• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 5
  • 5
  • 1
  • 1
  • Tagged with
  • 52
  • 16
  • 15
  • 14
  • 14
  • 12
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Effect of Microbiomes on Food Crop yield and Quality in Aquaponic System

Yi-ju Wang (11206284) 30 July 2021 (has links)
<p><a>Facing challenges for increasing demands for agricultural land, water, and energy, aquaponics has emerged as a sustainable solution that can contribute to global food production while minimizing environmental impacts. In a recirculating aquaponic system, the waste produced by aquatic animals is processed through microbes and breaks down into compounds for plant uptake. By recycling nutrients and water between hydroponics and aquaculture systems, aquaponics can reduce the waste of fish feeds and the use of chemical fertilizers and use 90-99% less water than conventional aquaculture. However, a few studies reported that nutrient use efficiency is still low in aquaponics, and only 10-37% and 20-30% of nitrogen (N) is typically assimilated by plants and fish, respectively. Yield reduction is commonly reported for plants in aquaponics. Due to the unique water physical and chemical environment, the microbiomes are more diverse in aquaponics than in hydroponics. While the most important microbial group is considered nitrifying bacteria, <i>Nitrosomonas</i> spp. and <i>Nitrobacter</i> spp. mediating the N conversion process from ammonia into nitrate,</a> some plant growth-promoting bacteria (PGPB) in soils were found in aquaponics indicating their important function in the system. Meanwhile, the use of aquaculture wastewater can introduce and promote the growth of harmful microbial pathogens, posing a food safety concern. </p> The goal of this research is to investigate the effects of microbiomes in aquaponic systems. A series of studies were conducted to examine the effects of different bacterial groups on food crop yield and quality and investigate the potential risk of contamination with enteric pathogens in aquaponic systems. The specific objectives are: to 1) examine whether enteric pathogens present in aquaponics and hydroponics; 2) investigate the effects of plant age and root damage on internalization of STEC <i>E. coli</i> in leafy vegetables and herbs. 3) examine the effects of pH on the plant yield in aquaponics; and 4) investigate the effects of PGPB on lettuce in aquaponics and hydroponics3. The data obtained from this research will fill the knowledge gap and provide new management strategies for cultivating crops in aquaponics, which will greatly promote the application of aquaponics to provide a solution for the increasing food demands in the future.
32

Sun Tunnel / Sol tunnel

Mattsson, Nicodemus January 2018 (has links)
This thesis project aims to repurpose an abandoned railway tunnel in Eriksdalslunden, Stockholm into an experimental activity/farming center for the purpose of teaching people of all ages different farming methods. The learning center implements exciting farming techniques such as aquaponics, where plants get their nutrients from live fish.  This center also teaches about the new technologies that make it possible to grow plants beneath the earth´s surface. These technologies harness the benefits of the sun into a concentrated form and then leads it deep underground. Repurposing unused underground spaces such as this can help develop our cities in a more efficient way. / Detta avhandlingsprojekt syftar till att omarbeta enövergiven järnvägstunnel i Eriksdalslunden,Stockholm till en experimentell verksamhet / jordbrukscentrum för att undervisa människor i alla åldrar olika odlingsmetoder. Inlärningscentralen implementerar spännande odlingstekniker som aquaponics, där växter får sinanäringsämnen från levande fisk.Detta centrum lär också om den nya tekniken som gör det möjligt att växa växter under jordens yta. Dessa tekniker utnyttjar solens fördelar i en koncentrerad form och leder sedan den djupt under jorden. Repurposing oanvända underjordiska utrymmen som detta kan hjälpa till att utveckla våra städer på ett mer effektivt sätt.
33

A circular production of fish and vegetables in Guatemala : An in-depth analysis of the nitrogen cycle in the Maya Chay aquaponic systems / En cirkulär produktion av fisk och grönsaker i Guatemala : En fördjupad analys av kvävecykeln i Maya Chay akvaponiska system

