• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integration of multimodal imaging data for investigation of brain development / Intégration des données d’imagerie multimodale pour l’étude de développement du cerveau

Kulikova, Sofya 06 July 2015 (has links)
L’Imagerie par résonance magnétique (IRM) est un outil fondamental pour l’exploration in vivo du développement du cerveau chez le fœtus, le bébé et l’enfant. Elle fournit plusieurs paramètres quantitatifs qui reflètent les changements des propriétés tissulaires au cours du développement en fonction de différents processus de maturation. Cependant, l’évaluation fiable de la maturation de la substance blanche est encore une question ouverte: d'une part, aucun de ces paramètres ne peut décrire toute la complexité des changements sous-jacents; d'autre part, aucun d'eux n’est spécifique d’un processus de développement ou d’une propriété tissulaire particulière. L’implémentation d’approches multiparamétriques combinant les informations complémentaires issues des différents paramètres IRM devrait permettre d’améliorer notre compréhension du développement du cerveau. Dans ce travail de thèse, je présente deux exemples de telles approches et montre leur pertinence pour l'étude de la maturation des faisceaux de substance blanche. La première approche fournit une mesure globale de la maturation basée sur la distance de Mahalanobis calculée à partir des différents paramètres IRM (temps de relaxation T1 et T2, diffusivités longitudinale et transverse du tenseur de diffusion DTI) chez des nourrissons (âgés de 3 à 21 semaines) et des adultes. Cette approche offre une meilleure description de l’asynchronisme de maturation à travers les différents faisceaux que les approches uniparamétriques. De plus, elle permet d'estimer les délais relatifs de maturation entre faisceaux. La seconde approche vise à quantifier la myélinisation des tissus cérébraux, en calculant la fraction de molécules d’eau liées à la myéline (MWF) en chaque voxel des images. Cette approche est basée sur un modèle tissulaire avec trois composantes ayant des caractéristiques de relaxation spécifiques, lesquelles ont été pré-calibrées sur trois jeunes adultes sains. Elle permet le calcul rapide des cartes MWF chez les nourrissons et semble bien révéler la progression de la myélinisation à l’échelle cérébrale. La robustesse de cette approche a également été étudiée en simulations. Une autre question cruciale pour l'étude du développement de la substance blanche est l'identification des faisceaux dans le cerveau des enfants. Dans ce travail de thèse, je décris également la création d'un atlas préliminaire de connectivité structurelle chez des enfants âgés de 17 à 81 mois, permettant l'extraction automatique des faisceaux à partir des données de tractographie. Cette approche a démontré sa pertinence pour l'évaluation régionale de la maturation de la substance blanche normale chez l’enfant. Pour finir, j’envisage dans la dernière partie du manuscrit les applications potentielles des différentes méthodes précédemment décrites pour l’étude fine des réseaux de substance blanche dans le cadre de deux exemples spécifiques de pathologies : les épilepsies focales et la leucodystrophie métachromatique. / Magnetic Resonance Imaging (MRI) is a fundamental tool for in vivo investigation of brain development in newborns, infants and children. It provides several quantitative parameters that reflect changes in tissue properties during development depending on different undergoing maturational processes. However, reliable evaluation of the white matter maturation is still an open question: on one side, none of these parameters can describe the whole complexity of the undergoing changes; on the other side, neither of them is specific to any particular developmental process or tissue property. Developing multiparametric approaches combining complementary information from different MRI parameters is expected to improve our understanding of brain development. In this PhD work, I present two examples of such approaches and demonstrate their relevancy for investigation of maturation across different white matter bundles. The first approach provides a global measure of maturation based on the Mahalanobis distance calculated from different MRI parameters (relaxation times T1 and T2, longitudinal and transverse diffusivities from Diffusion Tensor Imaging, DTI) in infants (3-21 weeks) and adults. This approach provides a better description of the asynchronous maturation across the bundles than univariate approaches. Furthermore, it allows estimating the relative maturational delays between the bundles. The second approach aims at quantifying myelination of brain tissues by calculating Myelin Water Fraction (MWF) in each image voxel. This approach is based on a 3-component tissue model, with each model component having specific relaxation characteristics that were pre-calibrated in three healthy adult subjects. This approach allows fast computing of the MWF maps from infant data and could reveal progression of the brain myelination. The robustness of this approach was further investigated using computer simulations. Another important issue for studying white matter development in children is bundles identification. In the last part of this work I also describe creation of a preliminary atlas of white matter structural connectivity in children aged 17-81 months. This atlas allows automatic extraction of the bundles from tractography datasets. This approach demonstrated its relevance for evaluation of regional maturation of normal white matter in children. Finally, in the last part of the manuscript I describe potential future applications of the previously developed methods to investigation of the white matter in cases of two specific pathologies: focal epilepsy and metachromatic leukodystrophy.
2

