Spelling suggestions: "subject:"3analyse een cycle dde view"" "subject:"3analyse een cycle dee view""
21 |
Mise en oeuvre de l'éco-conception pour des systèmes industriels complexes : de l'ACV par scénarios à la définition d'un portefeuille de projets de R&D éco-innovants / Eco-design implementation for complex industrial system : From scenario-based LCA to the definition of an eco-innovative R&D projects portfolioCluzel, François 27 September 2012 (has links)
Face à l’émergence des problématiques environnementales issues des activités humaines, l’écoconception s’attache à offrir une réponse satisfaisante dans le domaine de la conception de produits et services. Cependant, lorsque les produits considérés deviennent des systèmes industriels complexes, caractérisés entre autres par un grand nombre de composants et sous-systèmes, un cycle de vie extrêmement long et incertain, ou des interactions complexes avec leur environnement géographique et industriel, un manque évident de méthodologies et d’outils se fait ressentir. Ce changement d’échelle apporte en effet des contraintes différentes aussi bien dans l’évaluation des impacts environnementaux générés au cours du cycle de vie du système (gestion et qualité des données, niveau de détail de l’étude par rapport aux ressources disponibles…) que dans l’identification de réponses adaptées (gestion de la multidisciplinarité et des ressources disponibles, formation des acteurs, inclusion dans un contexte de R&D très amont…). Cette thèse vise donc à développer une méthodologie de mise en œuvre d’une démarche d’éco-conception de systèmes industriels complexes. Une méthodologie générale est tout d’abord proposée, basée sur un processus DMAIC (Define, Measure, Analyse, Improve, Control). Cette méthodologie permet de définir de manière formalisée le cadre de la démarche (objectifs, ressources, périmètre, phasage…) et d’accompagner rigoureusement l’approche d’écoconception sur le système considéré. Une première étape d’évaluation environnementale basée sur l’Analyse du Cycle de Vie (ACV) à haut niveau systémique est ainsi réalisée. Etant donnée la complexité du cycle de vie considéré et la variabilité d’exploitation d’un système industriel d’un site à l’autre, une approche par scénario est proposée afin d’appréhender rapidement l’étendue possible des impacts environnementaux. Les scénarios d’exploitation sont définis à l’aide de la matrice SRI (Stranford Research Institute) et intègrent de nombreux éléments rarement abordés en ACV, comme la maintenance préventive et corrective, la mise à niveau des sous-systèmes ou encore la modulation de la durée de vie du système en fonction du contexte économique. A l’issue de cette ACV les principaux postes impactants du cycle de vie du système sont connus et permettent d’entreprendre la seconde partie de la démarche d’éco-conception centrée sur l’amélioration environnementale. Un groupe de travail multidisciplinaire est réuni lors d’une séance de créativité centrée autour de la roue de la stratégie d’éco-conception (ou roue de Brezet), un outil d’éco-innovation peu consommateur de ressources et ne nécessitant qu’une faible expertise environnementale. Les idées générées en créativité sont alors traitées par trois filtres successifs, qui permettent : (1) de présélectionner les meilleurs projets et de les approfondir ; (2) de constituer un portefeuille de projets de R&D par une approche multicritère évaluant leur performance environnementale, mais également technique, économique et de création de valeurs pour les clients ; (3) de contrôler l’équilibre du portefeuille constitué en fonction de la stratégie de l’entreprise et de la diversité des projets considérés (aspects court/moyen/long terme, niveau systémique considéré…). L’ensemble des travaux a été appliqué et validé chez Alstom Grid sur des sous-stations de conversion électrique utilisées dans l’industrie de l’aluminium primaire. Le déploiement de la méthodologie a permis d’initier une démarche solide d’écoconception reconnue par l’entreprise et de générer au final un portefeuille de 9 projets de R&D écoinnovants qui seront mis en œuvre dans les prochains mois. / Face to the growing awareness of environmental concerns issued from human activities, eco-design aims at offering a satisfying answer in the products and services development field. However when the considered products become complex industrial systems, there is a lack of adapted methodologies and tools. These systems are among others characterised by a large number of components and subsystems, an extremely long and uncertain life cycle, or complex interactions with their geographical and industrial environment. This change of scale actually brings different constraints, as well in the evaluation of environmental impacts generated all along the system