• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 1
  • Tagged with
  • 18
  • 18
  • 13
  • 13
  • 13
  • 12
  • 10
  • 9
  • 9
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Instability and temperature-dependence assessment of IGZO TFTs

Hoshino, Ken 12 November 2008 (has links)
Amorphous oxide semiconductors (AOSs) are of great current interest for thin-film transistor (TFT) channel layer applications. In particular, indium gallium zinc oxide (IGZO) is under intense development for commercial applications because of its demonstrated high performance at low processing temperatures. The objective of the research presented in this thesis is to provide detailed assessments of device stability, temperature dependence, and related phenomena for IGZO-based TFTs processed at temperatures between 200 °C and 300 °C. TFTs tested exhibit an almost rigid shift in log₁₀(I[subscript D]) – V[subscript GS] transfer curves in which the turn-on voltage, V[subscript ON], moves to a more positive gate voltage with increasing stress time during constant-voltage bias-stress testing of IGZO TFTs. TFT stability is improved as the post-deposition annealing temperature increases over the temperature range of 200 – 300 ºC. The turn-on voltage shift induced by constant-voltage bias-stressing is at least partially reversible; V[subscript ON] tends to recover towards its initial value of V[subscript ON] if the TFT is left unbiased in the dark for a prolonged period of time and better recovery is observed for a longer recovery period. V[subscript ON] for a TFT can be set equal to zero after bias-stress testing if the TFT electrodes are grounded and the TFT is maintained in the dark for a prolonged period of time. Attempts to accelerate the recovery process by application of a negative gate bias at elevated temperature (i.e., 100 ºC) were unsuccessful, resulting in severely degraded subthreshold swing. An almost rigid log₁₀(I[subscript D]) – V[subscript GS] transfer curve shift to a lower (more negative) V[subscript ON] with increasing temperature is observed in the range of –50 °C to +50 °C, except for a TFT with an initial V[subscript ON] equal to zero, in which case the log₁₀(ID) – V[subscript GS] transfer curve is temperature-independent. A more detailed temperature-dependence assessment, however, indicates that the log₁₀(I[subscript D]) – V[subscript GS] transfer curve shift is not exactly rigid since the mobility is found to increase slightly with increasing temperature. A noticeable anomaly is observed in certain log₁₀(I[subscript D]) – VGS transfer curves, especially when obtained at elevated temperature (e.g., 30 and 50 ºC), in which I[subscript D] decreases precipitously near zero volts in the positive gate voltage sweep. This anomaly is attributed to a gate-voltage-step-involved detrapping and subsequent retrapping of electrons in the accumulation channel and/or channel/gate insulator interface. In fact, all IGZO TFT stability and temperature-dependence trends are attributed to channel interface and/or channel bulk trapping/detrapping. / Graduation date: 2009
12

Realization and Characterization of Metal-Semiconductor Field-Effect Transistors based on Amorphous Zinc Tin Oxide