Integration of multimodal imaging data for investigation of brain development / Intégration des données d’imagerie multimodale pour l’étude de développement du cerveau

Kulikova, Sofya 06 July 2015 (has links)
L’Imagerie par résonance magnétique (IRM) est un outil fondamental pour l’exploration in vivo du développement du cerveau chez le fœtus, le bébé et l’enfant. Elle fournit plusieurs paramètres quantitatifs qui reflètent les changements des propriétés tissulaires au cours du développement en fonction de différents processus de maturation. Cependant, l’évaluation fiable de la maturation de la substance blanche est encore une question ouverte: d'une part, aucun de ces paramètres ne peut décrire toute la complexité des changements sous-jacents; d'autre part, aucun d'eux n’est spécifique d’un processus de développement ou d’une propriété tissulaire particulière. L’implémentation d’approches multiparamétriques combinant les informations complémentaires issues des différents paramètres IRM devrait permettre d’améliorer notre compréhension du développement du cerveau. Dans ce travail de thèse, je présente deux exemples de telles approches et montre leur pertinence pour l'étude de la maturation des faisceaux de substance blanche. La première approche fournit une mesure globale de la maturation basée sur la distance de Mahalanobis calculée à partir des différents paramètres IRM (temps de relaxation T1 et T2, diffusivités longitudinale et transverse du tenseur de diffusion DTI) chez des nourrissons (âgés de 3 à 21 semaines) et des adultes. Cette approche offre une meilleure description de l’asynchronisme de maturation à travers les différents faisceaux que les approches uniparamétriques. De plus, elle permet d'estimer les délais relatifs de maturation entre faisceaux. La seconde approche vise à quantifier la myélinisation des tissus cérébraux, en calculant la fraction de molécules d’eau liées à la myéline (MWF) en chaque voxel des images. Cette approche est basée sur un modèle tissulaire avec trois composantes ayant des caractéristiques de relaxation spécifiques, lesquelles ont été pré-calibrées sur trois jeunes adultes sains. Elle permet le calcul rapide des cartes MWF chez les nourrissons et semble bien révéler la progression de la myélinisation à l’échelle cérébrale. La robustesse de cette approche a également été étudiée en simulations. Une autre question cruciale pour l'étude du développement de la substance blanche est l'identification des faisceaux dans le cerveau des enfants. Dans ce travail de thèse, je décris également la création d'un atlas préliminaire de connectivité structurelle chez des enfants âgés de 17 à 81 mois, permettant l'extraction automatique des faisceaux à partir des données de tractographie. Cette approche a démontré sa pertinence pour l'évaluation régionale de la maturation de la substance blanche normale chez l’enfant. Pour finir, j’envisage dans la dernière partie du manuscrit les applications potentielles des différentes méthodes précédemment décrites pour l’étude fine des réseaux de substance blanche dans le cadre de deux exemples spécifiques de pathologies : les épilepsies focales et la leucodystrophie métachromatique. / Magnetic Resonance Imaging (MRI) is a fundamental tool for in vivo investigation of brain development in newborns, infants and children. It provides several quantitative parameters that reflect changes in tissue properties during development depending on different undergoing maturational processes. However, reliable evaluation of the white matter maturation is still an open question: on one side, none of these parameters can describe the whole complexity of the undergoing changes; on the other side, neither of them is specific to any particular developmental process or tissue property. Developing multiparametric approaches combining complementary information from different MRI parameters is expected to improve our understanding of brain development. In this PhD work, I present two examples of such approaches and demonstrate their relevancy for investigation of maturation across different white matter bundles. The first approach provides a global measure of maturation based on the Mahalanobis distance calculated from different MRI parameters (relaxation times T1 and T2, longitudinal and transverse diffusivities from Diffusion Tensor Imaging, DTI) in infants (3-21 weeks) and adults. This approach provides a better description of the asynchronous maturation across the bundles than univariate approaches. Furthermore, it allows estimating the relative maturational delays between the bundles. The second approach aims at quantifying myelination of brain tissues by calculating Myelin Water Fraction (MWF) in each image voxel. This approach is based on a 3-component tissue model, with each model component having specific relaxation characteristics that were pre-calibrated in three healthy adult subjects. This approach allows fast computing of the MWF maps from infant data and could reveal progression of the brain myelination. The robustness of this approach was further investigated using computer simulations. Another important issue for studying white matter development in children is bundles identification. In the last part of this work I also describe creation of a preliminary atlas of white matter structural connectivity in children aged 17-81 months. This atlas allows automatic extraction of the bundles from tractography datasets. This approach demonstrated its relevance for evaluation of regional maturation of normal white matter in children. Finally, in the last part of the manuscript I describe potential future applications of the previously developed methods to investigation of the white matter in cases of two specific pathologies: focal epilepsy and metachromatic leukodystrophy.
3