life cycle (data management and quality, detail level according to available resources…) as in the identification of adapted answers (management of multidisciplinary aspects and available resources, players training, inclusion in an upstream R&D context…). So this dissertation aims at developing a methodology to implement ecodesign of complex industrial systems. A general methodology is first proposed, based on a DMAIC process (Define, Measure, Analyse, Improve, Control). This methodology allows defining in a structured way the framework (objectives, resources, perimeter, phasing…) and rigorously supporting the ecodesign approach applied on the system. A first step of environmental evaluation based on Life-Cycle Assessment (LCA) is thus performed at a high systemic level. Given the complexity of the system life cycle as well as the exploitation variability that may exist from one site to another, a scenario-based approach is proposed to quickly consider the space of possible environmental impacts. Scenarios of exploitation are defined thanks to the SRI (Stanford Research Institute) matrix and they include numerous elements that are rarely considered in LCA, like preventive and corrective maintenance, subsystems upgrading or lifetime modulation according to the economic context. At the conclusion of this LCA the main impacting elements of the system life cycle are known and they permit to initiate the second step of the eco-design approach centred on environmental improvement. A multidisciplinary working group perform a creativity session centred on the eco-design strategy wheel (or Brezet wheel), a resource-efficient eco-innovation tool that requires only a basic environmental knowledge. Ideas generated during creativity are then analysed through three successive filters allowing: (1) to pre-select and to refine the best projects; (2) to build a R&D projects portfolio thanks to a multi-criteria approach assessing not only their environmental performance, but also their technical, economic and customers’ value creation performance; (3) to control the portfolio balance according to the company strategy and the projects diversity (short/middle/long term aspect, systemic level…). All this work was applied and validated at Alstom Grid on electrical conversion substations used in the primary aluminium industry. The methodology deployment has allowed initiating a robust eco-design approach recognized by the company and finally generating a portfolio composed of 9 eco-innovative R&D projects that will be started in the coming months.
|
22 |
Hybrid lifecycle - emergy evaluation : methodological developments and application to potable water production / Evaluation hybride émergie - analyse du cycle de vie : développements méthodologiques et application à la production d'eau potableArbault, Damien 31 January 2014 (has links)
L’évaluation environnementale est une discipline scientifique indispensable à la construction d’une société durable. L’outil le plus communément utilisé est l’Analyse du Cycle de Vie, dans lequel l’impact lié à l’épuisement des ressources y est fréquemment évalué à partir des stocks mondiaux disponibles, les taux d’extraction et leur valeur relative pour l’utilisateur. Cette approche n’est cependant pas applicable aux ressources renouvelables, comme l’eau douce et les services écosystémiques, qui, par définition, ne sont pas des stocks. L’évaluation émergétique (EME), en revanche, détermine la valeur d’une ressource (renouvelables ou non) à partir de la description des mécanismes naturels qui la génèrent. L’ACV et l’EME présentent donc un intéressant potentiel d’hybridation, la première fournissant une représentation détaillée des étapes du cycle de vie d’un produit, tandis que la seconde permet de comptabiliser la valeur des ressources renouvelables et fossiles avec une unité de mesure commune.Dans cette thèse, une méthodologie hybride récemment développée est appliquée à quatre usines de production d’eau potable, afin d’analyser la valeur ajoutée et les limites actuelles du modèle hybride. Les améliorations proposées incluent l’adaptation des indicateurs émergétiques au modèle hybride et la caractérisation des ressources d’eau douce grâce à l’emploi de Systèmes d’Information Géographique (SIG). Les outils informatiques élaborés, tels que la SIG et la modélisation dynamique, permettraient d’enrichir sensiblement les méthodes actuelles d’évaluation environnementale. La faisabilité de cette opportunité est démontrée dans cette étude par la validation de l’approche conceptuelle / Environmental assessment is a scientific discipline essential for the construction of a sustainable society. The most commonly used tool is Life Cycle Assessment (LCA), in which the impact related to resource depletion is often assessed considering global