• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 75
  • 30
  • 23
  • 10
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 261
  • 112
  • 81
  • 63
  • 62
  • 62
  • 52
  • 48
  • 34
  • 34
  • 31
  • 29
  • 29
  • 29
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Ansatz de Bethe para cadeias quânticas de spin-1 com condições de contorno

Fireman, Elton Casado 21 March 2002 (has links)
Made available in DSpace on 2016-06-02T20:15:17Z (GMT). No. of bitstreams: 1 1813.pdf: 547388 bytes, checksum: 3c5fafe377da474a62c0ea847b158e20 (MD5) Previous issue date: 2002-03-21 / Financiadora de Estudos e Projetos / The procedure for obtaining integrable open spin chain Hamiltonians via reflection matrices explicitly carried out for some three-state vertex models. We have considered the 19-vertex models of Zamolodchikov-Fateev and Izergin-Korepin and the Z2 graded 19-vertex models with sl(2/1) and osp(1/2) invariances. In each case the eigenspectrum is determined by application of the coordinate Bethe ansatz. / O procedimento para resolução de cadeias quânticas integráveis de spin 1 com termos de superfícies diagonais para os modelos de vértices de três estados é apresentado. Consideramos os modelos de 19-vértices Zamolodchikov-Fateev e Izergin- Korepin e os modelos de 19-vértices com graduação Z2 sl(2/1) e osp(1/2) . Em cada caso os autovalores de energia são determinados pela aplicação do ansatz de Bethe de coordenadas.
32

Ansatz de Bethe e princípio variacional aplicados a sistemas de poucas partículas interagentes em um potencial harmônico unidimensional

Lima, Diefferson Rubeni da Rosa de January 2014 (has links)
Neste trabalho nós desenvolvemos uma abordagem baseada no método do ansatz de Bethe e no princípio variacional para encontrar a energia do estado fundamental para sistemas unidimensionais formados por um número pequeno de particulas interagentes. Particularmente, nós investigamos sistemas de duas e três partículas interagentes aprisionados em uma armadilha harmônica unidimensional. Nossos resultados apresentam uma boa concordância com as soluções analíticas e numéricas existentes na literatura. Também determinamos a densidade de probabilidade e a função de correlação de pares do sistema. Nossa abordagem é bastante genérica e permite o estudo de sistemas de poucas partículas mais complexos, alguns de interesse experimental, que não apresentam solução analítica. / In this work we develop an approach based on the Bethe ansatz method and the variational principle to nd the ground state energy for a one-dimensional few-body system. We investigate a system of two and three interacting particles con ned in a one-dimensional harmonic trap. Our results show a good agreement with existing analytical and numerical results. We also determine the probability density and the pair correlation function of the system. Our approach is very general and enables the study of more complex few-body systems, some of them of experimental interest, where no exact analytical solution is available.
33

Ansatz de Bethe e princípio variacional aplicados a sistemas de poucas partículas interagentes em um potencial harmônico unidimensional

Lima, Diefferson Rubeni da Rosa de January 2014 (has links)
Neste trabalho nós desenvolvemos uma abordagem baseada no método do ansatz de Bethe e no princípio variacional para encontrar a energia do estado fundamental para sistemas unidimensionais formados por um número pequeno de particulas interagentes. Particularmente, nós investigamos sistemas de duas e três partículas interagentes aprisionados em uma armadilha harmônica unidimensional. Nossos resultados apresentam uma boa concordância com as soluções analíticas e numéricas existentes na literatura. Também determinamos a densidade de probabilidade e a função de correlação de pares do sistema. Nossa abordagem é bastante genérica e permite o estudo de sistemas de poucas partículas mais complexos, alguns de interesse experimental, que não apresentam solução analítica. / In this work we develop an approach based on the Bethe ansatz method and the variational principle to nd the ground state energy for a one-dimensional few-body system. We investigate a system of two and three interacting particles con ned in a one-dimensional harmonic trap. Our results show a good agreement with existing analytical and numerical results. We also determine the probability density and the pair correlation function of the system. Our approach is very general and enables the study of more complex few-body systems, some of them of experimental interest, where no exact analytical solution is available.
34

Dynamical correlations of S=1/2 quantum spin chains

Pereira, Rodrigo Gonçalves 11 1900 (has links)
Spin-1/2 chains demonstrate some of the striking effects of interactions and quantum fluctuations in one-dimensional systems. The XXZ model has been used to study the unusual properties of anisotropic spin chains in an external magnetic field. The zero temperature phase diagram for this model exhibits a critical or quasi-long-range-ordered phase which is a realization of a Luttinger liquid. While many static properties of spin-1/2 chains have been explained by combinations of analytical techniques such as bosonization and Bethe ansatz, the standard approach fails in the calculation of some time-dependent correlation functions. I present a study of the longitudinal dynamical structure factor for the XXZ model in the critical regime. I show that an approximation for the line shape of the dynamical structure factor in the limit of small momentum transfer can be obtained by going beyond the Luttinger model and treating irrelevant operators associated with band curvature effects. This approach is able to describe the width of the on-shell peak and the high-frequency tail at finite magnetic field. Integrability is shown to affect the low-energy effective model at zero field, with consequences for the line shape. The power-law singularities at the thresholds of the particle-hole continuum are investigated using an analogy with the X-ray edge problem. Using methods of Bethe ansatz and conformal field theory, I compute the exact exponents for the edge singularities of the dynamical structure factor. The same methods are used to study the long-time asymptotic behavior of the spin self-correlation function, which is shown to be dominated by a high-energy excitation. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
35