Vogt, Sofie 10 August 2020 (has links)
Im ersten Teil der vorliegenden Arbeit werden die physikalischen Eigenschaften, insbesondere die elektrische Leitfähigkeit, von Zink-Zinn-Oxid Dünnschichten sowie darauf basierenden Schottky-Dioden in Abhängigkeit von der Kationenkomposition bestimmt. Zur Herstellung dieser Dünnschichten wurde ein Verfahren genutzt, welches die Herstellung von kontinuierlichen Kompositiongradienten im Rahmen eines gepulsten Laserabscheidungsprozesses bei Raumtemperatur ermöglicht. Erster Schwerpunkt der Diskussion ist die Abhängigkeit elektrischer Eigenschaften der Dünnschichten sowie die Diodeneigenschaften vom Kationenverhältnis. Des Weiteren wird die Langzeitstabilität der Schottky-Dioden und der Einfluss der Sauerstoffzufuhr während der Kontaktherstellung auf die Eigenschaften der Schottky-Dioden herausgestellt. DieErgebnissetiefenaufgelösterRöntgenphotoelektronenspektroskopiewerden diskutiert und ein Mechanismus, welcher zu einer Verbesserung der Schottky-Dioden über die Zeit führt, wird vorgestellt. Die Erkenntnisse über die optimale Kationenkomposition und den Einfluss des Sauerstoffs auf die Eigenschaften von Schottky-Dioden wurden genutzt, um Metall-Halbleiter-Feldeffekttransistoren herzustellen, welche im zweiten Teil der vorliegenden Arbeit beschrieben werden. In einem ersten Schritt wurden hierfür die Abscheidebedingungen in der Sputterkammer optimiert und eine neue Abscheiderezeptur für die Herstellung von Feldeffekttransistoren eingeführt. Auch hier finden alle Abscheidungen bei Raumtemperatur statt. Die Abscheidung mittels Sputtern wurde gewählt, da diese Abscheidemethode größere industrielle Relevanz als die gepulste Laserabscheidung hat. Metall-Halbleiter-Feldeffekttransistoren mit zwei verschiedenen Gate-Typen werden vorgestellt und jeweils der Einfluss der Kanalschichtdicke auf die Transistoreigenschaften untersucht. Der Einfluss des durch die Herstellung erzeugten Sauerstoffreservoirs in dem Schottky-Gate Kontakt auf die Eigenschaften der Feldeffekttransistoren wird ebenso gezeigt wie der Einfluss eines thermischen Ausheizprozesses auf die Schaltgeschwindigkeit der Feldeffekttransistoren. Außerdem werden einfache Inverter, welche auf zwei gleichartigen Feldeffekttransistoren basieren, vorgestellt. Ebenfalls werden SchottkyDioden Feldeffekttransistoren Logik basierte Inverter vorgestellt und charakterisiert. AbschließendwerdenRingoszillatoren,aufgebautausmehrereninReihegeschaltetenSchottkyDiodenFeldeffekttransistorenLogikbasiertenInverternvorgestellt. DerEinflussderKanalschichtdicke und der Gate-Geometrie auf die Oszillationsfrequenz wird diskutiert.:Contents 1 Introduction 2 Theoretical Descriptions 2.1 The Amorphous Semiconductor Zinc Tin Oxide 2.2 Schottky Barrier Diodes 2.3 Field-Effect Transistors 2.4 Inverter 2.5 Inverter Chain and Ring Oscillator 3 Methods 3.1 Growth and Structuring Techniques 3.1.1 Pulsed Laser Deposition 3.1.2 Sputtering Deposition 3.1.3 Photolithography 3.2 Characterization Techniques 3.2.1 Hall Effect Measurements 3.2.2 XRD and XRR Measurements 3.2.3 Static and Dynamic Current-Voltage Measurements 3.2.4 Further Characterization Techniques 4 Physical Properties of Amorphous Zinc Tin Oxide 4.1 Characterization of Pulsed Laser Deposited Zinc Tin Oxide Thin Films Having a Continuous Composition Spread 4.2 Properties of Schottky Barrier Diodes in Dependence on the Cation Composition 4.3 Long Term Stability of Schottky Barrier Diodes 4.4 ImportantRoleofOxygenfortheFormationofHighlyRectifyingContacts 4.5 Processes Governing the Long Term Stability 5 Demonstration and Characterization of Zinc Tin Oxide Based Devices 5.1 Implementation of a New Sputtering Recipe 5.1.1 CharacterizationandElectricalOptimizationoftheZincTinOxide Thin Films .1.2 Optimization of the Gate Contact 5.2 Devices with PtOx/Pt Gate Contact 5.2.1 Variation of the Channel Thickness 5.2.2 Influence of the Oxygen Reservoir on the Performance and Long Term Stability of Devices 5.2.3 Tuning of the Electron Mobility 5.2.4 Frequency Dependent Switching of Transistors 5.3 Devices with i-ZTO/PtOx/Pt Gate Contact 5.3.1 Transistors with Varying Channel Thickness 5.3.2 Simple Inverter 5.3.3 SDFL Inverter 5.3.4 Inverter Chain 5.3.5 Ring