available stocks, extraction rates and relative value of the resource for the user. However, this approach cannot be applied as such to renewable resources such as freshwater and ecosystem services, which are not, by definition, stocks. In contrast, Emergy evaluation (EME) determines the value of a resource (renewable or not) from the description of the natural mechanisms that produce it. Therefore, LCA and EME present an interesting hybridation potential, the former providing a detailed representation of a product's lifecycle, while the latter allows accounting for the value of both renewable and non-renewable resources with the same rationale.In this PhD, a recently-developed hybrid framework is applied to four potable water production sites, in order to analyze the added value and current limitations of using detailed LCA databases in EME. Suggested improvements include the adaptation of emergy indicators to the hybrid framework, and freshwater resource characterization using Geographic Information Systems (GIS). Elaborated computational tools such as GIS and dynamic modeling could provide great benefits to current environmental assessment methods. The feasibility of using them is demonstrated in this study by validating the conceptual approach
|
23 |
Dégradation biologique des polychlorobiphényles / Biodegradation of polychlorobiphenylsSangely, Matthieu 08 July 2010 (has links)
Le sol est une interface complexe entre tous les compartiments de l'environnement. Leur pollution participe à la diffusion de nombreux polluants. Les polychlorobiphényles sont des molécules toxiques persistantes dans l'environnement. Largement utilisés notamment dans les huiles diélectriques, ils contaminent aujourd'hui de nombreux sols industriels. Le traitement thermique de ces sols est très onéreux et peut entraîner l'émission de dioxines. L'objectif de ce travail est d'étudier un procédé de traitement biologique pour la dégradation des PCB dans les sols. Une dégradation biologique de PCB a été observée en présence de deux organismes cultivés, Burkholderia xenovorans et Phanerochaete chrysosporium, confirmant leur potentiel technologique en condition aérobie. En condition anaérobie, une communauté microbienne présentant la capacité de dégrader les PCB a été développé. Une étude de la diversité du gène ADNr 16S au sein de cette communauté a permis d'identifier les espèces présentes dans cette communauté. Une analyse de cycle de vie évalue les performances environnementales de deux procédés de traitement de sols contaminés par des PCB, l'un thermique, l'autre biologique. Cette analyse permet de quantifier l’avantage environnemental du procédé biologique sur son concurrent thermique. / Soil is a complex interface between all compartments of the environment. Their pollution contributes to the spread of many pollutants. PCBs are persistent toxic compounds in the environment. Widely used especially in dielectric oils, they now contaminate many industrial floors. Heat treatment of these soils is very expensive and can cause the emission of dioxins. The objective of this work is to study a biological treatment process for the degradation of PCBs in soils. Biological degradation of PCBs has been observed in the presence of two cultured organisms, Burkholderia xenovorans and Phanerochaete chrysosporium, confirming their technological potential under aerobic conditions. Under anaerobic conditions, a microbial community with the ability to degrade PCBs was developed. A study of the diversity of 16S rDNA gene within this community has identified the species in this community. An analysis of life cycle assess the environmental performance of two methods for treating soils contaminated with PCBs, one thermal and one biological. This analysis quantifies the environmental benefit of the biological process compared with the heat treatment
|
24 |
Development of a methodology of Dynamic LCA applied to the buildings / Développement d’une méthodologie d’ACV dynamique appliquée aux bâtimentsNegishi, Koji 21 June 2019 (has links)
Le secteur du bâtiment est un acteur clé pour aider la France à atteindre ses objectifs de réduction en matière de consommation d’énergie et d’émissions de gaz à effet de serre (GES). L’analyse du cycle de vie (ACV) est la méthode la plus utilisée pour évaluer les impacts environnementaux d’un produit ou d’un système d’une manière systématique et holistique sur l’ensemble de son cycle de vie. Dans le secteur du bâtiment, la méthode ACV a été adaptée avec des outils appropriés, simplifiés, pour inciter les acteurs du bâtiment à évaluer la performance environnementale de leur produit. Cependant, la méthode ACV présente des limites dont une est le manque de notion de « temps », qui touche notamment trois points : (i) Manque de considération de l’évolution