Gaudin models associated to classical Lie algebras

Lu, Kang 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We study the Gaudin model associated to Lie algebras of classical types. First, we derive explicit formulas for solutions of the Bethe ansatz equations of the Gaudin model associated to the tensor product of one arbitrary finite-dimensional irreducible module and one vector representation for all simple Lie algebras of classical type. We use this result to show that the Bethe Ansatz is complete in any tensor product where all but one factor are vector representations and the evaluation parameters are generic. We also show that except for the type D, the joint spectrum of Gaudin Hamiltonians in such tensor products is simple. Second, we define a new stratification of the Grassmannian of N planes. We introduce a new subvariety of Grassmannian, called self-dual Grassmannian, using the connections between self-dual spaces and Gaudin model associated to Lie algebras of types B and C. Then we obtain a stratification of self-dual Grassmannian.
36

Analysis of the Many-Body Problem in One Dimension with Repulsive Delta-Function Interaction

Albertsson, Martin January 2014 (has links)
The repulsive delta-function interaction model in one dimension is reviewed for spinless particles and for spin-1/2 fermions. The problem of solving the differential equation related to the Schrödinger equation is reduced by the Bethe ansatz to a system of algebraic equations. The delta-function interaction is shown to have no effect on spinless fermions which therefore behave like free fermions, in agreement with Pauli's exclusion principle. The ground-state problem of spinless bosons is reduced to an inhomogeneous Fredholm equation of the second kind. In the limit of impenetrable interactions, the spinless bosons are shown to have the energy spectrum of free fermions. The model for spin-1/2 fermions is reduced by the Bethe ansatz to an eigenvalue problem of matrices of the same sizes as the irreducible representations R of the permutation group of N elements. For some R's this eigenvalue problem itself is solved by a generalized Bethe ansatz. The ground-state problem of spin-1/2 fermions is reduced to a generalized Fredholm equation.
37

Modelos de emparelhamento integráveis / Integrable pairing models

Fernandes, Walney Reis 28 May 2010 (has links)
O objetivo deste trabalho foi o estudo do Ansatz de Bethe Algébrico (ABA), que é uma técnica utilizada na obtenção dos auto-estados do hamiltoniano de inúmeros modelos da Mecânica Estatística e da Teoria Quântica de Campos. Aplicamos este procedimento na diagonalização de três modelos de spins: o modelo de Heisenberg, o modelo de Heisenberg-Sklyanin e o modelo de Heisenberg-Cherednik. Na diagonalização do primeiro modelo, não foi possível encontrar todos os auto-estados do hamiltoniano através do ABA e, durante o procedimento de obtenção das expressões analíticas, nos deparamos com um conjunto de identidades inédito na literatura. A matriz de borda do modelo de Heisenberg-Sklyanin acopla o último e o primeiro sítios, generalizando o modelo anterior, e permite estabelecer uma relação limite com outros modelos integráveis. Neste caso também não conseguimos obter todos os auto-estados utilizando a técnica do ABA. Diferentemente do que ocorreu para os primeiros modelos, o de Heisenberg-Cherednik, com acoplamentos que alternam a intensidade ao longo da cadeia de spin, apresentou um conjunto completo de auto-estados quando diagonalizado pelo ABA. / The goal of this work was to study the Algebraic Bethe ansatz (ABA), which is a technique used to obtain the eigenstates of Hamiltonian of many models of Statistical Mechanics and Quantum Field Theory. We apply this procedure to diagonalize three types of spin models: the Heisenberg model, the Heisenberg-Sklyanin model and the Heisenberg-Cherednik model. On diagonalization of the …rst model, we could not …nd all the eigenstates of Hamiltonian through ABA, and during the procedure for obtaining the analytical expressions, we face an unprecedented set of identities in literature. The Sklyanin´s boundary matrix couples the fi…rst and last sites, generalizing the previous model, and provides a limit for other integrable models. In this case also did not get all eigenstates using the technique of ABA. Unlike what happened with the …rst models, the Heisenberg-Cherednik model, with alternating couplings the intensity along the spin chain, presented a complete set of eigenstates when diagonalized by ABA.
38

Invariância conforme e modelos com expoentes críticos variáveis / Conformal invariance and statistical mechanics dels with continuonsly varying exponentes

