• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 80
  • 18
  • 13
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 306
  • 74
  • 51
  • 45
  • 42
  • 38
  • 37
  • 34
  • 32
  • 27
  • 27
  • 25
  • 23
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Análise e interpretação ambiental da química iônica de um testemunho do manto de gelo da Antártica ocidental

Hammes, Daiane Flora January 2011 (has links)
Este estudo utilizou os princípios da glacioquímica para determinar e analisar as variações nas concentrações aniônicas de um testemunho de neve e firn obtido pela perfuração no manto de gelo da antártica ocidental no verão austral de 2004/05. O testemunho IC-6 (81°03'S, 79°51'W), de 34,65 m de profundidade, obtido a 750 m de altitude, foi subamostrado em sala limpa (CLASE 100), usando um sistema de derretimento contínuo desenvolvido pela equipe do Climate Change Institute (CCI) da Universidade do Maine (EUA). Esse processo gerou 1.368 amostras para análises por cromatografia iônica, cerca de 58 amostras por metro, permitindo detalhamento sazonal da variabilidade das concentrações dos íons majoritários. O testemunho representa 66 ± 3 anos de dados ambientais, segundo a datação baseada na variação sazonal dos íons Cl-, Na+, Mg+2 e SO4-2. O testemunho de 23,61 m em equivalente d’água, corrigido para variações em densidade, representa uma acumulação liquida média anual de 0,36 m (em equivalente d’água). Assim, a camada ao fundo foi formada no ano de 1938 (± 3 anos). As concentrações iônicas médias medidas no IC-6, são: [(Na+= 66,92 ± 2,32 μg L-1), (K+= 3,31 ± 0,18 μg L-1); (Mg+2= 10,07 ± 0,25 μg L-1); (Ca+2 = 16,93 ± 0,38 μg L-1); (Cl- = 155,74 ± 4,40 μg L-1); (NO3- = 56,01 ± 0,80 μg L-1); (SO4 2 = 55,65 ± 1,36 μg L-1); e (CH3SO3 (MS) = 14,11 ± 1,19 μg L-1)]. As maiores concentrações de Na+, Cl-, e Mg+2 foram interpretadas como picos de invernos, associadas diretamente ao aerossol dos mares circundantes em respostas, provavelmente, a advecção mais intensa de massas de ar (marinho) sobre as plataformas de gelo, e portanto são também traçadores marinhos. Já o perfil (série) de sulfato está em antifase, em relação às variações nas espécies Na+, Cl- e Mg+2. De origem predominantemente marinha, o sulfato total apresentou maiores concentrações durante a primavera e verão (períodos de maior atividade biológica nos mares circumpolares), possivelmente marcando a variação sazonal da atividade biológica na região. Embora em alguns intervalos essa ―antifase‖ não fique tão clara, é o que ocorre na maior parte do testemunho IC-6, condição que auxiliou na interpretação da variação sazonal observada principalmente na série do cloro. O perfil de excesso de sulfato apresenta perfil similar ao de sulfatos total, com picos concomitantes. Além da forte correlação com o íon SO4-2, também é observada uma correlação fraca a moderada com o íon nitrato. Picos concomitantes deste íon com o excesso de sulfato representam eventos episódicos como é o caso das erupções vulcânicas de grande magnitude. A variabilidade da concentração de nitrato não esta associada ao aerossol marinho, como aponta a falta de correlação entre esse ânion e o Cl-, Na+ e Mg2+. Porém, série de nitrato apresenta muitos períodos bem marcados e correlacionados com as concentrações de excesso de sulfato, devendo representar a ocorrência de eventos episódicos, como erupções vulcânicas. Entretanto, a análise de íons maiores nesse estudo não possibilitou a identificação de eventos específicos, será necessário o uso de técnicas complementares para determinação de elementos traços. Sugere-se que o nitrato seria transportado e depositado por massas de ar provenientes da estratosfera ou da alta troposfera e que grandes concentrações dessa espécie poderiam estar associadas ao registro de ocorrências de eventos vulcânicos. Essa característica parece ser coerente com os picos correlacionáveis nos perfis (séries) de nitrato e sulfatos. Além da variação sazonal (observada principalmente no perfil de cloro), foram identificados outros padrões recorrentes no tempo (ciclos), principalmente nas séries de dos íons Na+, Cl- e Mg2+ (origem marinha) e NO3-. O principal ciclo identificado, de aproximadamente 17,3 anos, necessita melhor investigação. A secundária, em torno de 10 anos, estaria associada ao ciclo solar (de 10,7 anos). Também são observados ciclos com períodos entre 2 a 5 anos, que poderiam estar associados ao fenômeno ENOS (El Niño - Oscilação Sul). Ao comparar as concentrações médias do IC-6 com de outros sítios no interior da Antártica, observa-se uma abrupta redução ao atravessar as montanhas Transantárticas em