• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 12
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 78
  • 16
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Maintenance of ultrastructural integrity during dehydration in a desiccation tolerant angiosperm as revealed by improved preservation techniques

Smith, Michaela Madeleine, 1972- January 2002 (has links)
Abstract not available
32

On the evolutionary origin of angiosperms : characterization of MADS-box floral homeotic gene homologues in Ephedra andina (Gnetales)

Savard, Joël. January 2000 (has links)
Despite a century of research, the evolutionary origin of angiosperms remains uncertain. Morphological studies have identified the gnetophytes as the sister group of angiosperms mainly because of the similar organization of their reproductive structures. Molecular studies have been ambiguous as to whether these two groups are closely related. Study of the development of seed plant reproductive structures can help to untangle this issue. Here, I report the cloning of five MARS-box floral homeotic gene homologues from the gnetophyte Ephedra andina. Three of these genes belong to AG, AGL6 and TM3 subfamilies. These monophyletic groups comprise angiosperm as well as conifer homologues. Phylogenetic analysis of the plant MADS-box gene family reveals that within subfamilies, Ephedra genes always form subclades with other gymnosperm genes to the exclusion of all angiosperm genes. These results suggest that gnetophytes are more closely related to conifers than to angiosperms.
33

Fossil angiosperms as indicators of early Tertiary conditions in Africa with special reference to the Miocene flora of Rusinga Island, Lake Victoria

Chesters, Kathleen Isabel Margaret January 1958 (has links)
No description available.
34

Sinalização por carboidratos em cana-de-açucar e divergencia evolutiva / Sugar signaling in sugarcane and evolution diversification