Martins, Marcio Jose 27 January 1989 (has links)
Nesta tese estudamos as propriedades críticas dos modelos anisotrópicos (isotrópicos) de Heisenberg com spin s arbitrário. O espectro das Hamiltonianas, com condições periódicas de contorno, foi calculado para redes finitas, resolvendo-se as equações do Bethe ansatz associadas. Nossos resultados indicam que a anomalia conforme destes modelos tem o valor c=3s/(1+s), independente da anisotropia, e os expoentes críticos variam continuamente com a anisotropia assim como no modelo de 8-vértices. O conteúdo de operadores destes modelos indica que a teoria de campos que governa a criticalidade destes modelos de spin é descrita por operadores formados pelo produto de um operador Gaussiano por outro com simetria Z(2s). Estudando estes modelos, com certas condições especiais de contorno, mostramos que eles são relacionados com uma nova classe de teorias unitárias recentemente propostas / This thesis is concerned with the critical properties of anisotropic (isotropic) Heisenberg chain,with arbitrary spin-s. The eigenspectrum of these Hamiltoniana, with periodic boundaries, are calculated for finite chains by solving numerically their associated Bethe ansatz equations. The results indicate that the conformal anomaly hás the value c=3s/1+s, independently of the anisotropy, and the exponentes vary continuously with the anisotropy like in the 8-vertex model. The operator content of these models indicate that the underlying field theory governing these critical spin-s models are described by composite fields formed by the product of Gaussian and Z(2s) fields. Studying these models, with some special boundary conditions, we show that they are related with a large class of unitary conformal field theories recntly introduced
39

Invariância conforme e modelos com expoentes críticos variáveis / Conformal invariance and statistical mechanics dels with continuonsly varying exponentes

Marcio Jose Martins 27 January 1989 (has links)
Nesta tese estudamos as propriedades críticas dos modelos anisotrópicos (isotrópicos) de Heisenberg com spin s arbitrário. O espectro das Hamiltonianas, com condições periódicas de contorno, foi calculado para redes finitas, resolvendo-se as equações do Bethe ansatz associadas. Nossos resultados indicam que a anomalia conforme destes modelos tem o valor c=3s/(1+s), independente da anisotropia, e os expoentes críticos variam continuamente com a anisotropia assim como no modelo de 8-vértices. O conteúdo de operadores destes modelos indica que a teoria de campos que governa a criticalidade destes modelos de spin é descrita por operadores formados pelo produto de um operador Gaussiano por outro com simetria Z(2s). Estudando estes modelos, com certas condições especiais de contorno, mostramos que eles são relacionados com uma nova classe de teorias unitárias recentemente propostas / This thesis is concerned with the critical properties of anisotropic (isotropic) Heisenberg chain,with arbitrary spin-s. The eigenspectrum of these Hamiltoniana, with periodic boundaries, are calculated for finite chains by solving numerically their associated Bethe ansatz equations. The results indicate that the conformal anomaly hás the value c=3s/1+s, independently of the anisotropy, and the exponentes vary continuously with the anisotropy like in the 8-vertex model. The operator content of these models indicate that the underlying field theory governing these critical spin-s models are described by composite fields formed by the product of Gaussian and Z(2s) fields. Studying these models, with some special boundary conditions, we show that they are related with a large class of unitary conformal field theories recntly introduced
40

Modelos de emparelhamento integráveis / Integrable pairing models

Walney Reis Fernandes 28 May 2010 (has links)
O objetivo deste trabalho foi o estudo do Ansatz de Bethe Algébrico (ABA), que é uma técnica utilizada na obtenção dos auto-estados do hamiltoniano de inúmeros modelos da Mecânica Estatística e da Teoria Quântica de Campos. Aplicamos este procedimento na diagonalização de três modelos de spins: o modelo de Heisenberg, o modelo de Heisenberg-Sklyanin e o modelo de Heisenberg-Cherednik. Na diagonalização do primeiro modelo, não foi possível encontrar todos os auto-estados do hamiltoniano através do ABA e, durante o procedimento de obtenção das expressões analíticas, nos deparamos com um conjunto de identidades inédito na literatura. A matriz de borda do modelo de Heisenberg-Sklyanin acopla o último e o primeiro sítios, generalizando o modelo anterior, e permite estabelecer uma relação limite com outros modelos integráveis. Neste caso também não conseguimos obter todos os auto-estados utilizando a técnica do ABA. Diferentemente do que ocorreu para os primeiros modelos, o de Heisenberg-Cherednik, com acoplamentos que alternam a intensidade ao longo da cadeia de spin, apresentou um conjunto completo de auto-estados quando diagonalizado pelo ABA. / The goal of this work was to study the Algebraic Bethe ansatz (ABA), which is a technique used to obtain the eigenstates of Hamiltonian of many models of Statistical Mechanics and Quantum Field Theory. We apply this procedure to diagonalize three types of spin models: the Heisenberg model, the Heisenberg-Sklyanin model and the Heisenberg-Cherednik model. On diagonalization of the …rst model, we could not …nd all the eigenstates of Hamiltonian through ABA, and during the procedure for obtaining the analytical expressions, we face an unprecedented set of identities in literature. The Sklyanin´s boundary matrix couples the fi…rst and last sites, generalizing the previous model, and provides a limit for other integrable models. In this case also did not get all eigenstates using the technique of ABA. Unlike what happened with the …rst models, the Heisenberg-Cherednik model, with alternating couplings the intensity along the spin chain, presented a complete set of eigenstates when diagonalized by ABA.

Page generated in 0.0332 seconds