• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 8
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 86
  • 22
  • 22
  • 18
  • 18
  • 16
  • 12
  • 12
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

An investigation of the erosion technique for the evaluation of pedestrian level winds in the wind tunnel

Grip, Robert Erik January 1982 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Robert Erik Grip. / M.S.
62

Noggrannhet i luftflödesmätare i tre VAV-apparater samt anemometer- och stosmetod : En experimentell studie med låga luftflöden

Lelander, Lina January 2021 (has links)
En byggnad bör uppfylla kraven gällande energianvändning och god inomhusmiljö. Byggnadens ventilationssystem arbetar med att upprätthålla god luftkvalitet samt effektiv energianvändning. Genom att styra och reglera luftflödet efter behov med ett Variable Air Volume system (VAV-system) kan ventilationssystemets energianvändning minska utan att göra avkall på luftkvalitén inomhus. VAV-apparater arbetar oftast vid ett lämpligt minimumflöde över tid, vilket medför att VAV- apparatens precision vid låga flöden är viktig. Studien har syfte till att undersöka noggrannheten i flödesmätningar vid låga luftflöden med tre VAV-apparater, som var och en representerar en särskild mätteknik samt med mätmetoderna anemometer och stos. Datainsamlingen genomfördes via mätningarna i laboratoriemiljö. Insamlade mätdata hanterades i kalkylbladsprogrammet Excel. De tre VAV-apparaterna som användes i studien var utrustade med mätmetoderna, tryckskillnad över VAV-spjäll, ultraljud samt tryckskillnad över korslagda pitotrör. För att undersöka VAV-apparaternas, varmtrådsanemometerns och luftflödesstosens mätresultat användes standardiserad strypflänsmätning som referens på grund av dess låga mätosäkerhet. Alla VAV-apparaterna undersöktes för samma börvärden, 4 l/s som lägst och 50 l/s som störst. Experimentet delades in i test 1 och 2. I test 1 jämfördes de olika mätmetoderna med strypflänsens mätresultat. I test 2 undersöktes VAV-apparaternas mätosäkerhet vid två olika inloppsförhållande, rak kanal och 90° böj. Resultatet av studiens tester visade att VAV-apparaternas största mätfel skedde vid de lägsta inställda börvärdena 4–6 l/s. Även de två andra mätmetoderna, flödesstos och varmtrådsanemometer, visade störst mätfel vid de lägsta börvärdena 5 och 10 l/s. För att undersöka hur noggrant VAV-apparaterna reglerade mot det inställda börvärdet jämfördes strypflänsens mätresultat med de inställda börvärdena. Resultatet visade i de flesta fall att dessa luftflöden ej stämde överens med varandra. Resultatet för skillnaden mellan VAV-apparaternas mätresultat när de utsattes för två olika inloppsförhållande visade ingen tydlig indikation på att inloppsförhållandet 90° böj var den förutsättning som gav det största mätfelet förutom för VAV-apparat med ultraljud. Mer erfarenhet av att utföra mätningar hade bidragit till bättre utförda mätningar. Om mätningen skulle utföras med dagens erfarenhet hade det utförts flera mätningar på samma börvärde för att se om mätresultaten varierade eller om det gick att se ett tydligt mönster i resultaten, vilket hade stärkt studiens slutresultat.
63

California Polytechnic State University Wind Resource Assessment

Smith, Jason Allan 01 September 2011 (has links) (PDF)
Wind resource assessment at California Polytechnic State University shows there is potential for wind power generation on Cal Poly land. A computational fluid dynamics model based on wind data collected from a campus maintained meteorological tower on Escuela Ranch approximately 5 miles northwest of campus suggests there are areas of Cal Poly land with an IEC Class III wind resource at a height of 80 meters above ground. In addition during the daytime when the campus uses the most energy there are large portions of land with annual average daytime wind speeds above 6.9m/s. These areas have been identified by analyzing the wind speed and directional data collected at the meteorological tower and using it to create the boundary conditions and turbulence parameters for the computer model. The model boundary conditions and turbulence parameters have been verified through comparison between data collected at Askervein hill in Scotland during the 1980’s and the results of a simulation of Askervein hill using the same model. Before constructing a wind farm for power generation, additional meteorological towers should be constructed in Poly Canyon to further confirm the wind resource prediction.
64

Wind Energy Assessment and Visualization Laboratory Extra-Tall Tower Wind Resource Assessment: Icing Rules and Trends in the Data