Branco, Diana Santos, 1983- 28 July 2008 (has links)
Orientadores: Michel Georges Albert Vincentz, Juliana de Maria Felix / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-11T18:43:41Z (GMT). No. of bitstreams: 1 Branco_DianaSantos_M.pdf: 18385613 bytes, checksum: 43238e785391538d38599321de0ac5ca (MD5) Previous issue date: 2008 / Resumo:Além de fonte primária de carbono e energia para os principais tipos celulares, os açúcares produzidos pela fotossíntese adquiriram importantes funções ao longo da evolução das plantas, no controle do crescimento e desenvolvimento, do metabolismo e na resistência a estresses abióticos (osmótico, energético) e bióticos (potógenos). Os açúcares atuam como sinalizadores ativando cascatas de transdução e, desta forma, promovendo mudanças na programação da expressão gênica. Com o objetivo de entendermos como a sinalização por açúcares diversificou-se em angiospermas, iniciamos uma análise comparativa dos perfis de expressão gênica em resposta aos açúcares sacarose e glicose em plântulas da monocotiledônea Saccharum spp e da eudicotiledônea Arabidopsis thaliana. Para tanto, duas abordagens foram utilizadas. O primeiro aspecto do trabalho estabeleceu relações entre elementos de resposta rápida (resposta primária) a açúcar e acúmulo de sacarose em genótipos de cana contrastantes para teor de sacarose. Outra abordagem, mais abrangente, procurou identificar genes diferencialmente expressos em resposta à sacarose. Na primeira parte do trabalho, a análises por qRT-PCR revelaram uma clara relação entre genes envolvidos em acúmulo de sacarose em cana-de-açúcar e sinalização primária por carboidratos. A partir de 34 SAS (Sugarcane Assembled Sequence) testados envolvidos em acúmulo de sacarose em cana, 24 deles também foram responsivos à glicose e/ou sacarose, sendo que 9 deles responderam em um mesmo sentido em genótipos de cana-de-açúcar que acumulam maior quantidade de sacarose (alto Brix). Dos 24 SAS responsivos à sacarose e/ou glicose, apenas 6 deles apresentaram genes ortólogos em Arabidopsis thaliana cuja regulação por estes açúcares ocorreu de maneira similar. Dentre eles, temos o fator de transcrição IAA16, que se mostrou reprimido por sacarose e glicose, constituindo um possível gene de interação entre sinalização por açúcares e auxina. Duas SNFs quinases parálogas de cana-de-açúcar tem como ortólogo um único gene de Arabidopsis thaliana. Os três genes foram reprimidos por sacarose e glicose, sendo outra parte conservada, na via de sinalização a açúcares entre as duas espécies. Outro gene de particular interesse corresponde a uma deidrina, reprimida por sacarose e glicose em cana, assim como seu ortólogo em Arabidopsis e genótipos alto Brix, sugerindo importante papel deste gene em processos relacionados a sinalização/acúmulo de sacarose. Na segunda parte do trabalho, utilizando-se a técnica de microarranjos de cDNA a partir do chip SUCAST, encontramos 55 genes diferencialmente expressos em resposta à sacarose. Destes, apenas 3 apresentaram genes ortólogos de Arabidopsis regulados por açúcar num mesmo sentido que em cana, correspondentes a duas proteínas quinases e a um gene pseudo-response-regulator. Este estudo preliminar identificou genes conservados da sinalização por açúcares em angiospermas que representam possíveis nós importantes das redes de controle relacionadas a carboidratos. O estabelecimento de um possível envolvimento de alguns destes genes no controle da capacidade de acumular mais sacarose no colmo da cana, abriu novas perspectivas na análise molecular desta importante característica. Estudos mais abrangentes são necessários para melhorar os conhecimentos sobre o grau de diversificação da sinalização por açúcares em angiospermas e os valores adaptativos associados. / Abstract: Besides act as carbon primary source in the major types of cells, sugars produced by photosynthesis acquired important functions in the course of plant's evolution like controlling growth, development, and metabolism and acting in resistance to abiotic and biotic stresses like osmotic, energetic and response to pathogens. Sugars can be signals that active signal transduction pathways to change genes expression programs. In order to access the diversification of sugar pathway signaling in angiosperms we conduct comparative analysis of the gene expression in response to sucrose and glucose in seedlings of the monocot Saccharum sp. and the eudicot Arabidopsis thaliana. We also aimed to access the possible correlation between genes related to sucrose storage in sugar-cane and genes related to primary sugar responses. Another aim was to identify deferentially expressed genes in sucrose response. A clearly relation between genes related to sucrose storage in sugar-cane and quickly primary response to sugars was obtained by qRT-PCR analysis. We tested 34 SAS (Sugar Assembled Sequence) related to sucrose storage in sugar-cane and we found that 24 of them were responsive to glucose and/or sucrose. Nine genes showed the same expression pattern (induction or repression) in response to sugar as seen in high Brix genotypes. Six, of this 24 genes, have Arabidopsis orthologues regulated in the same direction (induced or repressed). One is an IAA16 transcription factor that is repressed by both, glucose and sucrose, and may play a role in an integrative pathway of sugar and auxin responses. We also find two SNFs kinases (paralogues) related to a single Arabidopsis ortholog showing the repression response. Another interesting gene is a dehydrin that was repressed in response to sucrose and glucose in sugar-cane and Arabidopsis (its ortholog) and in the high Brix sugar-cane genotypes. It suggests an important role for this dehydrin in processes related to sucrose signaling and storage. In the second part of this work, the sugar-cane cDNA microarray chip, called SUCAST, allow us to identify 55 deferentially expressed in response to sucrose. Only three of these genes have orthologues regulated in same way in sugar-cane and Arabidopsis. These genes correspond to two protein-kinase and a pseudo-response regulator. This preliminary approach leads us to identify conserved genes in sugar signaling among angiosperms that possibly represents important nodes in the regulatory networks in response to sugars. Establishing the involvement of some of these genes in the ability of sucrose storage in sugar-cane's culm will lead us to new perspectives in the molecular basis of this characteristic. More specific works are also needed to improve the knowledge about the real degree of evolutive diversification in sugar signaling among angiosperms and associated genetic fitness. / Mestrado / Genetica Vegetal e Melhoramento / Mestre em Genética e Biologia Molecular
35

Abelhas coletoras de óleo e suas interações com as flores de Plantaginaceae produtoras de óleo floral / Oil-collecting bees and the interaction with the flowers of oil-producing Plantaginaceae