Oscillators 5.4 Comparison to Literature 6 Summary and Outlook Abbreviations List of Symbols Bibliography List of Own and Contributed Articles Appendix / In the first part of the present work the physical properties, especially the electrical properties, of zinc tin oxide thin films as well as Schottky diodes based thereon are determined as a function of the cation composition. For film growth, a room temperature pulsed laser deposition process was used, which allows the realization of a continuous composition gradient within one sample. First focus of the discussion is the dependence of electrical properties of thin films as well as diode properties on the cation ratio. Furthermore, the long-term stability of the Schottky diodes and the influence of the oxygen supply during contact fabrication on the properties of the Schottky diodes are highlighted. The results of depth-resolved Xray photoelectron spectroscopy measurements are discussed and a mechanism leading to an improvement of the Schottky diodes over time is elucidated. The findings on the optimal cation composition and the influence of oxygen on the properties of Schottky diodes were used to produce metal-semiconductor field-effect transistors, which are described in the second part of this thesis. In a first step, the deposition conditions in the sputter chamber were optimized and a new deposition recipe for the fabrication of field effect transistors was developed. Here, too, all depositions take place at room temperature. Sputter deposition was chosen because this deposition method has greater industrial relevance than pulsed laser deposition. Metal-semiconductor field-effect-transistors with two different gate types are presented and the influence of the channel layer thickness on the transistor properties is investigated. The influence of the oxygen reservoir in the Schottky gate contact on the properties of the field-effect-transistors is shown as well as the influence of a thermal annealing process on the switching speed of the field-effect-transistors. In addition, simple inverters based on two identical field-effect-transistors are demonstrated. Also Schottky diode field-effect-transistor logic based inverters are presented and characterized. Finally, ring oscillators consisting of several series-connected Schottky diode field-effecttransistor logic based inverters are presented. The influence of channel layer thickness and gate geometry on the oscillation frequency is discussed.:Contents 1 Introduction 2 Theoretical Descriptions 2.1 The Amorphous Semiconductor Zinc Tin Oxide 2.2 Schottky Barrier Diodes 2.3 Field-Effect Transistors 2.4 Inverter 2.5 Inverter Chain and Ring Oscillator 3 Methods 3.1 Growth and Structuring Techniques 3.1.1 Pulsed Laser Deposition 3.1.2 Sputtering Deposition 3.1.3 Photolithography 3.2 Characterization Techniques 3.2.1 Hall Effect Measurements 3.2.2 XRD and XRR Measurements 3.2.3 Static and Dynamic Current-Voltage Measurements 3.2.4 Further Characterization Techniques 4 Physical Properties of Amorphous Zinc Tin Oxide 4.1 Characterization of Pulsed Laser Deposited Zinc Tin Oxide Thin Films Having a Continuous Composition Spread 4.2 Properties of Schottky Barrier Diodes in Dependence on the Cation Composition 4.3 Long Term Stability of Schottky Barrier Diodes 4.4 ImportantRoleofOxygenfortheFormationofHighlyRectifyingContacts 4.5 Processes Governing the Long Term Stability 5 Demonstration and Characterization of Zinc Tin Oxide Based Devices 5.1 Implementation of a New Sputtering Recipe 5.1.1 CharacterizationandElectricalOptimizationoftheZincTinOxide Thin Films .1.2 Optimization of the Gate Contact 5.2 Devices with PtOx/Pt Gate Contact 5.2.1 Variation of the Channel Thickness 5.2.2 Influence of the Oxygen Reservoir on the Performance and Long Term Stability of Devices 5.2.3 Tuning of the Electron Mobility 5.2.4 Frequency Dependent Switching of Transistors 5.3 Devices with i-ZTO/PtOx/Pt Gate Contact 5.3.1 Transistors with Varying Channel Thickness 5.3.2 Simple Inverter 5.3.3 SDFL Inverter 5.3.4 Inverter Chain 5.3.5 Ring Oscillators 5.4 Comparison to Literature 6 Summary and Outlook Abbreviations List of Symbols Bibliography List of Own and Contributed Articles Appendix
13