direção ao Polo Sul geográfico. Sugere-se que cordilheira esteja barrando o transporte dos aerossóis marinhos para o interior do continente devido a um efeito orográfico sobre a precipitação. / This study employed glaciochemical principles to determine and analyze the variation of anionic concentrations of a firn and snow core obtained from the Western Antarctic Ice Sheet, in the summer of 2004/05. The IC-6 core (81°03'S, 79°51'W), reaching 34.65 m in depth, was extracted at 750 m above sea level. This core was subsampled in a Class 100 clean room, employing a discrete continuous melting system developed by the team at the Climate Change Institute (CCI), University of Maine, USA. This process produced 1,368 samples for ionic chromatographic analyses, approximately 58 samples per meter, permitting a seasonal-scale resolution of the main ion concentrations and variabilities. This core represents 66 ± 3 years of environmental data, according to Cl-, Na+, Mg+2 e SO4-2 ion seasonal variations. The 23.61 m core, in water equivalent, corrected for the density variation, represents an annual net accumulation average rate of 0.36. The deepest layer was deposited in 1938 (± 3 ). Core mean ionic concentrations are: [(Na+= 66,92 ± 2,32 μg L-1); (K+= 3,31 ± 0,18 μg L-1); (Mg+2= 10,07 ± 0,25 μg L-1); (Ca+2 = 16,93 ± 0,38 μg L-1); (Cl- = 155,74 ± 4,40 μg L-1); (NO3- = 56,01 ± 0,80 μg L-1); (SO4 2 = 55,65 ± 1,36 μg L-1); and (CH3SO3 (MS) = 14,11 ± 1,19 μg L-1)]. The largest concentrations of Na+, Cl-, e Mg+2 were interpreted as winter peaks, directly associated with the aerosols from the surrounding seas, probably, in response to the intensification of marine air mass advection on the ice shelves, and, thus, also being marine tracers. The sulphate profile (series) presents an antiphase, with relation to Na+, Cl- e Mg+2 species variations. Predominantly of marine origin, total sulphates presented greater concentrations during Spring and Summer (periods of greater biologic activity in the Southern Ocean), possibly marking the seasonal variation of biologic activity in the region. Although in some intervals of this ―antiphase‖ are not clearly evident, they are consistent throughout most of the IC-6 core, assisting with the interpretation of the observed seasonal variations, particularly when related to chlorine data series. The sulphate excess profile is similar to total sulphate profile, showing concomitant spikes. Besides the strong correlation to tSO4-2 ion, a weak to moderate correlation was observed for nitrate ions. Coinciding peaks for this ion with excess sulphate may represent episodic events, such as presented by volcanic events of great magnitude. The nitrate concentration variability is not associated to marine aerosols, as shown by the lack of correlation between this anion and Cl-, Na+ e Mg2+. The nitrate series presents many well marked periods and seem to be correlated to excess sulphate concentrations, possibly representing the occurrence of episodic events, such as volcanic eruptions. Even so, the major ions analyses proposed by this work did not make the identification of such episodic events clear. Such events need to be addressed with complementary techniques to determine the specific trace elements. These results suggest that nitrate is transported and deposited by stratospheric or high tropospheric air masses, and that great concentrations of this species could be associated to the recorded volcanic events. This characteristic appears to be coherent with the spikes in the nitrate and sulphate profiles. Besides the seasonal variation (observed, principally, in the chlorine profile), other time cycle/patterns were identified, mainly those related to Na+, Cl- e Mg2+ ion series (of marine origin) and NO3-. The main identified cycle, approximately 17.3 years, ensues to be better investigated. A second cycle, presenting a 10 year period, is possibly associated to the solar cycle (10.7 years). Shorter cycles of 2 and 5 year periods could possibly be related to the ENSO phenomenon. On comparing average concentrations of the IC-6 core with other sites, farther within the Antarctic continent, an abrupt reduction was observed, from the Trans-Antarctic mountains to the Geographic South Pole, suggesting that this mountain range could be a barrier for marine aerosol transport to the interior of the continent, due to an orographic effect on the precipitation.
112

Abordagens alternativas para a obtenção de novos metabólitos secundários produzidos a partir de linhagens fúngicas / Alternative approaches for obtaining new secondary metabolites produced from fungal strains