Harris, James C. 25 July 2012 (has links)
No description available.
65

Measurements in Air-water Bubbly Flow Through a Vertical Narrow High-aspect Ratio Channel

Patrick, Benjamin R. 01 January 2011 (has links)
Two-Phase bubbly flows are encountered in a wide range of industrial applications, particularly where phase changes occur as seen in high performance heat exchangers and boiling reactors for power generation. These flows have been extensively studied in channels with circular geometries using air-water flows, though little data exists for flows through narrow rectangular channels. Measurements in thin geometries are particularly challenging since large bubbles bridge the gap, and it is difficult to compare point measurements with photographic techniques. The objective of this study is to explore the abilities of hot-film anemometry and high speed photography for taking measurements in a narrow vertical rectangular channel for a range of volume fractions, with particular attention on the narrow dimension. Hot-film anemometry (HFA) is a measurement technique originally developed for the measurement of fluid velocities, but has since been found to have applications for broader measurements in multiphase flow. With the sensor operating on the principle of heat loss, the method takes advantage of the differing abilities of the phases to transport heat, with each phase leaving its own signature in the signal response. The linchpin of this method lies in the ability to accurately distinguish between the two phases within the signal, and to execute this operation, various algorithms and techniques have been developed and used with some success for a wide range of flow conditions. This thesis is a study of the various methods of analysis such as amplitude threshold for triggering, and small slope threshold for finely tuning the edges of the bubble interactions, and demonstrates the capabilities of the hot-film sensor in a narrow rectangular vertical duct with a high aspect ratio. A vertical acrylic test section was fabricated for the purposes of this study, inset with a rectangular channel 38.1mm in width and 3.125mm in depth. Experiments were conducted for volume fractions ranging from 2% to 35%, which remained within the limits of the bubbly flow regime, but ranged from small uniform bubbles to larger bubbles coalescing into a transition regime. The hot-film signal was analyzed for void fraction, bubble speed, and bubble size. An in-depth study of the various methods of phase discrimination was performed and the effect of threshold selection was examined. High-speed video footage was taken in conjunction with the anemometer data for a detailed comparison between methods. The bubble speed was found to be in close agreement between the HFA and high-speed video, staying within 10% for volume fractions above 10%, but still remaining under a 30% difference for even as low as the 2% volume fraction, where measurements have been found to be historically difficult. The trends with volume fraction between the HFA and high-speed results were very similar. A correlation for narrow rectangular channels employing a simple drift flux model was found to compare with the void fraction data where appropriate. Good agreement was found between the methods using a hybrid phase discrimination technique for the HFA data for the void fraction and bubble speed results, with the high-speed video results showing a slight over-estimation in regards to the bubble size.
66

Novel Conceptual Design And Anlysis Of Polymer Derived Ceramic Mems Sensors For Gas Turbine Environment

Nagaiah, Narasimha 01 January 2006 (has links)
Technical challenges for developing micro sensors for Ultra High Temperature and turbine applications lie in that the sensors have to survive extremely harsh working conditions that exist when converting fuel to energy. These conditions include high temperatures (500-1500°C), elevated pressures (200-400 psi), pressure oscillations, corrosive environments (oxidizing conditions, gaseous alkali, and water vapors), surface coating or fouling, and high particulate loading. Several technologies are currently underdeveloped for measuring these parameters in turbine engines. One of them is an optical-based non-contact technology. However, these nondirective measuring technologies lack the necessary accuracy, at least at present state. An alternative way to measure these parameters without disturbing the working environments is using MEMS type sensors. Currently, the techniques under development for such harsh environment applications are silicon carbide (SiC) and silicon nitrite (Si3N4) –based ceramic MEMS sensors. But those technologies present some limitation such as narrow processing method, high cost (materials and processing cost), and limited using temperatures (typically < 800 C). In this research we propose to develop two sensors based on recently developed polymer-derived ceramics (PDCs): Constant Temperature Hot wire Anemometer, temperature/heat-flux sensor for turbine applications. PDC is a new class of high temperature ceramics. As we shall describe below, many unique features of PDCs make them particularly suitable for the proposed sensors, including: excellent thermo-mechanical properties at high temperatures, enable high temperature operation of the devices; various well-developed processing technologies, such as injection molding,photolithography, embossing, DRIE etching and precise machining, can be used for the fabrication of the devices; and tunable electric conductivity, enable the proposed sensors fabricated from similar materials, thus reliability considerations associated with thermal mismatch, which is a big concern when using MEMS-based sensors at elevated temperatures, will be minimized.
67