Atomically Thin Indium Oxide Transistors for Back-end-of-line Applications

Adam R Charnas (12868358) 14 June 2022 (has links)
<p>As  thefundamentallimits  of  two-dimensional(2D)geometric  scaling  of  commercial transistors  are  being reached,  there  is  tremendous  demand  for  new  materials  and  process innovations  that  can  keep  delivering  performance  improvements  for  future  generations  of computing chips. One major avenue being explored istheincorporation ofan increasing degree of three-dimensionality   by   vertically   stacking   logic   and   memory   layerswith   high-density interconnections.In  this  dissertation,  high-performanceultra-thin  amorphousindium  oxide transistors  are  demonstrated as  an  excellent  candidate  for these  back-end-of-line  (BEOL)  and monolithic 3D (M3D) integration applications.</p> <p>A  major  pain-point  in the  development  of  BEOL  and  M3D  systems is  the  strict  thermal budget imposed –once the bottom layer of devices is fabricated, they can generally withstand no more  than  400 °C.  It  is  exceedingly  difficult  to  directly  deposit  single-crystal  material  at  these temperatures, and polycrystalline materials will have grain boundary instability issues. Amorphous materials  generally  have  low  carrier  mobilities,  which  would  seemingly  remove  them  from contention as well. Indium oxideand itsclass of related metal oxides are exceptions. Indium oxideis  a  wide  bandgap  semiconductor  with  high  electron  mobility  up  to  about  100  cm<sup>2</sup>/V∙s  in amorphous form. Ithas a strong preference for native degenerate n-type doping which has hindered prior  devices  fabricated  with it.  In  this  dissertation,  extremely  thin  layers  on  the  order  of  1  nm thick are used for which quantum confinement effects widen the bandgap further, reliably enabling gate-controllable  carrier  densitiesand  demonstration  of  excellent  transistor  performance  with  a low thermal budget of just 225 °C.</p> <p>Detailed characterization is performed down to 40 nm channel lengths revealing excellent transistor characteristics  includingenhancement-mode operation withon currents greater than 2 A/μm, low  subthreshold  swing,and  high  on/off  ratios  due  to  the  wide  bandgap.  Subsequent chaptersdemonstrate the fundamental lower limits of off current around 6 ×10<sup>-20 </sup>A/μmby a novel measurement  technique,  good  gate  bias  stress  stability  behaviorwith  small  parameter  drift  at silicon  complementary  metal  oxide  semiconductor  (CMOS)  logic  voltages,  and  high-frequency operationin the GHz regime enabling easy operation at CMOS clock frequencies.</p>
14

Toward Sustainable Transparent and Flexible Electronics with Amorphous Zinc Tin Oxide

Lahr, Oliver 31 March 2023 (has links)
The present thesis addresses a sustainable approach to mechanically flexible and transparent electronic devices based on the amorphous oxide semiconductor zinc tin oxide (ZTO) as abundant and low-cost alternative to already industrially established materials such as amorphous indium gallium zinc oxide. ZTO thin films are deposited by radio frequency long-throw magnetron sputtering at room temperature to generally enable the implementation of common photolithography processes and further facilitate patterning of digital circuit elements on thermally unstable organic substrates. Starting with the most basic device building blocks of integrated circuitry, various types of field-effect transistors are fabricated by implementation of amorphous ZTO as active channel material. Metal-semiconductor field-effect transistors and pn heterodiode based junctions field-effect transistors as well as conventional metal-insulatorsemiconductor field-effect transistors are then compared regarding their electrical performance and long-term stability over a couple of months. A decisive step toward the successful interconnection of fundamental digital circuit elements, such as previously demonstrated simple inverters, is to ensure sufficient output level compatibility between the signals of associated logic components. Accordingly, the Schottky diode field-effect transistor logic approach is adapted for amorphous ZTO based devices in order to facilitate cascading of multiple inverters consisting of unipolar devices. Field-effect transistor properties as well as the circuit design have been continuously improved to enhance the overall performance in terms of functionality and low-voltage operation. Corresponding logic inverters are finally integrated in ring oscillator circuits to gain insights into the dynamic properties of digital circuit building blocks based on amorphous ZTO. Ultimately, ZTO has been fabricated on mechanically flexible polyimide substrates to determine the elastic and electrical properties of amorphous ZTO thin films in dependence on external tensile and compressive stress induced by mechanical bending. Further, associated flexible metal-semiconductor field-effect transistor are investigated regarding their performance stability under tensile strain. / Die vorliegende Arbeit umfasst die Herstellung und Charakterisierung aktiver elektrischer Bauelemente und integrierter Schaltkreise auf Basis des amorphen Oxidhalbleiters Zink-Zinnoxid (ZTO). Als vielversprechende nachhaltige und kostengünstigere Alternative zu dem bereits industriell etablierten Halbleiter Indium-Gallium-Zinkoxid wird insbesondere die Eignung von ZTO in optisch transparenter sowie mechanisch flexibler Elektronik untersucht. Um entsprechend Kompatibilität mit thermisch instabilen organischen Substraten sowie herkömmlichen Fotolithografieverfahren zu gewährleisten, beschränkt sich die Züchtung von ZTO-Dünnfilmen mittels Hochfrequenz-Magnetron-Distanzkathodenzerstäubung ausschließlich auf Herstellungsprozesse bei Raumtemperatur. Zunächst wird auf die Umsetzung verschiedener Feldeffekttransistor-Typen auf Basis amorphen ZTOs eingegangen, welche elektrisch charakterisiert und schließlich vor dem Hintergrund der Anwendung in integrierten Schaltkreisen vergleichend gegenübergestellt werden. Neben konventionellen Metall-Isolator-Halbleiterstrukturen wird vor allem näher auf Metall-Halbleiter-Feldeffekttransistoren sowie Sperrschicht-Feldeffekttransistoren auf der Grundlage von pn-Heteroübergängen eingegangen, da diese hauptsächlich in Bereichen hoher geforderter Schaltfrequenzen zum Einsatz kommen. Da integrierte Schaltkreise auf Basis unipolarer Feldeffekttransistoren eines Ladungsträgertyps inkonsistente Signaleingangs- sowie -ausgangspegel aufweisen, wird die Schottky- Dioden-Transistorlogik adaptiert, um entsprechend die Verknüpfung mehrerer Logikgatter auf Basis amorphen ZTOs zu gewährleisten. Durch geeignete Signalrückkopplung werden komplexere Schaltungen wie Ringoszillatoren realisiert, welche anhand von Laufzeitanalysen Aufschluss über die Schaltgeschwindigkeit ZTO basierter Feldeffekttransistoren geben. Abschließend werden amorphe ZTO-Dünnfilme auf flexiblen Polyimid-Substraten hergestellt und bezüglich der elastischen sowie elektrischen Eigenschaften in Abhängigkeit von exzessivem mechanischen Stress untersucht. Darüber hinaus werden flexible Metall-Halbleiter-Feldeffekttransistoren hinsichtlich ihrer Funktionalität und Stabilität gegenüber durch Biegeprozesse induzierte Verspannungen elektrisch charakterisiert.
15