Julie Paulin Garcia Rodriguez 23 October 2018 (has links)
Neste trabalho foram estudadas duas abordagens para a obtenção de novos metabólitos secundários a partir de fungos. Na primeira, o ácido hidroxâmico suberoilanilida (SAHA) e cinco análogos foram sintetizados. Sua atividade como modificadores epigenéticos foi avaliada em oito linhagens fúngicas do ambiente marinho. Os fungos Penicillium sp. e Acremonium sp. apresentaram modificações no seu perfil metabolómico quando foram crescidos em pequena escala em presença do derivado 4F-SAHA, enquanto Microphaeropsis sp. apresentou modificação em presença do 3AM-SAHA. O fungo P. decaturense foi crescido em maior escala e os compostos de interesse foram isolados. Na segunda abordagem, uma nova estratégia de extração utilizando mistura de resinas XAD 2-4-7 permitiu a extração e posterior isolamento de seis novos alcaloides peptídicos (72-77) e dois peptídeos (78-79) a partir da fração aquosa do meio de cultivo do fungo antártico Penicillium solitum IS1-A. Utilizando a mesma metodologia, o metabolismo secundário do fungo antártico Thelebolus globosus E2 foi estudado. A partir de seu extrato metanólico do meio liquido PDB foram isoladas a ciclopenina (86) e o ciclopenol (87) e foram detectados os alcaloides viridicatina (88) e viridicatol (89). O fungo Thelebolus globosus mostrou-se produtor de estatinas, sendo isoladas como composto majoritário a mevastatina (90). / In this work two approaches to obtain new secondary metabolites from fungi were studied. Suberoylanilide hydroxamic acid (SAHA) and five analogues were synthesized and assessed as epigenetic modifiers in eight marine-derived fungi. The fungus Penicillium sp. and Acremonium sp. presented changes in their metabolomic profile when they were grown on a small scale in presence of 4F-SAHA derivative and Microphaeropsis sp. presented a modification in the presence of the 3 AM-SAHA. In the second approach a new extraction strategy using XAD 2-4-7 resin mixture allowed the extraction and subsequent isolation of six new peptide alkaloids (72-77) and two peptides (78-79) from the aqueous fraction of the culture medium of the Antarctic fungus Penicillium solitum IS1-A. Using the same methodology, the secondary metabolism of the Antarctic fungus Thelebolus globosus E2 was studied. From the methanolic extract of the PDB liquid medium cyclopenine (86) and cyclopenol (87) were isolated and the viridicatine (88) and viridicatol (89) alkaloids were detected. The fungus Thelebolus globosus was shown to be a producer of statins, mainly of mevastatin (90).
113

Ammonium Distribution and Dynamics in Relation to Biological Production and Physical Environment in the Marguerite Bay Region of the West Antarctic Peninsula

Serebrennikova, Yulia Mikhailovna 09 November 2005 (has links)
In this study, biogeochemical regimes of Marguerite Bay and the adjacent part of the West Antarctic Peninsula (WAP) continental shelf were delineated through integration of nutrient, hydrographic, and biological measurements obtained during the LTER and SO GLOBEC studies during austral summer, autumn, and winter of 2001 and 2002. Marguerite Bay biogeochemical regime was found to differ from those of the adjacent WAP continental shelf. In terms of Treguer and Jacques (1992), Marguerite Bay is a combination of Coastal Continental Shelf Zone (CCSZ) and Seasonal Ice Zone (SIZ) distinguished by shallow mixing regime, high primary production and export production. At the end of the growing season (autumn) in both years, waters in Marguerite Bay were strongly depleted in nutrients (the deficits of total inorganic nitrogen (NO3-+NO2-+NH4+) and silica were >0.6 mol m-2 and >2.5 mol m-2, respectively). Observed ΔN/ΔP removal ratios of 10-12.5, lower than that of Redfield et al. (1963), and ΔSi/ΔN removal ratios as high as 4-5 indicated the dominance of diatoms. High autumnal ammonium stocks (>0.25 mol m-2) were observed in Marguerite Bay and were co-located with the areas of the highest nutrient deficits suggesting spatial coupling between primary and heterotrophic production during both years. Consistency of this feature was not disrupted by significant interannual variability of biological production in Marguerite Bay that resulted in ~30-50% reduction in nutrient deficits and ammonium stocks from the first year to the next.The other two biogeochemical regimes were at the central part of the continental shelf characterized by mixed phytoplankton community and at the outer shelf dominated by diatoms. Both regimes were characterized by considerably lower depletion of nutrients compare to those of the Marguerite Bay regime and were consistent between the two years. Interannual variability of biological production and possible sources of high ammonium stocks in Marguerite Bay were studied with a one-dimensional model, a modification of that of Walsh et al. (2001). The model attributed the decline in nutrient deficits to the difference in sea ice cover dynamics between two years. The greater sea ice presence led to the somewhat lower primary production during the second year compare to the fist one. Moreover, model's tight coupling between primary and bacterial production resulted in a decline of bacterial ammonification between the two years. Bacteria were found to be the primary source of ammonium in the Marguerite Bay model. Yet, 3-4-fold fluctuations in macro- and mesozooplankton biomass might have led to 15-25% variability in model's autumnal ammonium stocks.
114