Integration of multimodal imaging data for investigation of brain development / Intégration des données d’imagerie multimodale pour l’étude de développement du cerveau

Kulikova, Sofya 06 July 2015 (has links)
L’Imagerie par résonance magnétique (IRM) est un outil fondamental pour l’exploration in vivo du développement du cerveau chez le fœtus, le bébé et l’enfant. Elle fournit plusieurs paramètres quantitatifs qui reflètent les changements des propriétés tissulaires au cours du développement en fonction de différents processus de maturation. Cependant, l’évaluation fiable de la maturation de la substance blanche est encore une question ouverte: d'une part, aucun de ces paramètres ne peut décrire toute la complexité des changements sous-jacents; d'autre part, aucun d'eux n’est spécifique d’un processus de développement ou d’une propriété tissulaire particulière. L’implémentation d’approches multiparamétriques combinant les informations complémentaires issues des différents paramètres IRM devrait permettre d’améliorer notre compréhension du développement du cerveau. Dans ce travail de thèse, je présente deux exemples de telles approches et montre leur pertinence pour l'étude de la maturation des faisceaux de substance blanche. La première approche fournit une mesure globale de la maturation basée sur la distance de Mahalanobis calculée à partir des différents paramètres IRM (temps de relaxation T1 et T2, diffusivités longitudinale et transverse du tenseur de diffusion DTI) chez des nourrissons (âgés de 3 à 21 semaines) et des adultes. Cette approche offre une meilleure description de l’asynchronisme de maturation à travers les différents faisceaux que les approches uniparamétriques. De plus, elle permet d'estimer les délais relatifs de maturation entre faisceaux. La seconde approche vise à quantifier la myélinisation des tissus cérébraux, en calculant la fraction de molécules d’eau liées à la myéline (MWF) en chaque voxel des images. Cette approche est basée sur un modèle tissulaire avec trois composantes ayant des caractéristiques de relaxation spécifiques, lesquelles ont été pré-calibrées sur trois jeunes adultes sains. Elle permet le calcul rapide des cartes MWF chez les nourrissons et semble bien révéler la progression de la myélinisation à l’échelle cérébrale. La robustesse de cette approche a également été étudiée en simulations. Une autre question cruciale pour l'étude du développement de la substance blanche est l'identification des faisceaux dans le cerveau des enfants. Dans ce travail de thèse, je décris également la création d'un atlas préliminaire de connectivité structurelle chez des enfants âgés de 17 à 81 mois, permettant l'extraction automatique des faisceaux à partir des données de tractographie. Cette approche a démontré sa pertinence pour l'évaluation régionale de la maturation de la substance blanche normale chez l’enfant. Pour finir, j’envisage dans la dernière partie du manuscrit les applications potentielles des différentes méthodes précédemment décrites pour l’étude fine des réseaux de substance blanche dans le cadre de deux exemples spécifiques de pathologies : les épilepsies focales et la leucodystrophie métachromatique. / Magnetic Resonance Imaging (MRI) is a fundamental tool for in vivo investigation of brain development in newborns, infants and children. It provides several quantitative parameters that reflect changes in tissue properties during development depending on different undergoing maturational processes. However, reliable evaluation of the white matter maturation is still an open question: on one side, none of these parameters can describe the whole complexity of the undergoing changes; on the other side, neither of them is specific to any particular developmental process or tissue property. Developing multiparametric approaches combining complementary information from different MRI parameters is expected to improve our understanding of brain development. In this PhD work, I present two examples of such approaches and demonstrate their relevancy for investigation of maturation across different white matter bundles. The first approach provides a global measure of maturation based on the Mahalanobis distance calculated from different MRI parameters (relaxation times T1 and T2, longitudinal and transverse diffusivities from Diffusion Tensor Imaging, DTI) in infants (3-21 weeks) and adults. This approach provides a better description of the asynchronous maturation across the bundles than univariate approaches. Furthermore, it allows estimating the relative maturational delays between the bundles. The second approach aims at quantifying myelination of brain tissues by calculating Myelin Water Fraction (MWF) in each image voxel. This approach is based on a 3-component tissue model, with each model component having specific relaxation characteristics that were pre-calibrated in three healthy adult subjects. This approach allows fast computing of the MWF maps from infant data and could reveal progression of the brain myelination. The robustness of this approach was further investigated using computer simulations. Another important issue for studying white matter development in children is bundles identification. In the last part of this work I also describe creation of a preliminary atlas of white matter structural connectivity in children aged 17-81 months. This atlas allows automatic extraction of the bundles from tractography datasets. This approach demonstrated its relevance for evaluation of regional maturation of normal white matter in children. Finally, in the last part of the manuscript I describe potential future applications of the previously developed methods to investigation of the white matter in cases of two specific pathologies: focal epilepsy and metachromatic leukodystrophy.
4