temporelle des systèmes, du système « bâtiment » dans notre cas, (ii) Non prise en compte du décalage temporel des activités et donc des émissions, and (iii) Non prise en compte du caractère dynamique des impacts environnementaux. Dans ce contexte, l’objectif de la thèse est de développer une méthodologie d’ACV dynamique appliquée au bâtiment, qui permet de prendre en compte ces trois aspects dynamiques, sur la base du projet ANR DyPLCA. L’application de la nouvelle méthode dynamique à un cas d’étude avec trois maisons individuelles accolées a permis d’obtenir des informations importantes sur le profil temporel des impacts. La même quantité des émissions de GES a un impact de changement climatique plus bas lorsque les émissions sont réparties sur une période longue. Les actions pour la réduction et l’adaptation doivent être décidées selon différents types de famille de produits de construction. Ainsi, il est nécessaire d’adapter les efforts de réduction d’impacts en fonction des substances chimiques. / The building sector is a key actor to meet the reduction targets in terms of energy consumption and greenhouse gases (GHG) emissions. Life Cycle Assessment (LCA) is the most used method for assessing the environmental impacts of a system. In the building sector, the LCA method was adapted with appropriate and simplified tools in order to encourage stakeholders to evaluate the environmental performance of their building products. However, LCA method has some limitations, one of which being the lack of “time dimension” that particularly concerns three points: (i) Lack of consideration of temporal evolution of the system under LCA study, “building system” in our case, (ii) Lack of consideration of temporal discrepancy of activities and associated emissions, (iii) Lack of consideration of dynamic characteristics of environmental impacts (stationary conditions, fixed time horizon, etc.). In this context, the primary objective of the thesis is to develop a dynamic LCA methodology applied to the building sector, on the basis of DyPLCA ANR project. The application of the new dynamic method to a case study with three attached single houses demonstrated that dynamic LCA provides important information on the temporal profile of impacts. The same amount of GHG emissions has a lower effect on temperature peaks when emissions are spread over a long period. The distinction is made between the various GHG, especially according to their lifetime. Instantaneous and cumulated effects (indicators) should be considered in a complete analysis. Actions for mitigation and adaptation need to be decided according to different types of construction product families. Besides, it is necessary to adapt the impact reduction efforts according to the chemical substances.
|
25 |
Pour une intégration de l'acceptabilité sociale en design industriel : vers une approche participative au processus de conceptionCôté, Valérie January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
26 |
Conception et analyse de cycle de vie d'un pont routier à platelage en aluminium sur poutres en bois lamellé-colléBeudon, Camille 27 January 2024 (has links)
Le gouvernement québécois souhaite valoriser l’utilisation de l’aluminium et du bois d’ingénierie dans la construction et dans la réhabilitation d’ouvrages d’art. Dans le cadre de la vision à court terme des projets de construction, le bois et l’aluminium sont encore aujourd’hui désavantagés. Pourtant, ces deux matériaux pourraient devenir des matériaux concurrentiels pour la réhabilitation du parc routier québécois notamment grâce à leur production locale et leur possibilité de recyclage. Afin d’éviter une vision court-termiste biaisée, la méthode d’arbitrage utilisée est celle de l’analyse de cycle de vie. Cette méthode holistique prend en compte l’ensemble des étapes du cycle de vie. Deux analyses sont réalisées en parallèles. La première concerne les coûts de cycle de vie (ACCV) et la deuxième, les impacts environnementaux (ACV). Ces deux études complémentaires ajoutent une dimension environnementale, aujourd’hui non négligeable, aux futures prises de décision. La première étape de ce projet consiste en la conception du tablier de pont hybride à platelage en aluminium sur poutres en bois lamellé-collé à l’aide de la norme CAN/CSA S6-14 (CSA,2014b). Le pont-type ainsi conçu est par la suite utilisé au cours des analyses de cycle de vie. L’analyse économique se fait à l’aide de la norme ISO 15686-5 (ISO, 2017). L’analyse des impacts environnementaux se fait, elle, à l’aide de le norme ISO 14040 (ISO, 2006a) et 14044 (ISO, 2006b). L’utilisation du bois ainsi que le faible nombre d’opérations d’entretien rendent le tablier aluminium/bois plus avantageux économiquement sur toute sa durée de vie. Les tabliers conventionnels béton/acier assurent