Chemical Investigation of Three Antarctic Marine Sponges

Park, Young Chul, 19 March 2004 (has links)
This thesis describes the chemical investigation of three marine sponges from Antarctica and the total syntheses of natural products erebusinone (12) and its derivative, erebusinonamine (52). Investigation of the yellow Antarctic marine sponge Isodictya setifera resulted in the isolation of two secondary metabolites, purine analog (32) and 3-hydroxykynurenine (24). Chemical investigation of Isodictya setifera led to the isolation of six secondary metabolites which included 5-methyl-2-deoxycytidine (25), uridine (28), 2-deoxycytidine (31), homarine (37), hydroxyquinoline (33), 3-hydroxykynurenine (24). The latter two compounds were found to be intermediates of tryptophan catabolism in crustaceans. From the Antarctic marine sponge Isodictya antractica ceramide analog (39) was isolated and its chemical structure was assigned by a combination of spectroscopic and chemical analyses. Stereochemistry was determined by modified Mosher's method. Erebusinone (12), a yellow pigment isolated from the Antarctic marine sponge Isodictya erinacea has been implicated in molt inhibition and mortality against the Antarctic crustacean amphipod, Orchomene plebs, possibly serving as a precursor of a xanthurenic acid analog. Thought to act as a 3-hydroxykynurenine 24 mimic, erebusinone (12) may be involved chemical defense. This appears to be the first example in the marine realm of an organism utilizing tryptophan catabolism to modulate molting as a defensive mechanism. To further investigate the bioactivity and ecological role of erebusinone (12), the synthesis of this pigment was carried out in an overall yield of 44% involving seven steps which were economical and convenient. Erebusinonamine (52) was also similarly synthesized in eight steps with an overall yield of 45%.
115

Small scale spatial and temporal variability of microclimate in a fellfield landscape, Marion Island

Berg, Oskar January 2009 (has links)
<p>Marion Island is situated in the South Indian Ocean and belongs to the sub-Antarctic island group, Prince Edward Islands. The islands in the sub-Antarctic have over the past few decades been exposed to a warmer and drier climate trend. The aim of this thesis is to achieve better understanding of the small-scale spatial and temporal variability between Azorella selago andthe surrounding microclimate. Due to the consequences of climate change, the interactions between Azorella selago, landforms and soil processes are important for the future of the terrestrial ecosystems in the sub-Antarctic. The theory part in this thesis describes different processes and features that are essential to understand the context of this thesis. The energy balance and the insolation is shown to be an important aspect when looking at the spatialvariability of the microclimate. The summary of the results in the thesis is based on temperature and moisture measurements within two grids. One on the east and one on the west side of the island</p><p>The most important result from the measurements is that different weather conditions create different situations for the microclimate. The weather condition ‘sunny no wind’ created a high spatial variability in temperature on the ground, which was completely absent during overcast days. Temperature variability is highly dependent on cloud cover according to these results. Moisture changes also seem to be less weather dependent than temperaturechanges.</p><p>The data provide a first confirmation that an increase in sunshine hours gives increased spatial variability in temperature (not moisture) and soil frost. An increase in spatial variability of the microclimate within small areas could give rise to an expansion in the patchiness of soil frost processes in the landscape. The representivity of single point measurements of ground surface temperature should be questioned.</p><p>Patterns of areas with low moisture content within the grid correlate with points where measurements were taken on Azorella selago. The Azorella cushion could, according to the results of this thesis, be associated with dry areas within the grid. Azorella selago is thereby suggested to increase the spatial variability of moisture and also contribute to a locally drier microclimate. Moisture variability varies more between the east and west side of the island, than that it is weather dependent.</p><p>Shaded areas show a pattern of lower temperature than for the other variables under sunny conditions. If more shaded areas are created by for example landforms like Azorella selago or solifluction deposits, the temperatures would probably be lower and also create a wider spatial variability.</p><p>This study provides first data on the important interactions between Azorella selago and how it affects through spatial variability in micro-climate, ground frost potential and resulting soil disturbance by frost creep and solifluction.</p>
116