Limited angular range X-ray micro-computerized tomography : derivation of anatomical information as a prior for optical luminescence tomography / Micro-tomographie par rayons X à angle limité : dérivation d’une information anatomique a priori pour la tomographie optique par luminescence

Barquero, Harold 22 May 2015 (has links)
Cette thèse traite du couplage d'un tomographe optique par luminescence (LCT) et d'un tomographe par rayons X (XCT), en présence d'une contrainte sur la géométrie d'acquisition du XCT. La couverture angulaire du XCT est limitée à 90 degrés pour satisfaire des contraintes spatiales imposées par le LCT existant dans lequel le XCT doit être intégré. L'objectif est de dériver une information anatomique, à partir de l'image morphologique issue du XCT. Notre approche a consisté i) en l'implémentation d'un algorithme itératif régularisé pour la reconstruction tomographique à angle limité, ii) en la construction d'un atlas anatomique statistique de la souris et iii) en l'implémentation d'une chaîne automatique réalisant la segmentation des images XCT, l'attribution d'une signification anatomique aux éléments segmentés, le recalage de l'atlas statistique sur ces éléments et ainsi l'estimation des contours de certains tissus à faible contraste non identifiables en pratique dans une image XCT standard. / This thesis addresses the combination of an Optical Luminescence Tomograph (OLT) and X-ray Computerized Tomograph (XCT), dealing with geometrical constraints defined by the existing OLT system in which the XCT must be integrated. The result is an acquisition geometry of XCT with a 90 degrees angular range only. The aim is to derive an anatomical information from the morphological image obtained with the XCT. Our approach consisted i) in the implementation of a regularized iterative algorithm for the tomographic reconstruction with limited angle data, ii) in the construction of a statistical anatomical atlas of the mouse and iii) in the implementation of an automatic segmentation workflow performing the segmentation of XCT images, the labelling of the segmented elements, the registration of the statistical atlas on these elements and consequently the estimation of the outlines of low contrast tissues that can not be identified in practice in a standard XCT image.
5

Analyse de maillages surfaciques par construction et comparaison de modèles moyens et par décomposition par graphes s'appuyant sur les courbures discrètes : application à l'étude de la cornée humaine / Mesh surface analysis by construction and comparison of mean models and by decomposition into graphs based on discrete curvatures : application to the study of the human cornea