une nette diminution des coûts de construction initiaux mais cette tendance s’inverse très vite. Le préfabrication possible des tabliers de pont aluminium/acier et aluminium/bois réduisent les coûts indirects de construction. Ainsi, les tabliers de pont aluminium/bois réduisent de 86 % le coût total du tablier par comparaison avec des tabliers conventionnels. Au niveau des indicateurs environnementaux, le tablier aluminium/bois est également à privilégier. / The Quebec Gouvernment wishes to promote the use of wood and aluminium in the construction and rehabilitation of structures. In the context of the short-term vision of construction projects, wood and aluminium are clearly disadvantaged. However, aluminium and glued laminated timber could become competitive materials for the rehabilitation of the Quebec roadway bridges, in particular thanks to their local production in Quebec and their possibility of recycling. In order to avoid a biased short-term view, the method of arbitration used is that of life cycle analysis. This holistic method makes it possible to take into account all life-cycle stages. Two analyzes are carried out in parallel. The first concerns life cycle costs and the second concerns environmental impacts. These two studies complement each other and add a environmental dimension, which is not negligible today, on decision-making. The first stage of this project consists of the design of the hybrid bridge deck aluminium on glued laminated timber beams using the CAN / CSA S6-14 standard. The bridge-type thus designed is subsequently used during life cycle analyzes. The economic analysis is done using the ISO 15686-5 standard (2017). The environmental impact analysis is done using the ISO 14040 and 14044 standards (2006). The use of wood and aluminium as well as the low number of maintenance operations make the aluminum/wood deck more economically advantageous over its entire lifespan. Conventional concrete/steel decks provide a clear reduction in initial construction costs, but this trend is reversed very quickly. The possible prefabrication of aluminium/steel and aluminium/ wood bridge decks reduces indirect construction costs. Thus aluminium/ wood bridge decks reduce 86 % of the total cost of the conventional bridge deck. In terms of environmental indicators, the aluminium wood/decki s also to be favored
|
27 |
Évaluation des impacts environnementaux des bâtiments en bois : analyse du cycle de vie dynamique du carbone biogéniqueBreton, Charles 22 January 2020 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2019-2020 / Le secteur du bâtiment émet jusqu’à 30% des émissions de gaz à effet de serre (GES) mondiales. Au Canada, il émet 12% des émissions de GES directes et subira une croissance importante d’ici 2030. Accroître l’utilisation des produits du bois pourrait diminuer les impacts climatiques attribués au secteur du bâtiment, ce qui contribuerait à l’atteinte des cibles nationales de réduction des émissions de GES. En stimulant un aménagement forestier durable, cela limiterait aussi les émissions de GES en forêt, en diminuant par exemple les risques de perturbations naturelles. Une gestion intégrée stimulant les secteurs du bâtiment, de la forêt et des produits du bois générerait un maximum de bénéfices environnementaux (i) en maintenant ou augmentant les stocks de carbone en forêt; (ii) en augmentant le stockage temporaire dans les produits du bois; (iii) en encourageant la substitution de matériaux à plus haute empreinte carbone. Le potentiel réel des stratégies d’atténuation faisant intervenir les produits du bois est difficile à quantifier. L'analyse du cycle de vie (ACV) est un outil utilisé en génie environnemental pour déterminer les impacts environnementaux d'un produit ou d'un service sur son cycle de vie. Cependant, en ACV, il n'existe aucun consensus sur la modélisation du carbone issu de processus biologiques, le carbone biogénique. Les ACV traditionnelles (statiques) ne considèrent pas l’influence des aspects temporels; elles reposent souvent sur les hypothèses que le carbone biogénique est (1) carboneutre ou (2) entièrement émis à la récolte. Ceci est problématique car les impacts climatiques d’un GES sont liés aux variations de sa concentration atmosphérique dans le temps. Les méthodes statiques peuvent donc mener à d’importantes erreurs d’estimation. Par exemple, 57% du carbone séquestré dans les produits du bois canadiens entre 1990 et 2008 est encore stocké dans l’anthroposphère. Considérer ce carboneentièrement émis induit une erreur d’estimation de 675 Mt CO2, l’équivalent de 92% des émissions de GES canadiennes en 2014. Les méthodes dites dynamiques permettent de considérer l’influence d’aspects temporels en ACV. Elles permettent d’éviter les hypothèses simplificatrices (1) et (2). Cependant, ces