Interactions between the microbial network and the organic matter in the Southern Ocean: impacts on the biological carbon pump / Interactions entre le réseau microbien et la matière organique dans l'Océan Antarctique : impacts sur la pompe biologique à carbone

Dumont, Isabelle 03 July 2009 (has links)
The Southern Ocean (ca. 20% of the world ocean surface) is a key place for the regulation of Earth climate thanks to its capacity to absorb atmospheric carbon dioxide (CO2) by physico-chemical and biological mechanisms. The biological carbon pump is a major pathway of absorption of CO2 through which the CO2 incorporated into autotrophic microorganisms in surface waters is transferred to deep waters. This process is influenced by the extent of the primary production and by the intensity of the remineralization of organic matter along the water column. So, the annual cycle of sea ice, through its in situ production and remineralization processes but also, through the release of microorganisms, organic and inorganic nutrients (in particular iron)into the ocean has an impact on the carbon cycle of the Southern Ocean, notably by promoting the initiation of phytoplanktonic blooms at time of ice melting. The present work focussed on the distribution of organic matter (OM) and its interactions with the microbial network (algae, bacteria and protozoa) in sea ice and ocean, with a special attention to the factors which regulate the biological carbon pump of the Southern Ocean. This thesis gathers data collected from a) late winter to summer in the Western Pacific sector, Western Weddell Sea and Bellingshausen Sea during three sea ice cruises ARISE, ISPOL-drifting station and SIMBA-drifting station and b) summer in the Sub-Antarctic and Polar Front Zone during the oceanographic cruise SAZ-Sense. The sea ice covers were typical of first-year pack ice with thickness ranging between 0.3 and 1.2 m, and composed of granular and columnar ice. Sea ice temperature ranging between -8.9°C and -0.4°C, brines volume ranging between 2.9 to 28.2% and brines salinity from 10 to >100 were observed. These extreme physicochemical factors experienced by the microorganisms trapped into the semi-solid sea ice matrix therefore constitute an extreme change as compared to the open ocean. Sea ice algae were mainly composed of diatoms but autotrophic flagellates (such as dinoflagellates or Phaeocystis sp.) were also typically found in surface ice layers. Maximal algal biomass was usually observed in the bottom ice layers except during SIMBA where the maxima was localised in the top ice layers likely because of the snow and ice thickness which limit the light available in the ice cover. During early spring, the algal growth was controlled by the space availability (i.e. brine volume) while in spring/summer (ISPOL, SIMBA) the major nutrients availability inside sea ice may have controlled algal growth. At all seasons, high concentrations of dissolved and particulate organic matter were measured in sea ice as compared to the water column. Dissolved monomers (saccharides and amino acids) were accumulated in sea ice, in particular in winter. During spring and summer, polysaccharides constitute the main fraction of the dissolved saccharides pool. High concentrations of transparent exopolymeric particles (TEP), mainly constituted with saccharides, were present and their gel properties greatly influence the internal habitat of sea ice, by retaining the nutrients and by preventing the protozoa grazing pressure, inducing therefore an algal accumulation. The composition as well as the vertical distribution of OM in sea ice was linked to sea ice algae. Besides, the distribution of microorganisms and organic compounds in the sea ice was also greatly influenced by the thermodynamics of the sea ice cover, as evidenced during a melting period for ISPOL and during a floodfreeze cycle for SIMBA. The bacteria distribution in the sea ice was not correlated with those of algae and organic matter. Indeed, the utilization of the accumulated organic matter by bacteria seemed to be limited by an external factor such as temperature, salinity or toxins rather than by the nature of the organic substrates, which are partly composed of labile monomeric saccharides. Thus the disconnection of the microbial loop leading to the OM accumulation was highlighted in sea ice. In addition the biofilm formed by TEP was also involved in the retention of cells and other compounds(DOM, POM, and inorganic nutrients such as phosphate and iron) to the brine channels walls and thus in the timing of release of ice constituents when ice melts. The sequence of release in marginal ice zone, as studied in a microcosm experiments realized in controlled and trace-metal clean conditions, was likely favourable to the development of blooms in the marginal ice zone. Moreover microorganisms derived from sea ice (mainly <10 µm) seems able to thrive and grow in the water column as also the supply of organic nutrients and Fe seems to benefit to the pelagic microbial community. Finally, the influence of the remineralization of organic matter by heterotrophic bacterioplankton on carbon export and biological carbon pump efficiency was investigated in the epipelagic (0-100 m) and mesopelagic(100-700 m) zones during the summer in the sub-Antarctic and Polar Front zones (SAZ and PFZ) of the Australian sector (Southern Ocean). Opposite to sea ice, bacterial biomass and activities followed Chl a and organic matter distributions. Bacterial