Aline Cristina Martins 19 October 2009 (has links)
Os óleos florais são os recursos alternativos ao pólen e néctar oferecidos por onze famílias de angiospermas às abelhas coletoras de óleo. A produção deste recurso surgiu ao menos 28 vezes e a coleta destes, em cinco linhagens distintas entre as abelhas. Na região Neotropical, Malpighiaceae é a família mais diversa e melhor conhecida em termos de seu sistema de polinização e relação com abelhas coletoras de óleo. Plantaginaceae é conhecida por alguns trabalhos, focados principalmente em Angelonia e Monttea. No presente estudo, são apresentadas as relações entre abelhas coletoras de óleo e flores de Plantaginaceae (cinco espécies de Angelonia e uma de Basistemon), com especial atenção aos aspectos morfológicos de ambos, aspectos comportamentais das abelhas durante a coleta e a sobreposição geográfica entre os parceiros deste mutualismo. Este trabalho apresenta pela primeira vez dados dos visitantes de três espécies: A. eriostachys, A. goyazensis e Basistemon silvaticus; além de dados inéditos sobre espécies já estudadas: A. cornigera, A. integerrima e A. salicariifolia. Foi observado que as estruturas especializadas presentes no labelo de todas as espécies estudadas de Angelonia estão associadas à imposição da postura correta do visitante e sua fixação na flor. As flores de Basistemon são mais simples neste sentido e apresentam apenas um discreto calo mediano. Apesar da morfologia destas estruturas diferirem consideravelmente entre as espécies, é possível estabelecer relações de origem entre elas. A assembléia de visitantes das flores de Angelonia e Basistemon variou entre três a dezoito espécies. Estas espécies foram consideradas polinizadoras ou visitantes ilegítimos. As abelhas do gênero Centris foram consideradas as principais polinizadoras das plantas estudadas, porém, espécies de Tapinotaspidini, em especial o gênero Caenonomada, também detêm esse papel. As abelhas que coletam óleo também coletam pólen, com exceção dos gêneros Centris, Caenonomada e Tapinotaspis, que coletam apenas óleo. O comportamento adequado dos polinizadores de Angelonia e Basistemon, imposto pela morfologia floral, implica na coleta do óleo com as pernas anteriores e o contato com os órgãos férteis na fronte ou mesoscuto em flores com corola mais profunda. Algumas espécies estão morfologicamente adaptadas a coleta nestas flores, como exemplo, as abelhas Centris grupo hyptidis, que possuem aparatos coletores divergentes de todo o padrão apresentado pelo gênero. Quanto à distribuição destas plantas e de seus potenciais polinizadores, em alguns casos, há grande sobreposição e os potenciais polinizadores podem ou não ser especialistas nestas fontes de óleo. Os casos de baixa congruência geográfica mostram que muitos destes potenciais polinizadores não dependem das fontes de óleo de Angelonia e Basistemon. / Floral oils are alternative flower reward to pollen and nectar that are offered by eleven families of angiosperms to oil-collecting bees. The production of this resource appeared at least 28 times, and its collection has been observed in five different lineages of bees. In the Neotropical Region, Malpighiaceae is the most diverse and best known family concerning to the pollination system and the interactions with oil-collecting bees. Plantaginaceae is well known due to some studies mostly on Angelonia and Monttea. In this study, the relationship between the oil-collecting bees and the Plantaginaceae flowers (five species of Angelonia and one of Basistemon) is presented, being given special attention to the morphological aspects of both, the bees behavior during the oil collection and the geographical overlap between the partners of this mutualism. This work presents for the first time the visitors of three species (A. eriostachys, A. goyazensis and Basistemon silvaticus), as well as new data on already studied species (A. cornigera, A. integerrima and A. salicariifolia). It was recorded that the specialized structures that are found on the lip (labellum) of all the known species of Angelonia are associated to the imposition of the correct posture of the visitor and their fixation on the flower. The Basistemon flowers are, in this way, less complex and they present only a discrete median callus. Although the morphology of these structures differ considerably among species, it is possible to establish relationships between their origins. The assemblage of visitors of the flowers of Angelonia and Basistemon varied from three to eighteen species. These species were considered pollinators or illegitimate visitors of the studied species. The bees of the genus Centris were considered the main pollinators of these plants; however species of Tapinotaspidini also play this role. These bees collect oil and pollen, in most species, having as exceptions the genera Centris, Caenonomada e Tapinotaspis that collect only oil. The correct behavior of the visitors of Angelonia and Basistemon flowers, imposed by the floral morphology, results the collection of oil with the forelegs and the contact of their fertile organs with their anterior head or dorsal thorax (in flowers with deep corolla). Some species are morphologically adapted to sample in these flowers, for example, the Centris bees group hyptidis, that have collecting apparatus that diverge from the pattern found in the genera. In respect to the distribution of these plants and their potential pollinators, in some cases, there is a large overlap and the potential pollinators may or may not be specialists in these oil sources. The cases of low geographical congruency show that many of these potential pollinators do not depend only on the oil sources of Angelonia and Basistemon.
36