Polette, Arnaud 03 December 2015 (has links)
Cette thèse se découpe en trois parties. Les deux premières portent sur le développement de méthodes pour la construction de modèles géométriques moyens et pour la comparaison de modèles. Plusieurs problématiques sont abordées, telles que la construction d'une cornée moyenne et la comparaison de cornées. Il existe à ce jour peu d'études ayant ces objectifs car la mise en correspondance de surfaces cornéennes est une problématique non triviale. En plus d'aider à développer la connaissance de l'anatomie cornéenne, la modélisation de la cornée normale permet de détecter tout écart significatif par rapport à la normale permettant un diagnostic précoce de pathologies. La seconde partie a pour objectif de développer une méthode pour reconnaître une surface parmi un groupe de surfaces à l’aide de leurs acquisitions pour une application de biométrie. L’idée est de quantifier la différence entre chaque surface et une surface donnée, et de déterminer un seuil permettant la reconnaissance. Deux méthodes sont proposées et une méthodologie en cascade utilisant ces deux méthodes afin de combiner les avantages de chacune est aussi proposée. La troisième et dernière partie porte sur une nouvelle méthode de décomposition en graphes de maillages 3D triangulés. Nous utilisons des cartes de courbures discrètes comme descripteur de forme afin de découper le maillage en différentes catégorie de carreaux. Ensuite un graphe d'adjacence est construit avec un nœud pour chaque carreau. Ces graphes sont utilisés pour extraire des caractéristiques géométriques décrites par des motifs (ou patterns), ce qui permet de détecter des régions spécifiques dans un modèle 3D, ou des motifs récurrents. / This thesis comprises three parts. The first two parts concern the development of methods for the construction of mean geometric models and for model comparison. Several issues are addressed, such as the construction of an average cornea and the comparison of corneas. Currently, there are few studies with these objectives because the matching of corneal surfaces is a non-trivial problem. In addition to help to develop a better understanding of the corneal anatomy, 3D models of normal corneas can be used to detect any significant deviation from the norm, thereby allowing for an early diagnosis of diseases or abnormalities using the shape of the cornea. The second part of this thesis aims to develop a method for recognizing a surface from a group of surfaces using their 3D acquisitions in a biometric application pertinent to the cornea. The concept behind this method is to quantify the difference between each surface and a given surface and to determine the threshold for recognition. Two complementary methods are proposed. A cascading methodology using both methods to combine the advantages of each method is also proposed. The third and final part of this thesis focuses on a new method for decomposing 3D triangulated meshes into graphs. We use discrete curvature maps as the shape descriptor to split the mesh in eight different categories. Next, an adjacency graph is built with a node for each patch. These graphs are used to extract geometric characteristics described by patterns that allow for the detection of specific regions in a 3D model or recurrent characteristics.
6

Analyse de maillages surfaciques par construction et comparaison de modèles moyens et par décomposition par graphes s’appuyant sur les courbures discrètes : application à l’étude de la cornée humaine