abundance, biomass and activities drastically decreased below depths of 100-200 m. Nevertheless, depth-integrated rates through the thickness of the different water masses showed that the mesopelagic contribution of bacteria represents a non-negligible fraction, in particular in a diatom-dominated system./ L’océan Antarctique (± 20% de la surface totale des océans) est un endroit essentiel pour la régulation du climat de notre planète grâce à sa capacité d’absorber le dioxyde de carbone (CO2) atmosphérique par des mécanismes physico-chimique et biologique. La pompe biologique à carbone est un processus majeur de fixation de CO2 par les organismes autotrophes à la surface de l’océan et de transfert de carbone organique vers le fond de l’océan. Ce processus est influencé par l’importance de la production primaire ainsi que par l’intensité de la reminéralisation de la matière organique dans la colonne d’eau. Ainsi, le cycle annuel de la glace via sa production/reminéralisation in situ mais aussi via l’ensemencement de l’océan avec des microorganismes et des nutriments organiques et inorganiques (en particulier le fer) a un impact sur le cycle du carbone dans l’Océan Antarctique, notamment en favorisant l’initiation d’efflorescences phytoplanctoniques dans la zone marginale de glace. Plus précisément, nous avons étudié les interactions entre le réseau microbien (algues, bactéries et protozoaires) et la matière organique dans le but d’évaluer leurs impacts potentiels sur la pompe biologique de carbone dans l’Océan Austral. Deux écosystèmes différents ont été étudiés : la glace de mer et le milieu océanique grâce à des échantillons prélevés lors des campagnes de glace ARISE, ISPOL et SIMBA et lors de la campagne océanographique SAZ-Sense, couvrant une période allant de la fin de l’hiver à l’été. La glace de mer est un environnement très particulier dans lequel les microorganismes planctoniques se trouvent piégés lors de la formation de la banquise et dans lesquels ils subissent des conditions extrêmes de température et de salinité, notamment. Les banquises en océan ouvert étudiées (0,3 à 1,2 m d’épaisseur, températures de -8.9°C à -0.4°C, volumes relatifs de saumure de 2.9 à 28.2% et salinités de saumures entre 10 et jusque >100) étaient composées de glace columnaire et granulaire. Les algues de glace étaient principalement des diatomées mais des flagellés autotrophes (tels que des dinoflagellés ou Phaeocystis sp.) ont été typiquement observés dans les couches de glace de surface. Les biomasses algales maximales se trouvaient généralement dans la couche de glace de fond sauf à SIMBA où les maxima se trouvaient en surface, probablement en raison de l’épaisseur des couches de neige et de glace, limitant la lumière disponible dans la colonne de glace. Au début du printemps, la croissance algale était contrôlée par l’espace disponible (càd le volume des saumures) tandis qu’au printemps/été, la disponibilité en nutriments majeurs a pu la contrôler. A toutes les saisons, des concentrations élevées en matière organique (MO) dissoute et particulaire on été mesurées dans la glace de mer par rapport à l’océan. Des monomères dissous (sucres et acides aminés) étaient accumulés dans la glace, surtout en hiver. Au printemps et été, les polysaccharides dissous dominaient le réservoir de sucres. La MO était présente sous forme de TEP qui par leurs propriétés de gel modifie l’habitat interne de la glace. Ce biofilm retient les nutriments et gêne le mouvement des microorganismes. La composition et la distribution de la MO dans la glace étaient en partie reliées aux algues de glace. De plus, la thermodynamique de la couverture de glace peut contrôler la distribution des microorganismes et de la MO, comme observé lors de la fonte de la glace à ISPOL et lors du refroidissement de la banquise à SIMBA. La distribution des bactéries n’est pas corrélée avec celle des algues et de la MO dans la glace. En effet, la consommation de la MO par les bactéries semble être limitée non pas par la nature chimique des substrats mais par un facteur extérieur affectant le métabolisme bactérien tel que la température, la salinité ou une toxine. Le dysfonctionnement de la boucle microbienne menant à l’accumulation de la MO dans la glace a donc été mis en évidence dans nos échantillons. De plus, le biofilm formé par les TEP est aussi impliquée dans l’attachement des cellules et autres composés aux parois des canaux de saumure et donc dans la séquence de largage lors de la fonte. Cette séquence semble propice au développement d’efflorescences phytoplanctoniques dans la zone marginale de glace. Les microorganismes originaires de la glace (surtout ceux de taille < 10 μm) semblent capables de croître dans la colonne d’eau et l’apport en nutriments organiques et inorganiques apparaît favorable à la croissance des microorganismes pélagiques. Enfin, l’influence des activités hétérotrophes sur l’export de carbone et l’efficacité de la pompe biologique à carbone a été évaluée dans la couche de surface (0-100 m) et mésopélagique (100-700 m) de l’océan. Au contraire de la glace, les biomasses et activités bactériennes suivaient les distributions de la chlorophyll a et de la MO. Elles diminuent fortement en dessous de 100-200 m, néanmoins les valeurs intégrées sur la hauteur de la colonne d’eau indiquent que la reminéralisation de la MO par les bactéries dans la zone mésopélagique est loin d’être négligeable, spécialement dans une région dominée par les diatomées.
117