Abelhas coletoras de óleo e suas interações com as flores de Plantaginaceae produtoras de óleo floral / Oil-collecting bees and the interaction with the flowers of oil-producing Plantaginaceae

Martins, Aline Cristina 19 October 2009 (has links)
Os óleos florais são os recursos alternativos ao pólen e néctar oferecidos por onze famílias de angiospermas às abelhas coletoras de óleo. A produção deste recurso surgiu ao menos 28 vezes e a coleta destes, em cinco linhagens distintas entre as abelhas. Na região Neotropical, Malpighiaceae é a família mais diversa e melhor conhecida em termos de seu sistema de polinização e relação com abelhas coletoras de óleo. Plantaginaceae é conhecida por alguns trabalhos, focados principalmente em Angelonia e Monttea. No presente estudo, são apresentadas as relações entre abelhas coletoras de óleo e flores de Plantaginaceae (cinco espécies de Angelonia e uma de Basistemon), com especial atenção aos aspectos morfológicos de ambos, aspectos comportamentais das abelhas durante a coleta e a sobreposição geográfica entre os parceiros deste mutualismo. Este trabalho apresenta pela primeira vez dados dos visitantes de três espécies: A. eriostachys, A. goyazensis e Basistemon silvaticus; além de dados inéditos sobre espécies já estudadas: A. cornigera, A. integerrima e A. salicariifolia. Foi observado que as estruturas especializadas presentes no labelo de todas as espécies estudadas de Angelonia estão associadas à imposição da postura correta do visitante e sua fixação na flor. As flores de Basistemon são mais simples neste sentido e apresentam apenas um discreto calo mediano. Apesar da morfologia destas estruturas diferirem consideravelmente entre as espécies, é possível estabelecer relações de origem entre elas. A assembléia de visitantes das flores de Angelonia e Basistemon variou entre três a dezoito espécies. Estas espécies foram consideradas polinizadoras ou visitantes ilegítimos. As abelhas do gênero Centris foram consideradas as principais polinizadoras das plantas estudadas, porém, espécies de Tapinotaspidini, em especial o gênero Caenonomada, também detêm esse papel. As abelhas que coletam óleo também coletam pólen, com exceção dos gêneros Centris, Caenonomada e Tapinotaspis, que coletam apenas óleo. O comportamento adequado dos polinizadores de Angelonia e Basistemon, imposto pela morfologia floral, implica na coleta do óleo com as pernas anteriores e o contato com os órgãos férteis na fronte ou mesoscuto em flores com corola mais profunda. Algumas espécies estão morfologicamente adaptadas a coleta nestas flores, como exemplo, as abelhas Centris grupo hyptidis, que possuem aparatos coletores divergentes de todo o padrão apresentado pelo gênero. Quanto à distribuição destas plantas e de seus potenciais polinizadores, em alguns casos, há grande sobreposição e os potenciais polinizadores podem ou não ser especialistas nestas fontes de óleo. Os casos de baixa congruência geográfica mostram que muitos destes potenciais polinizadores não dependem das fontes de óleo de Angelonia e Basistemon. / Floral oils are alternative flower reward to pollen and nectar that are offered by eleven families of angiosperms to oil-collecting bees. The production of this resource appeared at least 28 times, and its collection has been observed in five different lineages of bees. In the Neotropical Region, Malpighiaceae is the most diverse and best known family concerning to the pollination system and the interactions with oil-collecting bees. Plantaginaceae is well known due to some studies mostly on Angelonia and Monttea. In this study, the relationship between the oil-collecting bees and the Plantaginaceae flowers (five species of Angelonia and one of Basistemon) is presented, being given special attention to the morphological aspects of both, the bees behavior during the oil collection and the geographical overlap between the partners of this mutualism. This work presents for the first time the visitors of three species (A. eriostachys, A. goyazensis and Basistemon silvaticus), as well as new data on already studied species (A. cornigera, A. integerrima and A. salicariifolia). It was recorded that the specialized structures that are found on the lip (labellum) of all the known species of Angelonia are associated to the imposition of the correct posture of the visitor and their fixation on the flower. The Basistemon flowers are, in this way, less complex and they present only a discrete median callus. Although the morphology of these structures differ considerably among species, it is possible to establish relationships between their origins. The assemblage of visitors of the flowers of Angelonia and Basistemon varied from three to eighteen species. These species were considered pollinators or illegitimate visitors of the studied species. The bees of the genus Centris were considered the main pollinators of these plants; however species of Tapinotaspidini also play this role. These bees collect oil and pollen, in most species, having as exceptions the genera Centris, Caenonomada e Tapinotaspis that collect only oil. The correct behavior of the visitors of Angelonia and Basistemon flowers, imposed by the floral morphology, results the collection of oil with the forelegs and the contact of their fertile organs with their anterior head or dorsal thorax (in flowers with deep corolla). Some species are morphologically adapted to sample in these flowers, for example, the Centris bees group hyptidis, that have collecting apparatus that diverge from the pattern found in the genera. In respect to the distribution of these plants and their potential pollinators, in some cases, there is a large overlap and the potential pollinators may or may not be specialists in these oil sources. The cases of low geographical congruency show that many of these potential pollinators do not depend only on the oil sources of Angelonia and Basistemon.
37

