricci conformal. In the second part, we shall prove some properties of almost Ricci solitons, which allow us to establish conditions for rigidity of these objects, as well as characterize the structures of gradient almost Ricci soliton in Euclidean sphere. Isometric immersions also will be considered, we shall classify almost Ricci solitons immersed in space forms, through algebraic condition on soliton function. Furthermore, we characterize under a condition of the umbilicity operator, n-dimensional hypersurfaces in a space form with constant mean curvature, admitting two distinct principal curvatures with multiplicities p and n - p. In the third part, we prove a result of rigidity and some integral formulae for a compact generalized m-quasi-Einstein metric. In the last part, we present a relation between the Gaussian curvature and the contact angle of surfaces immersed in Euclidean three-dimensional sphere, which allows us to conclude that such a surface is at provided its contact angle is constant. Moreover, we deduce that Clifford tori are the unique compact surfaces with constant mean curvature having such property.

Page generated in 0.061 seconds