Materialeigenschaften von Zinkmagnesiumoxinitrid und Analyse des Ladungstransports in amorphen oxidischen Halbleitern mit einem erweiterten Random Band-Edge-Modell

Welk, Antonia 04 November 2022 (has links)
In der vorliegenden Arbeit wird die Gruppe der amorphen oxidischen Halbleiter um das multi-kationische und multi-anionische Zinkmagnesiumoxinitrid erweitert und der Ladungstransport für amorphes Zink-Zinnoxid, amorphes Zinkoxinitrid und Zinkmagnesiumoxinitrid mit einem \textit{Random Band-Edge}-Modell beschrieben. \\ % Im ersten Teil der Arbeit werden Zinkmagnesiumoxinitrid-Dünnfilme mit einem reaktiven Magnetron Co-Sputterverfahren abgeschieden und anschließend im Hinblick auf ihre strukturellen, optischen und elektrischen Eigenschaften untersucht. Der Magnesiumgehalt in den Dünnfilmen wird einmal durch die Leistung am Magnesiumtarget und einmal über die Abscheidung eines kontinuierlichen Kompositionsgradienten variiert. Mit Röntgen\-diffrakto\-metrie wird überprüft, ob sich im Vergleich zu amorphem Zinkoxinitrid durch Zugabe von Magnesiumkationen kristalline Phasen bilden. Mit spektroskopischer Ellipsometrie wird die dielektrische Funktion von Zinkoxinitrid und Zinkmagnesiumoxinitrid bestimmt und so der Einfluss der Magnesiumkationen auf das Absorptionsverhalten untersucht. Die Ladungsträgerkonzentration und Hall-Mobilität werden mit Hall-Effekt Messungen bestimmt und in Abhängigkeit vom Magnesiumgehalt dargestellt. Neben der Variation des Magnesiumgehalts wird der Einfluss von molekularem Stickstoffgas, das Angebot von Stickstoffradikalen mit einer Radiofrequenz-Plasmaquelle und die Auswirkungen der Targeterosion auf die elektrischen Eigenschaften der Zink\-magnesium\-oxinitrid-Dünnfilme untersucht.\\ % Im zweiten Teil der Arbeit wird eine Erweiterung des \textit{Random Band-Edge}-Modells von Nenashev \textit{et al.} [Phys. Rev. B 100, 125202 (2019)] zur Beschreibung des Ladungstransports in amorphen oxidischen Halbleitern eingeführt. Mit dem Modell werden die Potentialfluktuationen der Mobilitätskante quantifiziert. Außerdem werden theoretische Modellparameter für die intrinsische Bandmobilität, das Femilevel und die Dichte lokalisierter Defektzustände an der Mobilitätskante bestimmt. Dafür werden temperaturabhängige Hall-Effekt Daten von amorphem Zink-Zinnoxid, Zinkoxinitrid und Zinkmagnesiumoxinitrid ausgewertet. Für Zink-Zinnoxid werden drei Probenserien mit jeweils einem variierenden Prozessparameter evaluiert: das Zn:Sn-Kationenverhältnis und der Sauerstoffpartialdruck für eine Abscheidung mit der gepulsten Laserdeposition und der Gesamtdruck für das Magnetronsputterverfahren. Daneben wird Zinkoxinitrid mit einer Variation der Substrattemperatur und Zinkmagnesiumoxinitrid mit einer Variation der Magnesiumkationenkonzentration modelliert.:1 Einleitung 2 Grundlagen 2.1 Amorphe oxidische Halbleiter 2.2 Defekte in amorphen oxidischen Halbleitern 2.3 Amorphe oxiische Halbleiter im Detail 2.4 Ladunstransport in amrophen oxidischen Halbeleitern - eine Übersicht 2.5 Random Band-Edge-Modell nach Nenashev et al. 3 Methoden 3.1 Magnetronsputterverfahren 3.2 Chemische und strukturelle Charakterisierung 3.3 Optische Charakterisierung 3.4 Elektrische Charakterisierung 4 ZnMgON-Dünnfilme 4.1 Chemische Komposition 4.2 Strukturelle Eigenschaften 4.3 Optische Eigenschaften 4.4 Elektrische Eigenschaften 4.5 ZnMgON -Untersuchung der Prozessparameter im Detail 4.6 Diskussion und Zusammenfassung - ZnMgON-Dünnfilme 4.7 Abschätzung der Potentialfluktuationen durch einen Vergleich zwischen Hall- und Drude-Mobilität 5 Erweiterung des Random Band-Edge-Modells 5.1 Variation der Modellparameter des erweiterten RBE-Modells 6 Analyse des Ladungstransports in AOS mit dem erweiterten RBE-Modell 6.1 a-IGZO - Modellierung der elektrischen Transporteigenschaften 6.2 a-ZTO - Modellierung der elektrischen Transporteigenschaften 6.3 a-ZnON - Modellierung der elektrischen Transporteigenschaften 6.4 ZnMgON - Modellierung der elektrischen Transporteigenschaften 6.5 Diskussion 6.6 Zusammenfassung - Erweiterung des RBE-Modells 7 Zusammenfassung und Ausblick / In the present work, the amorphous oxide semiconductor zinc magnesium oxynitride, as a multi-cationic and multi-anionic compound, is deposited and characterized. Further, the electrical transport properties of amorphous zinc tin oxide, amorphous zinc oxynitride and zinc magnesium oxynitride are described by an extended \textit{random band-edge} model.