The Effect of Freestream Turbulence on Separation at Low Reynolds Numbers in a Compressor Cascade

Perry, Michael 02 January 2008 (has links)
A parametric study was performed to observe and quantify the effect of varying turbulence intensities on separation and performance in a compressor cascade at low Reynolds numbers. Tests were performed at 25° and 37.5° stagger angle, negative and positive angles of incidence up until the point of full stall, Reynolds numbers from 6 x 104 to 12.5 x 104, and turbulence intensities from approximately 0.7% – 8%. Additionally, oil flow techniques were combined with static tap data to visualize the boundary layer characteristics at various test conditions. The overall performance of the cascade was presented and evaluated through mass-averaged total pressure loss coefficients. The results of the study showed that the best efficiency (lowest pressure loss coefficient) was determined by separation characteristics for any angle of attack. While adding turbulence generally delayed separation, in some cases, adding turbulence to a separated airfoil resulted in decreased performance. Very similar separation characteristics were observed for the full range of Reynolds numbers and stagger, with the higher stagger setting giving slightly better performance. It was shown that a large percentage of total pressure losses can be recovered by applying the appropriate turbulence intensity at any angle of attack, which is relevant to possibilities for active control of such flows. / Master of Science
68

DATA ANALYSIS OF TWO NON-ISOTHERMAL TURBULENT JETS

Quach, Dan 09 1900 (has links)
A three-component Laser Doppler Anemometer (LDA) instrument, an array of stationary thermocouples and a moving thermocouple were used to capture the three-dimensional flow and temperature fields for the system of two opposing axisymmetric turbulent jets. It was found that buoyancy-induced curvature of the hot jet resulted in cross shearing with the opposing jet. The following report will investigate the adequacy of the current experimental measurements for the identification of coherent structures and the characterization of their effects on the mean flow. Identification tools include the power spectra and conditional average velocity measurements based on the Window Average Gradient (WAG). It was determined that the low sampling and large spatial positions of the thermocouple measurements were not for the retrieval of quantitative turbulence data. For the velocity measurements, the LDA data were found to be adequate in regions of low turbulence intensities but degraded as the measurements approached the region where the two jet shear layers interacted. The detection of periodic structures from the power spectrum was inconclusive due to noise. The WAG algorithm was affected by the irregular sampling and required modification. For the events detected, an intermittency factor of 16.4% at the interaction region of two shear layers was observed. In addition, these results suggest that these events contribute 30% of the mean momentum transfer across the jet. Furthermore, the contribution of these events to the lateral component of the turbulent kinetic energy was nearly eight times larger than the contributions to the axial or transverse direction. / Thesis / Master of Engineering (ME)
69

Effects of Free Stream Turbulence on Compressor Cascade Performance

Douglas, Justin W. 13 March 2001 (has links)
The effects of grid generated free-stream turbulence on compressor cascade performance was measured experimentally in the Virginia Tech blow-down wind tunnel. The parameter of key interest was the behavior of the measured total pressure loss coefficient with and without generated free-stream turbulence. A staggered cascade of nine airfoils was tested at a range of Mach numbers between 0.59 and 0.88. The airfoils were tested at both the lowest loss level cascade angle and extreme positive and negative cascade angles about this condition. The cascade was tested in a Reynolds number range based on the chord length of approximately 1.2-2x106. A passive turbulent grid was used as the turbulence-generating device, it produced a turbulent intensity of approximately 1.6%. The total pressure loss coefficient was reduced by 11-56% at both the "lowest loss level" and more positive cascade angles for both high and low Mach numbers. Oil Visualization and blade static pressure measurements were performed in order to gain a qualitative understanding of the loss reduction mechanism. The results indicate that the effectiveness of an increasing turbulent free-stream on loss reduction, at transonic Mach numbers, depends on whether the shock wave on the suction surface is strong enough to completely separate the boundary layer. At negative cascade angles, increasing free-stream turbulence proved to have a negligible influence on the pressure loss coefficient. At cascade angles where transition exists within a laminar separation bubble, increasing free-stream turbulence suppressed the extent of the laminar separation bubble and led to an earlier turbulent reattachment. / Master of Science
70

Establishing very low speed, disturbance-free flow for anemometry in turbulent boundary layers