méthodes sont relativement récentes. Il existe peu d’exemples de leur application dans la littérature, notamment dans le domaine de l’ACV du bâtiment, où leur complexité additionnelle en termes de ressources (temps, données) est un enjeu important. L’objectif de ce projet est de comparer les résultats des méthodes statique et dynamique pour l’évaluation des impacts climatiques des produits du bois en ACV du bâtiment. Plus spécifiquement, cet objectif implique d’identifier une méthode dynamique adaptée à l’ACV du bâtiment, puis de l’utiliser dans une étude de cas. Ces objectifs spécifiques sont couverts dans deux articles. Le premier article dresse une revue critique des méthodes de modélisation du carbone biogénique en ACV et identifie la méthode dynamique du potentiel de réchauffement global biogénique (PRGbio) comme bien adaptée à l’ACV du bâtiment. Celle-ci permet d’intégrer des aspects dynamiques à l’ACV du bâtiment sans trop complexifier la collecte de données d’inventaire du cycle de vie. Le second article décrit l’application de la méthode PRGbio à l’étude de cas des Habitations Trentino, un bâtiment en bois situé à Québec. Comparativement à une approche statique, l’approche dynamique entraîne une réduction des impacts climatiques liés à l’utilisation des produits du bois. Ce résultat suggère que les méthodes d’ACV actuelles surévaluent les impacts environnementaux du carbone biogénique, et que des politiques encourageant la construction en bois auraient un potentiel d’atténuation des changements climatiques prometteur. / The building sector accounts for up to 30% of global GHG emissions. In Canada, it represents 12% of direct GHG emissions; these impacts are expected to significantly increase before 2030. Using more harvested wood products (HWP) in buildings could reduce the climate change impacts of the building sector and help reach the national mitigation goals set under the Paris Agreement. By encouraging sustainable forest management, this could also reduce forest carbon emissions, e.g. by reducing the risks and consequences of natural disturbances (fires, insects, etc.). Combining (i) sustainable forest management, (ii) temporary carbon storage and (iii) substitution benefits in integrated management approaches could provide large, necessary mitigation benefits. The potential benefits of integrated approaches including HWP are increasingly recognized, but assessing their actual climate impacts remains challenging. Life cycle assessment (LCA) is used in environmental engineering to assess the life cycle impacts products or services. However, there is currently no consensus in LCA on the assessment of carbon from biological processes, biogenic carbon. Traditional (static) practice disregards the influence of time considerations in LCA, and generally considers biogenic carbon (1) carbon neutral or (2) entirely emitted at the moment of harvest. This is a problem, since the climate change impacts of greenhouse gases (GHG) are a function of their atmospheric concentration over time. Disregarding time considerations can thus lead to estimation errors. In Canada, 57% of the biogenic carbon captured in wood products between 1990 and 2008 still remains in the anthroposphere. To consider it entirely emitted at harvest induces an estimation error of 675 Mt CO2, or approximately 92% of total Canadian GHG emissions in 2014. Dynamic approaches include time considerations in LCA and avoid simplifying assumptions (1) and (2). However, dynamic approaches are relatively recent. There are few available case studies and guidelines in the literature, notably in the field of building LCA, where the additional complexity and ressources (time, data) is a concern. The goal of this project is to compare the results of static and dynamic LCA approaches in the analysis of the climate change impacts of HWP in building LCA. More specifically, this goal implies identifying a dynamic approach well adapted to building LCA, and applying it in a case study. These objectives are covered in two articles. The first article is a critical review of biogenic carbon assessment methods in LCA. It identifies the biogenic global warming potential (GWPbio), a dynamic LCA approach, as well adapted for building LCA. The GWPbio approach can include time considerations in LCA, but is less resource-intensive than other approaches. The second article describes the use of GWPbio in the LCA of the Trentino building, a timber building located in Quebec City. Compared to static approaches, using GWPbio reduces the global warming impacts of HWP. This result suggests that current LCIA practice overestimates the impacts of biogenic carbon and HWP. Consequently, encouraging an increased use of HWP in the building sector could provide promising climate change mitigation benefits.