\\ % In the first part of this work, zinc magnesium oxynitride thin films are deposited by reactive magnetron co-sputtering and are subsequently investigated with regard to their structural, optical and electrical properties. The magnesium content in the thin films is varied by the power at the magnesium target and by depositing a continuous composition gradient. X-ray diffractometry is used to check whether crystalline phases occur due to the addition of magnesium cations. Spectroscopic ellipsometry is used to determine the dielectric function of zinc oxynitride and zinc magnesium oxynitride to investigate the influence of magnesium cations on the absorption behavior. The charge carrier concentration and Hall-mobility are determined with Hall-effect measurements and are presented as a function of magnesium content. In addition to the variation of magnesium content, the influence of molecular nitrogen gas, the supply of nitrogen radicals with a radio frequency plasma source, and the effect of target poisoning on the electrical properties of zinc magnesium oxynitride thin films are investigated.\\ % In the second part of the work, an extension of the \textit{random band-edge} model by Nenashev \textit{et al.} [Phys. Rev. B 100, 125202 (2019)] is proposed to analyze the charge carrier transport in amorphous oxide semiconductors. The model allows quantifying the potential fluctuations of the mobility edge. Besides this, theoretical model parameters as the intrinsic band mobility, the Fermi level, and the density of localized defect states at the mobility edge are determined. Therefore, temperature-dependent Hall effect data of amorphous zinc tin oxide, zinc oxynitride and zinc magnesium oxynitride are evaluated. For zinc tin oxide three different sample series are evaluated: with Zn:Sn cation and oxygen partial pressure variation for a pulsed laser deposition process and with variation of the total pressure for a magnetron sputtering process. In addition, zinc oxynitride thin films with a variation of substrate temperature and zinc magnesium oxynitride thin films with a variation of magnesium cation concentration are modeled.:1 Einleitung 2 Grundlagen 2.1 Amorphe oxidische Halbleiter 2.2 Defekte in amorphen oxidischen Halbleitern 2.3 Amorphe oxiische Halbleiter im Detail 2.4 Ladunstransport in amrophen oxidischen Halbeleitern - eine Übersicht 2.5 Random Band-Edge-Modell nach Nenashev et al. 3 Methoden 3.1 Magnetronsputterverfahren 3.2 Chemische und strukturelle Charakterisierung 3.3 Optische Charakterisierung 3.4 Elektrische Charakterisierung 4 ZnMgON-Dünnfilme 4.1 Chemische Komposition 4.2 Strukturelle Eigenschaften 4.3 Optische Eigenschaften 4.4 Elektrische Eigenschaften 4.5 ZnMgON -Untersuchung der Prozessparameter im Detail 4.6 Diskussion und Zusammenfassung - ZnMgON-Dünnfilme 4.7 Abschätzung der Potentialfluktuationen durch einen Vergleich zwischen Hall- und Drude-Mobilität 5 Erweiterung des Random Band-Edge-Modells 5.1 Variation der Modellparameter des erweiterten RBE-Modells 6 Analyse des Ladungstransports in AOS mit dem erweiterten RBE-Modell 6.1 a-IGZO - Modellierung der elektrischen Transporteigenschaften 6.2 a-ZTO - Modellierung der elektrischen Transporteigenschaften 6.3 a-ZnON - Modellierung der elektrischen Transporteigenschaften 6.4 ZnMgON - Modellierung der elektrischen Transporteigenschaften 6.5 Diskussion 6.6 Zusammenfassung - Erweiterung des RBE-Modells 7 Zusammenfassung und Ausblick
16