Lanspeary, Peter V. January 1998 (has links)
This document addresses problems encountered when establishing the very low air-flow speeds required for experimental investigations of the mechanisms of low-Reynolds-number boundary-layer turbulence. Small-scale motions in the near-wall region are important features of turbulent boundary-layer dynamics, and, if these features are to be resolved by measurements in air with conventionally-sized hot-wire probes, a well-behaved canonical turbulent boundary layer must be developed at free stream flow speeds no higher than 4 m/s. However, at such low speeds, the turbulent boundary layers developed on the walls of a wind tunnel are very susceptible to perturbation by non-turbulent time-dependent flow structures which originate upstream from the test section in the laminar flow at the inlet and in the contraction. Four different non-turbulent flow structures have been identified. The first is a result of quasi-two-dimensional separation of the laminar boundary-layer from the surfaces of the wind-tunnel contraction. Potential flow simulations show that susceptibility to this form of separation is reduced by increasing the degree of axisymmetry in the cross-section geometry and by decreasing the streamwise curvature of the concave surfaces. The second source of time-dependence in the laminar boundary-layer flow is an array of weak streamwise vortices produced by Goertler instability. The Goertler vortices can be removed by boundary-layer suction at the contraction exit. The third form of flow perturbation, revealed by visualisation experiments with streamers, is a weak large-scale forced-vortex swirl produced by random spatial fluctuations of temperature at the wind-tunnel inlet. This can be prevented by thorough mixing of the inlet flow; for example, a centrifugal blower installed at the inlet reduces the amplitude of temperature nonuniformity by a factor of about forty and so prevents buoyancy-driven swirl. When subjected to weak pressure gradients near the start of a wind-tunnel contraction, Goertler vortices in laminar wall layers can develop into three-dimensional separations with strong counter-rotating trailing vortices. These trailing vortices are the fourth source of unsteady flow in the test-section. They can be suppressed by a series of appropriately located screens which remove the low-speed-streak precursors of the three-dimensional separations. Elimination of the above four contaminating secondary flows permits the development of a steady uniform downstream flow and well-behaved turbulent wall layers. Measurements of velocity in the turbulent boundary layer of the test-section have been obtained by hot-wire anemometry. When a hot-wire probe is located within the viscous sublayer, heat transfer from the hot-wire filament to the wall produces significant errors in the measurements of both the mean and the fluctuating velocity components. This error is known as wall-proximity effect and two successful methods are developed for removing it from the hot-wire signal. The first method is based on the observation that, if all experimental parameters except flow speed and distance from the wall are fixed, the velocity error may be expressed nondimensionally as a function of only one parameter, in the form DeltaU^+=f(y^+). The second method, which also accommodates the effect of changing the hot-wire overheat ratio, is based on a dimensional analyis of heat transfer to the wall. Velocity measurements in the turbulent boundary layer at the mid-plane of a nearly square test-section duct have established that, when the boundary-layer thickness is less than one quarter of the duct height, mean-velocity characteristics are indistinguishable from those of a two-dimensional flat-plate boundary layer. In thicker mid-plane boundary layers, the mean-velocity characteristics are affected by stress-induced secondary flow and by lateral constriction of the boundary-layer wake region. A significant difference between flat-plate and duct boundary layers is also observed in momentum-balance calculations. The momentum-integral equation for a duct requires definitions of momentumd and displacement thickness which are different from those given for flat-plate boundary layers. Momentum-thickness growth rates predicted by the momentum-integral equation for a duct agree closely with measurements of the newly defined duct momentum thickness. Such agreement cannot be obtained in terms of standard flat-plate momentum thickness. In duct boundary layers with Reynolds numbers Re_theta between 400 and 2600, similarity in the wake-region distributions of streamwise turbulence statistics has been obtained by normalising distance from the wall with the flat-plate momentum thickness, theta_2. This result indicates that, in contrast with the mean velocity characteristics, the structure of mid-plane turbulence does not depend on the proportion of duct cross-section occupied by boundary layers and is essentially the same as in a flat-plate boundary layer. For Reynolds numbers less than 400, both wall-region and wake-region similarity fail because near-wall turbulence events interact strongly with the free stream flow and because large scale turbulence motions are directly influenced by the wall. In these conditions, which exist in both duct and flat-plate turbulent boundary layers, there is no distinct near-wall or wake region, and the behaviour of turbulence throughout the boundary layer depends on both wall variables and on outer region variables simultaneously. / Thesis (Ph.D.)--School of Mechanical Engineering, 1998.

Page generated in 0.0525 seconds