Björn, Erik January 2018 (has links)
This study was done with the aim of deepening the understanding of the Maya Chay aquaponic systems. To meet the aim, a literature study on aquaponics, with an emphasis on the nitrogen metabolism in such systems, was conducted. Furthermore, a deep investigation of the specific Maya Chay systems was made to understand how these systems might be different from the general aquaponic designs. Finally, two nitrogen balances were developed with the purpose of examining the dynamics of the nitrogen transformations in two Maya Chay aquaponic systems. The measurements for the nitrogen balances was made between Mars 2017 to July 2017, and the model for the nitrogen balances evaluated the amount of nitrogen as: i) nitrogen input to the system through the feed, ii) nitrogen assimilated by the fish and the plants, iii) nitrogen accumulated in the sludge, and iv) nitrogen lost to the atmosphere through denitrification and similar processes such as anammox. The resulting nitrogen balances showed some interesting differences in the dynamics of nitrogen distribution. In the smaller Maya Chay XS system in Antigua, only 36 % of the nitrogen input was assimilated by the fish (30 %) and the plants (6 %) and 64 % of the nitrogen input could be regarded as lost, either to the atmosphere (46 %) or in the sludge (18 %). The other nitrogen balance showed that the distribution of nitrogen in the Maya Chay S system in Chinautla is much more efficient in taking care of the nitrogen input. In this system 70 % was assimilated by the fish (33 %) and the vegetables (37 %) and the remaining 30 % was lost, either to the atmosphere (14 %) or in the sludge (16 %). The nitrogen balances also showed that both systems are almost equally efficient in terms of nitrogen assimilation by the fish, and that the big differences lie in the rate of nitrogen assimilation by the plants (6 % vs. 30 %) and in the nitrogen loss to the atmosphere (46 % vs. 14 %). A likely explanation for these differences is the difference in design of the vegetable beds, where the less efficient system in Antigua has a large surface area for the vegetable bed, but only a small portion of this could be utilized for vegetable growth. Furthermore, a consequence of the larger surface is a larger anoxic zone in the bottom of the vegetable bed, which promotes the growth of denitrifying and anammox bacteria. These kinds of bacteria convert the dissolved ammonia, nitrite and nitrate to gas forms of nitrogen, such as nitrogen gas and nitrous oxide and thus nitrogen is lost from the system to the atmosphere. Finally, this study also showed a great difference in the ratio of vegetable to fish production between the systems, where the ratio was 0.43 in Antigua and 2.7 in Chinautla. This ratio further indicates the difference in design between the systems, especially regarding the vegetable beds, has an impact on how well they perform, both in terms in economic and productivity terms, but also in terms of the release of greenhouse gases (nitrous oxide). It can therefore be concluded that the original design of the Maya Chay system (i.e. the Chinautla system) is the preferable one. Even though the accuracy of the measurements in the experiments could be improved for future studies, this study has demonstrated the value of making nitrogen balances for aquaponic systems. Nitrogen balances increase the knowledge of the performance of the system and they increase the understanding of the dynamics of nitrogen transformations that takes place in the system. This knowledge can then be utilized to adjust the design and/or verify if either the aquaculture or hydroponic system is properly designed. / Den här studien gjordes med syftet att fördjupa förståelsen kring Maya Chay akvaponiska system. För att uppnå syftet, utfördes en litteraturstudie som fokuserade på metabolismen av kväve i sådana system. Vidare undersöktes specifika Maya Chay system för att förstå hur dessa system skulle kunna skilja sig från den generella akvaponiska designen. Slutligen utvecklades två kvävebalanser