Small scale spatial and temporal variability of microclimate in a fellfield landscape, Marion Island

Berg, Oskar January 2009 (has links)
Marion Island is situated in the South Indian Ocean and belongs to the sub-Antarctic island group, Prince Edward Islands. The islands in the sub-Antarctic have over the past few decades been exposed to a warmer and drier climate trend. The aim of this thesis is to achieve better understanding of the small-scale spatial and temporal variability between Azorella selago andthe surrounding microclimate. Due to the consequences of climate change, the interactions between Azorella selago, landforms and soil processes are important for the future of the terrestrial ecosystems in the sub-Antarctic. The theory part in this thesis describes different processes and features that are essential to understand the context of this thesis. The energy balance and the insolation is shown to be an important aspect when looking at the spatialvariability of the microclimate. The summary of the results in the thesis is based on temperature and moisture measurements within two grids. One on the east and one on the west side of the island The most important result from the measurements is that different weather conditions create different situations for the microclimate. The weather condition ‘sunny no wind’ created a high spatial variability in temperature on the ground, which was completely absent during overcast days. Temperature variability is highly dependent on cloud cover according to these results. Moisture changes also seem to be less weather dependent than temperaturechanges. The data provide a first confirmation that an increase in sunshine hours gives increased spatial variability in temperature (not moisture) and soil frost. An increase in spatial variability of the microclimate within small areas could give rise to an expansion in the patchiness of soil frost processes in the landscape. The representivity of single point measurements of ground surface temperature should be questioned. Patterns of areas with low moisture content within the grid correlate with points where measurements were taken on Azorella selago. The Azorella cushion could, according to the results of this thesis, be associated with dry areas within the grid. Azorella selago is thereby suggested to increase the spatial variability of moisture and also contribute to a locally drier microclimate. Moisture variability varies more between the east and west side of the island, than that it is weather dependent. Shaded areas show a pattern of lower temperature than for the other variables under sunny conditions. If more shaded areas are created by for example landforms like Azorella selago or solifluction deposits, the temperatures would probably be lower and also create a wider spatial variability. This study provides first data on the important interactions between Azorella selago and how it affects through spatial variability in micro-climate, ground frost potential and resulting soil disturbance by frost creep and solifluction.
118

Analysis of Antarctic Sea Ice Thickness: A Newly Created Database for 2000-2009

Morgan, Benjamin Patrick 2011 August 1900 (has links)
Observations of Antarctic sea ice thickness are sporadic in space and time, hindering knowledge of its variability. A proxy based on stage of development data from the National Ice Center (NIC) weekly operational charts is used to create a high-resolution time series of sea ice concentration, thickness and volume for 2000-2009. Record-length mean thickness and volume of Antarctic sea ice are 66.7 cm and 7.7 x10^3 km^3. The mean growth and decay seasons in the Southern Ocean and in the Ross sector are 210 days and 155 days, but at least at least one week shorter (growth) and longer (decay) in the Amundsen/Bellingshausen sector. Over 90% of the Antarctic continental shelf is covered with sea ice for 3-5 months, and for 2 to 4 months longer periods in the Amundsen/Bellingshausen and Ross sectors. Yearly mean sea ice area (extent) in the Southern Ocean increased at a rate of 0.71 x 10^6 km^2/decade (0.70 x 10^6 km^2/decade), equivalent to a 7.7 %/decade (6.3 %/decade) rise. A comparable trend of 9.1 %/decade (8.5 %/decade) is estimated in the Ross sector, at 0.21 x 10^6 km2/decade (0.23 x 10^6 km2/decade). The opposite trend is found in the Amundsen/Bellingshausen sector: a -0.15 x 10^6 km^2/decade (-0.17 x 10^6 km^2/decade) decline, or -14.6 %/decade (-13.4 %/decade). The estimated annual increase of Antarctic sea ice thickness is 22.6 cm/decade (49.2 %/decade) and of volume is 3.78 x 10^3 km^3/decade (68.3 %/decade). The Ross sector showed similar trends for thickness, at 23.8 cm/decade (47.0 %/decade), and volume, at 1.11 x 10^3 km^3/decade (75.8 %/decade). Thickness has increased in the Amundsen/Bellingshausen sector, 20.7 cm/decade (44.8 %/decade), but with a less pronounced volume rise of 0.17 x10^3 km^3/decade (26.0 %/decade). Monthly sea ice thickness anomalies show a weak response to the El Nino Southern Oscillation (ENSO) index. A strong positive response is observed in 2008 when a negative a negative ENSO index compounded to a positive Southern Annular Mode (SAM) index. Therefore the estimated increase of sea ice thickness in the Southern Ocean could be attributed to the prevailing atmospheric conditions with a positive SAM phase over the past decade.
119