Polette, Arnaud 12 1900 (has links)
Réalisé en cotutelle avec Aix Marseille Université. / Cette thèse se découpe en trois parties. Les deux premières portent sur le développement de méthodes pour la construction de modèles géométriques moyens et pour la comparaison de modèles. Ces approches sont appliquées à la cornée humaine pour l’élaboration d’atlas et pour l’étude biométrique robuste. La troisième partie porte sur une méthode générique d'extraction d'informations dans un maillage en s'appuyant sur des propriétés différentielles discrètes afin de construire une structure par graphe permettant l'extraction de caractéristiques par une description sémantique. Les atlas anatomiques conventionnels (papier ou CD-ROM) sont limités par le fait qu'ils montrent généralement l'anatomie d'un seul individu qui ne représente pas nécessairement bien la population dont il est issu. Afin de remédier aux limitations des atlas conventionnels, nous proposons dans la première partie d’élaborer un atlas numérique 3D contenant les caractéristiques moyennes et les variabilités de la morphologie d'un organe, plus particulièrement de la cornée humaine. Plusieurs problématiques sont abordées, telles que la construction d'une cornée moyenne et la comparaison de cornées. Il existe à ce jour peu d'études ayant ces objectifs car la mise en correspondance de surfaces cornéennes est une problématique non triviale. En plus d'aider à développer une meilleure connaissance de l'anatomie cornéenne, la modélisation 3D de la cornée normale permet de détecter tout écart significatif par rapport à la "normale" permettant un diagnostic précoce de pathologies ou anomalies de la forme de la cornée. La seconde partie a pour objectif de développer une méthode pour reconnaître une surface parmi un groupe de surfaces à l’aide de leurs acquisitions 3D respectives, dans le cadre d’une application de biométrie sur la cornée. L’idée est de quantifier la différence entre chaque surface et une surface donnée, et de déterminer un seuil permettant la reconnaissance. Ce seuil est dépendant des variations normales au sein d’un même sujet, et du bruit inhérent à l’acquisition. Les surfaces sont rognées et trouées de façon imprévisible, de plus il n’y a pas de point de mise en correspondance commun aux surfaces. Deux méthodes complémentaires sont proposées. La première consiste à calculer le volume entre les surfaces après avoir effectué un recalage, et à utiliser ce volume comme un critère de similarité. La seconde approche s’appuie sur une décomposition en harmoniques sphériques en utilisant les coefficients comme des descripteurs de forme, qui permettront de comparer deux surfaces. Des résultats sont présentés pour chaque méthode en les comparant à la méthode la plus récemment décrite dans la littérature, les avantages et inconvénients de chacune sont détaillés. Une méthodologie en cascade utilisant ces deux méthodes afin de combiner les avantages de chacune est aussi proposée. La troisième et dernière partie porte sur une nouvelle méthode de décomposition en graphes de maillages 3D triangulés. Nous utilisons des cartes de courbures discrètes comme descripteur de forme afin de découper le maillage traité en huit différentes catégorie de carreaux (ou peak, ridge, saddle ridge, minimal, saddle valley, valley, pit et flat). Ensuite, un graphe d'adjacence est construit avec un nœud pour chaque carreau. Toutes les catégories de carreaux ne pouvant pas être adjacentes dans un contexte continu, des jonctions intermédiaires sont ajoutées afin d'assurer une cohérence continue entre les zones. Ces graphes sont utilisés pour extraire des caractéristiques géométriques décrites par des motifs (ou patterns), ce qui permet de détecter des régions spécifiques dans un modèle 3D, ou des motifs récurrents. Cette méthode de décomposition étant générique, elle peut être appliquée à de nombreux domaines où il est question d’analyser des modèles géométriques, en particulier dans le contexte de la cornée. / This thesis comprises three parts. The first two parts concern the development of methods for the construction of mean geometric models and for model comparison. These approaches are applied to the human cornea for the construction of atlases and a robust biometric study. The third part focuses on a generic method for the extraction of information in a mesh. This approach is based on discrete differential properties for building a graph structure to extract features using a semantic description. Conventional anatomical atlases (paper or CD-ROM) are limited by the fact they generally show the anatomy of a single individual who does not necessarily represent the population from which they originate. To address the limitations of conventional atlases, we propose in the first part of this thesis to construct a 3D digital atlas containing the average characteristics and variability of the morphology of an organ, especially that of the human cornea. Several issues are addressed, such as the construction of an average cornea and the comparison of corneas. Currently, there are few studies with these objectives because the matching of corneal surfaces is a non-trivial problem. In addition to help to develop a better understanding of the corneal anatomy, 3D models of normal corneas can be used to detect any significant deviation from the norm, thereby allowing for an early diagnosis of diseases or abnormalities using the shape of the cornea. The second part of this thesis aims to develop a method for recognizing a surface from a group of surfaces using their 3D acquisitions in a biometric application pertinent to the cornea. The concept behind this method is to quantify the difference between each surface and a given surface and to determine the threshold for recognition. This threshold depends on normal variations within the same subject and noise due to the acquisition system. The surfaces are randomly trimmed and pierced ; moreover, there is no common landmark on the surfaces. Two complementary methods are proposed. The first method consists of the computation of the volume between the surfaces after performing geometrical matching and the use of this volume as a criterion of similarity. The second approach is based on a decomposition of the surfaces into spherical harmonics using the coefficients as shape descriptors to compare the two surfaces. Each result of the proposed methods is compared to the most recent method described in the literature, with the benefits and disadvantages of each one described in detail. A cascading methodology using both methods to combine the advantages of each method is also proposed. The third and final part of this thesis focuses on a new method for decomposing 3D triangulated meshes into graphs. We use discrete curvature maps as the shape descriptor to split the mesh in eight different categories (peak, ridge, saddle ridge, minimal, saddle valley, valley, pit and flat). Next, an adjacency graph is built with a node for each patch. Because all categories of patches cannot be adjacent in a continuous context, intermediate junctions are added to ensure the continuous consistency between patches. These graphs are used to extract geometric characteristics described by patterns that allow for the detection of specific regions in a 3D model or recurrent characteristics. This decomposition method, being generic, can be used in many applications to analyze geometric models, especially in the context of the cornea.

Page generated in 0.0566 seconds