On the evolutionary origin of angiosperms : characterization of MADS-box floral homeotic gene homologues in Ephedra andina (Gnetales)

Savard, Joël. January 2000 (has links)
No description available.
38

Antimicrobial activity of plant extracts

Seid, Melinda J. 01 January 1978 (has links) (PDF)
The purpose of this study was to investigate a possible antimicrobial activity in the following plants: Brunfelsia hopeana, Anemopsis californica, and Heimia salicifolia against Staphylococcus aureus, a Gram-positive coccus, Escherichia coli, a Gram-negative fermenter, Pseudomonas aeruginosa, a Gram-negative non-fermenter, and the yeast Candida albicans.
39

Identificação de gêneros arbóreos de Fabaceae, Lauraceae e Myrtaceae do Estado de São Paulo utilizando o marcador molecular rbcL / Identification of Fabaceae, Lauraceae and Myrtaceae São Paulo State\'s tree genera using the molecular marker rbcL

Barroso, Renata Moreira 28 July 2017 (has links)
O Brasil, como país detentor da maior biodiversidade mundial de plantas, possui um importante papel no desenvolvimento de pesquisas que auxiliem ou viabilizem a identificação de sua diversidade vegetal, como o estudo de marcadores moleculares adequados a esta tarefa. Fabaceae, Lauraceae e Myrtaceae são as famílias mais importantes da Flora Brasileira por apresentarem grande diversidade de gêneros e espécies e serem consideradas de difícil identificação pela taxonomia tradicional. Tendo em vista o potencial do rbcL na identificação molecular de plantas, este trabalho propôs estudar a eficiência deste marcador em identificar gêneros e espécies das três principais famílias de árvores da Flora do Estado de São Paulo. Foi criado um banco de sequências de rbcL contendo 160 espécies, o qual foi testado quanto sua eficiência de identificação através de um teste cego contendo as sequências inteiras (maior que 400 pares de base) e as sequências de tamanho reduzido em 300, 200 e 100 pb. O teste cego também foi realizado no banco de sequências mundial Boldsystems. Para a análise dos resultados foi utilizado o programa BLAST que busca similaridades entre as sequências. Os resultados evidenciaram a viabilidade do método ao mostrar que o rbcL identificou 100% dos gêneros arbóreos de Fabaceae e Myrtaceae, porém não podemos dizer o mesmo para identificar gêneros de Lauraceae e nem em nível específico para qualquer uma das famílias, já o teste de identificação com as sequências reduzidas mostrou que a sequência de rbcL da espécie a ser analisada deve conter mais que 400 pares de base para não comprometer a correta identificação de gênero. / Brazil, as the country with the greatest biodiversity in the world, has an important role in the development of research to help or enables the identification of its plant diversity, such as the study of suitable molecular markers for this task. Fabaceae, Lauraceae and Myrtaceae are the most important families of the Brazilian Flora because they present a large diversity of genera and species and are considered difficult to identify by the traditional taxonomy. Considering the potential of rbcL in the molecular identification of plants, this work aims to study the efficiency of this marker in identifying genera and species of the three main tree families of São Paulo State\'s Flora. A rbcL sequence Bank containing 160 tree species was created in order to test its efficiency through a blind test with whole and reduced sequences using the BLAST program that searches for similarities between sequences. The blind identification test was also performed using the Boldsystems database. The results showed that the rbcL can´t be indicated to identify Lauraceae tree genera, but can be indicated to successfully identify tree genera of Fabaceae and Myrtaceae. The test identification with reduced sequences showed that the analized specie must have at least 400pb to not compromise the correct genera identification.
40