Timescale and Latitudinal dependence of Glacial Erosion Rates from Patagonia and Antarctic Peninsula Tidewater Glaciers (46-65 deg S)

January 2012 (has links)
I use time-constrained sediment volumes delivered by glaciers calving into Marinelli Fjord (55°S), an outlet glacier of the Cordillera Darwin Ice Cap, Southern Patagonia, to determine erosion rates across different timescales. These results indicate that modern sediment yields and erosion rates from temperate tidewater glaciers can exceed long-term values over the time of deglaciation after the LGM (centennial and millennial time scales) by up to two orders of magnitude. In northern Patagonia (Gualas glacier area, 46.5°S), an overall increase in sediment production in the late Holocene is interpreted as result of a sharp increase in centennial timescale precipitation (intensified westerly winds). Erosion rates values span two orders of magnitude from 0.03 mm/yr for Lapeyrere Bay at Anver Island (~64.5°S), up to 1.09 mm/yr for San Rafael glacier at northern Patagonia (~46.5°S). Rates from the Antarctic Peninsula glaciers are in general lower than the temperate Patagonian glaciers. A good correlation of erosion rates and modern (estimated sea level annual 1970 temperature) sea level annual temperature was found. Latitudinal decrease of millenial is interpreted as result of decreasing annual temperature although decreasing in annual precipitation is suggested. The pattern of thermochronology ages from other studies (Thompson et al., 2010; Guenthner et al., 2010), along with the values of 10 3 and 10 6 years timescales erosion rates from this study, indicate that long-term glacial erosion decreases significantly its efficiency with latitude, implying that long-term glacial cover acts as a protective blanket, hindering erosion and allowing mountain growth. We conclude that the pattern of erosion rate decrease with timescale reflects the sensitivity of glaciers to climate variability. Temperate glaciers have higher sensitivity and greater response amplitude to climatic stress than subpolar or polar glaciers. This results in a decrease in erosion rates (sediment production) with latitude, and also in a decrease of erosion rate gradients with timescale.
120

The Last 180 ka Benthic Foraminiferal Mg/Ca Record and the Implication on Intermediate Water Hydrology Variations of the Western Equatorial Pacific ( MD052922C )

Feng, Chun-Chin 29 August 2012 (has links)
The Antarctic Intermediate Water (AAIW) plays an important role on controlling globally climatic change. Numbers of researchers attempted to discuss whether AAIW across the equator or notduring glacial- interglacial transitions. In this study, we analyzed Mg/Ca and £UREE/Ca on benthic foraminiferal species, Cibicidoides wuellerstorfi, from core MD052922C, which retrieved from western equatorial Pacific region, for revealing the long-term variations of Paleohydrology in intermediate water depths of tropical Pacific. Our evaluated results reveal that the Mg/Ca ratios ranging from 1.27 to 2.04 mmol/mol, and ranging between 2.2 and 3.2¢J when calculating into paleotemoeratures.Highest Mg/Ca can be observed in MIS 6. This finding implies that the present AAIW mean temperature is colder than glacials, and the present AAIW is well-ventilated than that in glacials.Higher £UREEs/Ca values are usually well correlated with old and poor ventilated water masses. In our record, higher £UREEs/Ca values are observed at MIS 5 impling that the intermediate depth water mass of the western tropical Pacific is poor ventilated when comparing to glacials.

Page generated in 0.0769 seconds