Mechanical Stress Stability of Flexible Amorphous Zinc Tin Oxide Thin-Film Transistors

Lahr, Oliver, Steudel, Max, von Wenckstern, Holger, Grundmann, Marius 17 January 2024 (has links)
Due to their low-temperature processing capability and ionic bonding configuration, amorphous oxide semiconductors (AOS) are well suited for applications within future mechanically flexible electronics. Over the past couple of years, amorphous zinc tin oxide (ZTO) has been proposed as indiumand gallium-free and thus more sustainable alternative to the widely deployed indium gallium zinc oxide (IGZO). The present study specifically focuses on the strain-dependence of elastic and electrical properties of amorphous zinc tin oxide thin-films sputtered at room temperature. Corresponding MESFETs have been compared regarding their operation stability under mechanical bending for radii ranging from 5 to 2 mm. Force-spectroscopic measurements yield a plastic deformation of ZTO as soon as the bending-induced strain exceeds 0.83%. However, the electrical properties of ZTO determined by Hall effect measurements at room temperature are demonstrated to be unaffected by residual compressive and tensile strain up to 1.24 %. Even for the maximum investigated tensile strain of 1.26 %, the MESFETs exhibit a reasonably consistent performance in terms of current on/off ratios between six and seven orders of magnitude, a subthreshold swing around 350 mV/dec and a field-effect mobility as high as 7.5 cm2V−1s−1. Upon gradually subjecting the transistors to higher tensile strain, the channel conductivity steadily improves and consequently, the field-effect mobility increases by nearly 80% while bending the devices around a radius of 2 mm. Further, a reversible threshold voltage shift of about −150 mV with increasing strain is observable. Overall, amorphous ZTO provides reasonably stable electrical properties and device performance for bending-induced tensile strain up to at least 1.26% and thus represent a promising material of choice considering novel bendable and transparent electronics.
17