Bioremediation of roadside pollutants NO₂ and benzene by integrating angiosperm Wedelia trilobata and spent compost of basidiomycete Pleurotus pulmonarius.

January 2011 (has links)
Lee, Ching Yuen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 275-288). / Abstracts in English and Chinese. / List of Figures --- p.vii / List of Tables --- p.xv / List of Abbreviations and Symbols Used --- p.xix / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Roadside Air Pollution Problem --- p.1 / Chapter 1.1.1 --- Nitrogen Dioxide --- p.9 / Chapter 1.1.2 --- Benzene --- p.12 / Chapter 1.1.3 --- Heat and Noise --- p.13 / Chapter 1.2 --- Treatment Methods for Removal of Ambient Air Pollutants --- p.15 / Chapter 1.2.1 --- Physical and Chemical Methods --- p.15 / Chapter 1.2.2 --- Bioremediation --- p.17 / Chapter 1.2.3 --- Passive System and Active System --- p.18 / Chapter 1.3 --- Research Strategy --- p.18 / Chapter 1.3.1 --- Plant as a Bioremediating Agent --- p.18 / Chapter 1.3.2 --- Spent Mushroom Compost (SMC) as a Bioremediating Agent --- p.20 / Chapter 1.3.3 --- An Integrated System for Air Bioremediation --- p.24 / Chapter 1.3.4 --- Aim and Objectives of the Project --- p.24 / Chapter 1.4 --- Significance of the Project --- p.25 / Chapter 2. --- Materials and Methods --- p.26 / Chapter 2.1 --- Source of Materials --- p.28 / Chapter 2.1.1 --- Ingredients of Plant Growth Substrate --- p.28 / Chapter 2.1.2 --- Plants --- p.30 / Chapter 2.2 --- Formulation of the Plant Substrate --- p.31 / Chapter 2.2.1 --- Water Holding Capacity --- p.31 / Chapter 2.2.2 --- Water Retention --- p.32 / Chapter 2.2.3 --- Seed Germination Toxicity and Tissue Elongation --- p.33 / Chapter 2.2.4 --- Bulk Density and Porosity --- p.34 / Chapter 2.2.5 --- Substrate Shrinkage --- p.35 / Chapter 2.3 --- Characterization of the Materials --- p.36 / Chapter 2.3.1 --- pH --- p.36 / Chapter 2.3.2 --- Electrical Conductivity --- p.36 / Chapter 2.3.3 --- % Organic Matter --- p.37 / Chapter 2.3.4 --- "Nutrient Contents (Nitrogen, Phosphorus, Potassium, Magnesium, Calcium, Sodium, Iron)" --- p.37 / Chapter 2.3.5 --- Total Organic Carbon --- p.40 / Chapter 2.3.6 --- Detection for Heavy Metal Contaminants --- p.40 / Chapter 2.3.7 --- Detection for Organic Contaminants --- p.41 / Chapter 2.3.8 --- Extraction Efficiency of Heavy Metal Content and Organic Contaminants --- p.43 / Chapter 2.3.9 --- Outdoor Growing Trial of the Bioremediation System using Various Plant Species --- p.45 / Chapter 2.4 --- Characterization of the Plant --- p.47 / Chapter 2.4.1 --- Leaf Area Estimation --- p.47 / Chapter 2.4.2 --- Density of Plantlet --- p.48 / Chapter 2.4.3 --- Growth Rate of Plantlet in Water --- p.49 / Chapter 2.5 --- Temperature Stabilization Test --- p.50 / Chapter 2.6 --- NO2 Removal Test --- p.52 / Chapter 2.6.1 --- Preparation of Plantlets --- p.52 / Chapter 2.6.2 --- Generation and Sampling of NO2 --- p.52 / Chapter 2.6.3 --- Effect of N02 Concentration on RE --- p.55 / Chapter 2.6.4 --- Effect of Various Combinations in the Bioremediation System --- p.56 / Chapter 2.6.5 --- "Comparison to Photocatalytic Paint, Physical Sorbents and