|
28 |
Innovations biosourcées dans les enveloppes de bâtiments en CLT : une analyse hygrothermique et du cycle de vieDe Serres-Lafontaine, Célestin 06 March 2024 (has links)
Titre de l'écran-titre (visionné le 4 mars 2024) / L'objectif principal de cette recherche est d'évaluer l'impact environnemental et le comportement hygrothermique d'une enveloppe de bâtiment en BLC utilisant des matériaux biosourcés. L'étude compare des murs avec ou sans membrane pare-air, des panneaux de fibres de bois ou une isolation en laine de roche. Les murs ont été soumis à des essais statiques et dynamiques dans une chambre climatique, où des capteurs de température et d'humidité relative ont été installés à travers les murs. Les résultats ont montré que l'isolation en fibres de bois a une humidité relative plus faible et une température similaire à celle de l'isolation en laine de roche, et que la membrane pare-air réduit le transfert d'humidité et augmente la température à travers le mur. L'isolation en fibres de bois agit également comme un tampon d'humidité, retardant la migration de l'humidité à travers l'enveloppe. Les analyses du cycle de vie ont montré que le revêtement métallique a le plus fort impact sur le réchauffement climatique, suivi par les types d'isolation. L'isolation en fibres de bois a un impact similaire à celui de l'isolation en laine de roche, sauf pour l'eutrophisation, où la laine de roche a un impact plus faible. La membrane pare-air avait un faible impact, mais elle empêchait le mur en BLC d'être entièrement recyclé. Le carbone biogénique stocké dans le BLC et l'isolation en fibres de bois réduisait le potentiel de réchauffement global des murs. Cette étude suggère que l'isolation en fibres de bois pourrait être utilisée pour réduire les variations d'humidité et qu'une membrane pare-air est parfois nécessaire selon l'isolation utilisée. / The main objective of this research is to evaluate the environmental impact and the hygrothermal behavior of a building envelope made of CLT using bio-based materials. The study compares walls with or without an air barrier membrane, wood fiber panels or rock wool insulation. The walls were subjected to static and dynamic tests in a climatic chamber, where temperature and relative humidity sensors were installed through the walls. The results showed that the wood fiber insulation had a lower relative humidity and a similar temperature to the rock wool insulation and that the air barrier membrane reduced the moisture transfer and increased the temperature across the wall. The wood fiber insulation also acted as a moisture buffer, delaying moisture migration through the envelope. The life cycle analyses showed that the metal cladding had the highest impact on global warming, followed by the types of insulation. The wood fiber insulation had a similar impact to the rock wool insulation, except for eutrophication, where the rock wool had a lower impact. The air barrier membrane had a low impact but prevented the CLT wall from being fully recycled. The biogenic carbon stored in the CLT and the wood fiber insulation reduced the global warming potential of the walls. This study suggests that the wood fiber insulation could be used to reduce humidity variations and that an air barrier membrane is sometimes necessary depending on the insulation used.
|
29 |
Structural performance assessment and life-cycle cost analysis of the first all-aluminum bridgeFortin, Thomas 25 January 2024 (has links)
Titre de l'écran-titre (visionné le 11 janvier 2024) / La combinaison d'un ratio élevé résistance-poids, une haute résistance à la corrosion, une bonne recyclabilité et une facilité de fabrication font des alliages d'aluminium, un excellent candidat pour des constructions durables et esthétiques. Son utilisation dans les infrastructures implique un entretien relativement faible tout au long de leur cycle de vie et est particulièrement adaptée pour les environnements froids et corrosifs, comme le Canada. Bien que l'utilisation de l'aluminium dans les ponts remonte à 1933, le pont d'Arvida au Québec, est le premier pont autoroutier entièrement en aluminium, inauguré en 1950. D'après les expériences passées, il est évident que ce pont nécessite un relativement faible entretien à ce jour, tandis que le remplacement du tablier en béton a été l'une des principales sources de problèmes d'entretien. Malgré sa bonne performance à ce jour, aucune analyse approfondie n'a été réalisée sur ce pont qui pourrait fournir des informations utiles sur les performances des alliages d'aluminium dans les constructions de ponts. L'objectif principal de cette recherche est d'évaluer la performance du pont Arvida sur deux aspects spécifiques : son intégrité structurale et sa performance à long terme d'un point de vue économique. Dans le cadre de cet objectif, une analyse structurale numérique a été réalisée sur le pont à l'aide du logiciel d'ingénierie *SAFI Bridge Structural Engineering*, et sa performance a été évaluée selon les critères de conception actuels de la norme CSA S6-19. Les résultats de cette analyse ont montré que la structure actuelle du pont Arvida ne serait pas en mesure de supporter les charges de circulation modernes recommandées par la norme canadienne. En fait, cela explique la limitation de poids actuelle