Amorphous oxide semiconductor thin-film transistor ring oscillators and material assessment

Sundholm, Eric Steven 28 June 2010 (has links)
Amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) constitute the central theme of this thesis. Within this theme, three primary areas of focus are pursued. The first focus is the realization of a transparent three-stage ring oscillator with buffered output and an output frequency in the megahertz range. This leads to the possibility of transparent radio frequency applications, such as transparent RFID tags. At the time of its fabrication, this ring oscillator was the fastest oxide electronics ring oscillator reported, with an output frequency of 2.16 MHz, and a time delay per stage of 77 ns. The second focus is to ascertain whether a three-terminal device (i.e., a TFT) is an appropriate structure for conducting space-charge-limited-current (SCLC) measurements. It is found that it is not appropriate to use a diode-tied or gate-biased TFT configuration for conducting a SCLC assessment since square-law theory shows that transistor action alone gives rise to I proportional to V² characteristics, which can easily be mistakenly attributed to a SCLC mechanism. Instead, a floating gate TFT configuration is recommended for accomplishing SCLC assessment of AOS channel layers. The final focus of this work is to describe an assessment procedure appropriate for determining if a dielectric is suitable for use as a TFT gate insulator. This is accomplished by examining the shape of a MIM capacitor's log(J)-ξ curve, where J is the measured current density and ξ is the applied electric field. An appropriate dielectric for use as a TFT gate insulator will have a log(J)-ξ curve that expresses a clear breakover knee, indicating a high-field conduction mechanism dominated by Fowler-Nordheim tunneling. Such a dielectric produces a TFT with a minimal gate leakage which does not track with the drain current in a log(I[subscript D])-V[subscript GS] transfer curve. An inappropriate dielectric for use as a TFT gate insulator will have a log(J)-ξ curve that does not express a clear breakover knee, indicating that the dominate conduction mechanism is defect driven (i.e., pin-hole like shunt paths) and, therefore, the dielectric is leaky. It is shown that experimental log(J)-ξ leakage curves can be accurately simulated using Ohmic, space-charge-limited current (SCLC), and Fowler-Nordheim tunneling conduction mechanisms. / Graduation date: 2010
18

Evaluation of amorphous oxide semiconductors for thin film transistors (TFTs) and resistive random access memory (RRAM) applications

Rajachidambaram, Jaana Saranya 06 January 2013 (has links)
Thin-film transistors (TFTs) are primarily used as a switching element in liquid crystal displays. Currently, amorphous silicon is the dominant TFT technology for displays, but higher performance TFTs will become necessary to enable ultra-definition resolution high-frequency large-area displays. Amorphous zinc tin oxide (ZTO) TFTs were fabricated by RF magnetron sputter deposition. In this study, the effect of both deposition and post annealing conditions have been evaluated in regards to film structure, composition, surface contamination, and device performance. Both the variation of oxygen partial pressure during deposition and the temperature of the post-deposition annealing were found to have a significant impact on TFT properties. X-ray diffraction data indicated that the ZTO films remain amorphous even after annealing to 600° C. Rutherford backscattering spectrometry indicated that the Zn:Sn ratio of the films was ~1.7:1 which is slightly tin rich compared to the sputter target composition. X-ray photoelectron spectroscopy data indicated that the films had significant surface contamination and that the Zn:Sn ratios changed depending on sample annealing conditions. Electrical characterization of ZTO films using TFT test structures indicated that mobilities as high as 17 cm² V⁻¹ s⁻¹ could be obtained for depletion mode devices. It was determined that the electrical properties of ZTO films can be precisely controlled by varying the deposition conditions and annealing temperature. It was found that the ZTO electrical properties could be controlled where insulating, semiconducting and conducting films could be prepared. This precise control of electrical properties allowed us to incorporate sputter deposited ZTO films into resistive random access memory (RRAM) devices. RRAM are two terminal nonvolatile data memory devices that are very promising for the replacement of silicon-based Flash. These devices exhibited resistive switching between high-resistance states to low-resistance states and low-resistance states to high-resistance states depending on polarity of applied voltages and current compliance settings. The device switching was fundamentally related to the defect states and material properties of metal and insulator layers, and their interfaces in the metalinsulator-metal (MIM) structure. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from Jan. 6, 2012 - Jan. 6, 2013

Page generated in 0.0664 seconds