• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 255
  • 148
  • 61
  • 35
  • 16
  • 13
  • 13
  • 12
  • 12
  • 10
  • 9
  • 5
  • 4
  • 2
  • 2
  • Tagged with
  • 639
  • 134
  • 127
  • 119
  • 112
  • 95
  • 87
  • 86
  • 86
  • 83
  • 71
  • 70
  • 68
  • 67
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

A Study of Shock Analysis Using the Finite Element Method Verified with Euler-Bernoulli Beam Theory; Mechanical Effects Due to Pulse Width Variation of Shock Inputs; and Evaluation of Shock Response of a Mixed Flow Fan

Gonzalez Campos, David Jonathan 01 October 2014 (has links) (PDF)
A Study Of Shock Analysis Using The Finite Element Method Verified With Euler-Bernoulli Beam Theory; Mechanical Effects Due To Pulse Width Variation Of Shock Inputs; And Evaluation Of Shock Response Of A Mixed Flow Fan David Jonathan González Campos For many engineers that use finite element analysis or FEA, it is very important to know how to properly model and obtain accurate solutions for complicated loading conditions such as shock loading. Transient acceleration loads, such as shocks, are not as common as static loads. Analyzing these types of problems is less understood, which is the basis for this study. FEA solutions are verified using classical theory, as well as experimental results. The complex loading combination of shock and high speed rotation is also studied. Ansys and its graphic user interface, Workbench Version 14.5, are the programs used to solve these types of problems. Classical theory and Matlab codes, as well as experimental results, are used to verify finite element solutions for a simple structure, such as a cantilevered beam. The discrepancy of these FEA results is found to be 2.3%. The Full Method and the Mode Superposition Method in Ansys are found to be great solution tools for shock loading conditions, including complex acceleration and force conditions. The Full Method requires less pre-processing but solutions could take days, as opposed to hours, to complete in comparison with the Mode Superposition Method, depending on the 3D Model. The Mode Superposition Method requires more time and input by the user but solves relatively quickly. Furthermore, a new representation of critical pulse width of the shock inputs is presented. Experimental and finite element analyses of a complete mixed flow fan undergoing ballistic shock is also completed; deformation results due to shock loading, combined with rotation and aerodynamic loading, account for 32.3% of the total deformation seen from experimental testing. Solution methods incorporated in Ansys, and validation of FEA results using theory, have great potential implications as powerful tools for engineering students and practicing engineers.
282

Structural Analysis and Redesign of a L90 Front Axle Casing

Berra Widén, Erik January 2023 (has links)
This thesis was commissioned by Volvo Construction Equipment (Volvo CE) to redesign the front axle casing of their L90 wheel loader to be more in line with their larger wheel loaders. The current L90 front axle casing consists of two parts bolted together in the middle. However, the current assembly process is cumbersome, and as such, Volvo CE wants to determine if a one-piece front axle casing can be implemented into their L90 wheel loaders. Volvo CE’s larger wheel loaders such as the L120 currently have a one-piece design for the front axle casing and can serve as template. This thesis aimed to determine if it was possible to create a one-piece axle casing for the L90 and provide an example of how it would look like. Additionally, the suggested design would need to meet all of Volvo CE’s performance requirements and be on par with the current L90 front axle casing.  The methodology used to develop the redesigned axle casing consisted of performing different finite element analyses (FEA) in Ansys Mechanical to evaluate the casing’s performance. The analysis was preformed using Volvo CE’s guideline and performance criteria in order to determine what areas in the redesigned axle required further adjustment. Additionally, the redesigned casing would be compared against the current L90 casing. This would determine if the redesigned axle could be realistically implemented into a L90 wheel loader.  Applying this methodology led to three different iterations of the axle casing design. Each design iteration following the first one led to improvements in the casing’s mechanical performance. The third and final iteration was able to meet all of Volvo CE’s static and fatigue requirements. The stresses for the redesigned axle casing are, on average, 13% lower than that of the current axle casing at key points around the casing’s ribs. However, the tolerances required to manufacture the redesigned axle casing where slightly higher than the current L90 casing. Nevertheless, the tolerances required to manufacture redesigned axle can be realistically met by a foundry. This thesis was able to provide a plausible redesign that can be implemented in Volvo CE’s current line of L90 wheel loaders.
283