imposée à ce pont par les autorités. Pour évaluer davantage la performance économique à long terme de ce pont, une analyse du coût du cycle de vie a été réalisée sur la structure existante en utilisant les coûts passés fournis par le ministère des Transports du Québec ainsi que des coûts futurs projetés. Traditionnellement, les coûts initiaux des matériaux ont été les facteurs décisifs pour la sélection des matériaux de construction. Cependant, ces dernières années, les coûts d'entretien des infrastructures existantes ont considérablement augmenté, ce qui a nécessité une approche alternative pour la sélection des matériaux. À cet égard, l'analyse du coût du cycle de vie (ACCV) des infrastructures permet une comparaison équitable entre différentes alternatives, car elle prend en compte non seulement les coûts initiaux de construction, mais aussi les coûts d'entretien, les coûts de retards des utilisateurs, les coûts de démolition et tous les autres coûts qui peuvent survenir pendant la durée de vie de la structure. L'ACCV du pont Arvida montre que les coûts d'entretien associés à la réhabilitation du tablier de béton gouvernent le coût total d'acquisition du pont. De toute évidence, le tablier en béton annule tous les avantages de la structure en aluminium à faible entretien. Afin de mettre et confirmer les avantages à long terme d'un tablier en aluminium sur le pont existant, une autre ACCV a également été réalisée avec un tablier en aluminium hypothétique. La comparaison des résultats conclue que l'alternative du tablier en aluminium peut réduire significativement les coûts d'entretien malgré des coûts initiaux élevés, et ainsi l'utilisation de l'aluminium dans la construction de ponts peut être bénéfique sur une durée de vie plus longue. / The combination of high strength-to-weight ratio, excellent durability, corrosion resistance, recyclability, and formability make aluminum alloys an excellent candidate for both sustainable and aesthetically pleasing constructions. More importantly, the application of aluminum alloys can be beneficial in civil infrastructure due to their relatively low maintenance over the life cycle, especially for cold and corroding environments, such as Canada. Although the use of aluminum in bridge applications has started dating back to 1933, the Arvida Bridge in Quebec, Canada is the first all-aluminum arch deck type bridge that was built in 1950. From past experiences, it has been evident that this bridge has so far required relatively low maintenance while replacement of the concrete deck has been one of the primary sources of maintenance issues. Despite its good performance till date, an in-depth analysis has not been undertaken on this bridge that can provide useful insights on the performance of aluminum alloys in bridge constructions. The overarching goal of this research is to assess the performance of the Arvida bridge over two specific aspects: its structural integrity and its long-term performance from an economic standpoint. With this objective, a numerical structural analysis has been performed on the bridge in the *SAFI Bridge Structural Engineering* software and its performance has been evaluated under the current design criteria recommended by the Canadian Standard Association for highway bridges (CSA S6-19). The outcomes from this analysis pointed that the current Arvida bridge structure would not be able to carry the modern traffic loads recommended by the Canadian standard. In fact, this explains the current weight limitation on this bridge that has been imposed by the authority. To further evaluate the long-term economic performance of this bridge, life-cycle cost analysis (LCCA) that allows a fair comparison between different alternatives and projects since it takes into account not only the initial costs of construction but also the maintenance costs, user delays, demolition costs and any other costs that can occur in the life span of the structure. To estimate the total life cycle cost of the Arvida bridge, the past construction and maintenance costs have been extracted from the information provided by the *Ministère des Transports du Québec (MTQ)* while the future costs that can incur until the end of design life of the bridge have been estimated. The results of the LCCA shows that the maintenance costs corresponding to the concrete deck rehabilitation governs the overall costs. Clearly, the concrete deck dismisses all the advantages of the low-maintenance aluminum structure. In order to highlight the long-term benefit of low maintenance aluminum deck on the existing bridge, an alternative LCCA has also been performed with a hypothetical aluminum deck. The comparison of the results of the LCCA on these two options (i.e., existing concrete deck and alternative aluminum deck) has implied that an aluminum deck alternative can significantly reduce the maintenance costs despite having higher initial cost, and thus, the use of aluminum in bridge construction can be beneficial for a longer life span.
|
30 |
L'application de l'analyse de cycle de vie simplifiée à la pratique du design industriel pour la conception de produits ou services à moindre impact environnementalLeclerc, Alexandre January 2004 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
Page generated in 0.1066 seconds