Other Planting Media" --- p.57 / Chapter 2.6.6 --- Effect of Temperature --- p.60 / Chapter 2.6.7 --- Effect of Retention Time --- p.61 / Chapter 2.6.8 --- Effect of Exposed Time --- p.61 / Chapter 2.6.9 --- Composition Analysis --- p.62 / Chapter 2.6.10 --- Post Tests after N02 Removal Test --- p.63 / Chapter 2.6.11 --- Chlorophyll and Carotenoid Contents --- p.63 / Chapter 2.6.12 --- Phenolic Content --- p.64 / Chapter 2.6.13 --- Total Microbial Count --- p.65 / Chapter 2.6.14 --- Activities of Antioxidative Enzymes --- p.66 / Chapter 2.6.15 --- Nitrite Oxidizing Enzyme --- p.68 / Chapter 2.7 --- Benzene Removal Test --- p.69 / Chapter 2.7.1 --- Preparation of Plantlets --- p.69 / Chapter 2.7.2 --- Generation and Sampling of Benzene --- p.69 / Chapter 2.7.3 --- Effect of Benzene Concentration on RE --- p.74 / Chapter 2.7.4 --- Effect of Various Combinations in the Bioremediation System --- p.75 / Chapter 2.7.5 --- Effect of Temperature --- p.76 / Chapter 2.7.6 --- Effect of Exposed Time --- p.77 / Chapter 2.7.7 --- Effect of Retention Time --- p.78 / Chapter 2.7.8 --- Composition Analysis --- p.78 / Chapter 2.7.9 --- "Comparison to Physical Sorbents, Photocatalytic Paint and Other Planting Media" --- p.79 / Chapter 2.7.10 --- Trials in Order to Increase RE of Benzene --- p.80 / Chapter 2.7.11 --- Residual Benzene in Substrate --- p.83 / Chapter 2.7.12 --- Post Tests after Benzene Removal Test --- p.84 / Chapter 2.7.13 --- Catechol Oxidase Activity --- p.85 / Chapter 2.8 --- Removal Tests for Other Air Pollutants --- p.86 / Chapter 2.9 --- Field Study --- p.88 / Chapter 2.10 --- Statistical Analysis --- p.98 / Chapter 3. --- Results --- p.99 / Chapter 3.1 --- Formulation of Plant Substrate --- p.99 / Chapter 3.1.1 --- Dose of SMC in Substrate Formula --- p.99 / Chapter 3.1.2 --- Dose of SAP in Substrate Formula --- p.105 / Chapter 3.1.3 --- Dose of Rice Hull in Substrate Formula --- p.111 / Chapter 3.2 --- Characterization of the Optimized Wedelia- growing Substrate --- p.118 / Chapter 3.2.1 --- Physical and Chemical Analysis --- p.118 / Chapter 3.2.2 --- Nutrient and Metal Contents --- p.120 / Chapter 3.2.3 --- Detection of Heavy Metal Contaminants --- p.124 / Chapter 3.2.4 --- Detection for Organic Contaminants --- p.126 / Chapter 3.3 --- Outdoor Growing Trial of Various Plants --- p.138 / Chapter 3.4 --- Plant Characterization --- p.143 / Chapter 3.4.1 --- Growth Rate of Plantlets in Water --- p.143 / Chapter 3.5 --- Temperature Stabilization Test --- p.146 / Chapter 3.6 --- NO2 Removal Test --- p.149 / Chapter 3.6.1 --- Effect of NO2 Concentration on RE --- p.149 / Chapter 3.6.2 --- Effect of Various Combinations in the Bioremediation System --- p.156 / Chapter 3.6.3 --- "Comparison to Photocatalytic Paint, Physical Sorbents and Other Planting Media" --- p.160 / Chapter 3.6.4 --- Effect of Temperature --- p.164 / Chapter 3.6.5 --- Effect of Retention Time --- p.166 / Chapter 3.6.6 --- Effect of Exposed Time --- p.168 / Chapter 3.6.7 --- Post Test Results After Various Exposed Times --- p.170 / Chapter 3.6.8 --- Microbial Count After Various Exposed Times --- p.176 / Chapter 3.6.9 --- Contribution of the Components of the Bioremediation System to Remove NO2 --- p.178 / Chapter 3.7 --- Benzene Removal Test --- p.183 / Chapter 3.7.1 --- Effect of Benzene Concentration on RE --- p.183 / Chapter 3.7.2 --- Effect of Various Combinations in the Bioremediation System --- p.186 / Chapter 3.7.3 --- Effect of Temperature --- p.190 / Chapter 3.7.4 --- Effect of Retention Time --- p.192 / Chapter 3.7.5 --- Effect of Exposed Time --- p.194 / Chapter 3.7.6 --- Contribution of Components of the Bioremediation System to Remove Benzene --- p.198 / Chapter 3.7.7 --- Optimization of the Benzene Removal of the Bioremediation System --- p.200 / Chapter 3.7.8 --- "Comparison to Photocatalytic Paint Coatings, Physical Sorbents and Other Planting Media" --- p.204 / Chapter 3.8 --- Removal Test for Other Air Pollutants --- p.208 / Chapter 3.9 --- Field Study I --- p.210 / Chapter 3.9.1 --- Environmental Parameters --- p.210 / Chapter 3.9.2 --- Noise --- p.212 / Chapter 3.9.3 --- Removal versus Distance --- p.213 / Chapter 3.9.4 --- Barrier Effect by Canvas --- p.216 / Chapter 3.9.5 --- NO2 Concentration --- p.216 / Chapter 3.9.6 --- VOC Concentration --- p.218 / Chapter 3.10 --- Field Study II --- p.220 / Chapter 3.10.1 --- Environmental Parameters --- p.220 / Chapter 3.10.2 --- Noise --- p.222 / Chapter 3.10.3 --- NO2 Concentration --- p.224 / Chapter 3.10.4 --- VOC Concentration --- p.225 / Chapter 4. --- Discussion --- p.228 / Chapter 4.1 --- Formulation of a Plant-growing Substrate --- p.228 / Chapter 4.2 --- Temperature Stabilization --- p.231 / Chapter 4.3 --- Dynamic Flow Through System in Pollutant Removal Experiment --- p.233 / Chapter 4.4 --- N02 Removal Test --- p.237 / Chapter 4.4.1 --- Limiting Factors of NO2 Removal --- p.237 / Chapter 4.4.2 --- Adsorption Isotherm --- p.239 / Chapter 4.4.3 --- Contribution of NO2 Removal by Various Components --- p.241 / Chapter 4.4.4 --- Comparison of NO2 Removal with Other Systems --- p.242 / Chapter 4.4.5 --- Comparison of NO2 Removal with Other Studies --- p.246 / Chapter 4.4.6 --- Toxicity of NO2 towards the Bioremediation System --- p.247 / Chapter 4.5 --- Interpretation of Results in Benzene Removal Test --- p.251 / Chapter 4.5.1 --- Limiting Factors of Benzene Removal --- p.251 / Chapter 4.5.2 --- Adsorption Isotherm --- p.253 / Chapter 4.5.3 --- Contribution of Benzene Removal by Various Components --- p.254 / Chapter 4.5.4 --- Comparison of Benzene Removal with Other Systems --- p.255 / Chapter 4.5.5 --- Trials in Order to Increase RE of Benzene --- p.256 / Chapter 4.5.6. --- Comparison of Benzene Removal with Other Studies --- p.258 / Chapter 4.6 --- Removal of Other Air Pollutants --- p.261 / Chapter 4.7 --- Field Studies with the Vertical Panels of the Bioremediation System --- p.264 / Chapter 4.7.1 --- Barrier Effect by Canvas --- p.264 / Chapter 4.7.2 --- Temperature Buffering --- p.265 / Chapter 4.7.3 --- Sound Attenuation --- p.266 / Chapter 4.7.4 --- NO2 and VOC Removal --- p.268 / Chapter 5. --- Conclusion --- p.272 / Chapter 6. --- Further Investigation --- p.274 / Chapter 7. --- References --- p.275

Page generated in 0.0515 seconds