A Finite Element Model for Investigation of Nuclear Stresses in Arterial Endothelial Cells

Rumberger, Charles B. 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Cellular structural mechanics play a key role in homeostasis by transducing mechanical signals to regulate gene expression and by providing adaptive structural stability for the cell. The alteration of nuclear mechanics in various laminopathies and in natural aging can damage these key functions. Arterial endothelial cells appear to be especially vulnerable due to the importance of shear force mechanotransduction to structure and gene regulation as is made evident by the prominent role of atherosclerosis in Hutchinson-Gilford progeria syndrome (HGPS) and in natural aging. Computational models of cellular mechanics may provide a useful tool for exploring the structural hypothesis of laminopathy at the intracellular level. This thesis explores this topic by introducing the biological background of cellular mechanics and lamin proteins in arterial endothelial cells, investigating disease states related to aberrant lamin proteins, and exploring computational models of the cell structure. It then presents a finite element model designed specifically for investigation of nuclear shear forces in arterial endothelial cells. Model results demonstrate that changes in nuclear material properties consistent with those observed in progerin-expressing cells may result in substantial increases in stress concentrations on the nuclear membrane. This supports the hypothesis that progerin disrupts homeostatic regulation of gene expression in response to hemodynamic shear by altering the mechanical properties of the nucleus.
284

Conjugate Heat Transfer Analysis of HPGP Thruster

Svensson, Lisa January 2024 (has links)
This master's thesis was conducted in collaboration with ECAPS, where a conjugate heat transfer analysis on their High Performance Green Propulsion (HPGP) 22N thruster was done. ECAPS is a Swedish propulsion company specializing in green propulsion. They develop thrusters for spacecraft orbit and attitude control, utilizing the propellant LMP-103S. LMP-103S is a non-toxic propellant, in contrast to the hazardous monopropellant hydrazine commonly used in thrusters. A previous master's thesis modified the original design of the 22N thruster to make it compatible with additive manufacturing. Some concerns about heat transfer in the feed tube surfaced with the new design as it showed elevated temperatures. The feed tube is a component that works as a pathway where liquid propellant is transported from the flow control assembly to the reactor chamber assembly, where combustion begins. The goal of this master's thesis was to determine the temperatures the liquid propellant reached, and to assess if the liquid propellant was at risk of vaporization in the feed tube before reaching the reactor chamber assembly. Since the feed tube is a limited volume, vaporization of the liquid propellant in the feed tube could have devastating consequences of the structure. Ansys Fluent was used as the Computational Fluid Dynamics (CFD) software, along with the Computer Aided Design (CAD) software NX and Matlab for data handling.  Four extreme case scenarios were determined to be simulated, varying the liquid propellant inlet temperatures from highest to lowest operable temperatures, as well as the thruster's highest and lowest operable inlet pressures. A literature study on conjugate heat transfer in CFD was done, along with determination and calculations of necessary parameters for a correct simulation setup, and a grid independence study. Both steady-state and transient simulations were conducted. The results indicate that when the thruster operates with the highest inlet pressure, there is a risk of vaporization, but critical consequences are less likely to have time to develop. However, for the cases where the thruster operates with its lowest inlet pressure, a significant risk of vaporization in the feed tube is present. The simulated temperature results suggest that the liquid propellant will rapidly vaporize, where increased pressure at the feed tube outlet will be building up as a result of the expanding vapor, leading to a feed tube failure for the vapor to escape through. Therefore, the new design change of the feed tube will most likely not work for the thruster to be able to work under all necessary conditions. New modifications to the feed tube are necessary, or alternatively, the original design of the feed tube could be added afterward to the 3D-printed structure, though this may result in the loss of some benefits of manufacturing the entire structure in one piece.
285

Finite Element Simulation of Single-lap Shear Tests Utilizing the Cohesive Zone Approach

Perez, Wilson A 01 January 2016 (has links)
Many applications require adhesives with high strength to withstand the exhaustive loads encountered in regular operation. In aerospace applications, advanced adhesives are needed to bond metals, ceramics, and composites under shear loading. The lap shear test is the experiment of choice for evaluating shear strength capabilities of adhesives. Specifically during single-lap shear testing, two overlapping rectangular tabs bonded by a thin adhesive layer are subject to tension. Shear is imposed as a result. Debonding occurs when the shear strength of the adhesive is surpassed by the load applied by the testing mechanism. This research develops a finite element model (FEM) and material model which allows mechanicians to accurately simulate bonded joints under mechanical loads. Data acquired from physical tests was utilized to correlate the finite element simulations. Lap shear testing has been conducted on various adhesives, specifically SA1-30-MOD, SA10-100, and SA10-05, single base methacrylate adhesives. The adhesives were tested on aluminum, stainless steel, and cold rolled steel adherends. The finite element model simulates what is observed during a physical single-lap shear test consisting of every combination of the mentioned materials. To accomplish this, a three-dimensional model was created and the cohesive zone approach was used to simulate debonding of the tabs from the adhesive. The thicknesses of the metallic tabs and the adhesive layer were recorded and incorporated into the model in order to achieve an accurate solution. From the data, force output and displacement of the tabs are utilized to create curves which were compared to the actual data. Stress and strain were then computed and plotted to verify the validity of the simulations. The modeling and constant determination approach developed here will continue to be used for newly-developed adhesives.
286

Rotordynamic Design Analysis of a Squeeze Film Damper Test Rig

Nagesh, Mahesh 16 June 2017 (has links)
No description available.
287

Finite Element Modeling (FEM) of Porous Additively Manufactured Ferromagnetic Shape Memory Alloy Using Scanning Electron Micrograph (SEM) Based Geometries

Myers, Eric J. 22 May 2017 (has links)
No description available.
288

Computational Investigations of Polymer Sheet Breakup for Optimization of Devolatilization Processes in Steam Contactors

Shindle, Bradley W. January 2017 (has links)
No description available.
289

The Effect of Baffle Arrangements on Flow Uniformity in a Manifold for a Unique Solid Oxide Fuel Cell Stack Design

Allen, Jeremy L. January 2011 (has links)
No description available.
290

Numerical Loss Prediction of high Pressure Steam Turbine airfoils

Nunes, Bonaventure R. 24 October 2013 (has links)
Steam turbines are widely used in various industrial applications, primarily for power extraction. However, deviation for operating design conditions is a frequent occurrence for such machines, and therefore, understanding their performance at off design conditions is critical to ensure that the needs of the power demanding systems are met as well as ensuring safe operation of the steam turbines. In this thesis, the aerodynamic performance of three different turbine airfoil sections ( baseline, mid radius and tip profile) as a function of angle of incidence and exit Mach numbers, is numerically computed at 0.3 axial chords downstream of the trailing edge. It was found that the average loss coefficient was low, owing to the fact that the flow over the airfoils was well behaved. The loss coefficient also showed a slight decrease with exit Mach number for all three profiles. The mid radius and tip profiles showed near identical performance due to similarity in their geometries. It was also found out that the baseline profile showed a trend of substantial increase in losses at positive incidences, due to the development of an adverse pressure zone on the blade suction side surface. The mid radius profile showed high insensitivity to angle of incidence as well as low exit flow angle deviation in comparison to the baseline blade. / Master of Science

Page generated in 0.0296 seconds