i syfte att utforska dynamiken i de kväveomvandlingar som sker i två Maya Chay akvaponiska system. Mätningarna för kvävebalanserna gjordes i perioden mars 2017 till juli 2017, och modellen för kvävebalanserna utvärderade mängden kväve som: i) kväve som tillförts till systemet genom fodret, ii) kväve som assimilerats av fiskarna och växterna, iii) kväve som ackumulerats i slammet, och iv) kväve som gått förlorat till atmosfären genom denitrifikation och liknande processer så som anammox. Resultaten från kvävebalanserna visade intressanta skillnader kring dynamiken av kvävefördelningen. I det mindre Maya Chay XS systemet i Antigua, assimilerades endast 36 % av kvävet av fiskarna (30 %) och växterna (6 %) och 64 % av kvävet ansågs som förluster, antingen till atmosfären (46 %) eller genom slammet (18 %). Den andra kvävebalansen visade att fördelningen av kväve i Maya Chay S systemet i Chinautla är mycket mer effektivt gällande tillvaratagandet av tillfört kväve. I detta system assimilerades 70 % av fiskarna (33 %) och av växterna (37 %) och de resterande 30 % gick förlorat, antingen till atmosfären (14 %) eller i slammet (16 %). Kvävebalanserna visade även att bägge systemen är mer eller mindre likvärdiga gällande assimilering av kväve från fiskarna, och att den stora skillnaden mellan systemen ligger i hur mycket kväve som assimilerats av växterna (6 % vs. 37 %) samt hur mycket kväve som gått förlorat till atmosfären (46 % vs. 14 %). En sannolik förklaring till dessa skillnader är skillnaden i designen av växtbäddarna för två systemen, där det mindre effektiva systemet i Antigua har större area för växtbädden, men endast en mindre del av denna kunde nyttjas för odling av grönsaker. Som konsekvens av den större arean av växtbädden är en större volym syrefattigt vatten i botten av växtbädden, vilket verkar för tillväxt av denitrifierande och anammoxa bakterier. Dessa typer av bakterier omvandlar den upplösta ammoniaken, nitriten samt nitratet till kväveföreningar i gasform, till exempel kvävgas och lustgas och därav går kvävet förlorat till atmosfären. Slutligen visade den här studien stora skillnader i förhållandet mellan växt- och fisk-produktion mellan de två systemen, där förhållandet var 0.43 i Antigua och 2.7 i Chinautla. Skillnaden mellan de två olika förhållandena är ytterligare en indikation till att skillnaden i designen mellan systemen, speciellt med avseende på växtbäddarna, har en effekt på hur väl systemen presterar, både i termer som ekonomi och produktivitet, men också i termer som utsläpp av växthusgaser (lustgas). Därför kan slutsatsen dras att den ursprungliga designen av Maya Chay systemen (det vill säga systemet i Chinautla) är att föredra. Även om noggrannheten i mätningarna i detta experiment skulle kunna förbättras i framtida experiment, så visar denna studie värdet av att utföra kvävebalanser för akvaponiska system. Kvävebalanserna ökar kunskapen om hur väl systemen fungerar och dom ökar kunskapen kring dynamiken i kväveomvandlingarna som sker i systemen. Denna kunskap kan sedan utnyttjas för att justera designen av systemen och/eller verifiera om antingen vattenbruksdelen eller hydroponidelen i systemet är feldimensionerad.
34

Självförsörjande hushåll med biogasproduktion och akvaponi / Self sustaining households with production of biogas and aquaponics

Sund, Emil January 2018 (has links)
Energiförsörjningsteknologier behöver avanceras, oberoende av var i världen och i vilket syfte. Fossila bränslen bidrar till kraftiga växthusgasutsläpp när de förbränns och kretsloppet för dessa råvaror är en långsam process. Biogas är en av möjligheterna till utveckling då denna teknik i många fall kan använda råvaror mer tillgängliga för utvinning än de fossila, vilket möjliggör lokala energilösningar som kan bidra till att minska transporter, men framförallt mindre klimatpåverkande utsläpp. Detta då biogasens energikapacitet ligger i just mängden metan som gasen innehåller, vilket medför att teknologins utveckling strävar mot att ta tillvara på så mycket av denna växthusgas som möjligt, samtidigt som den stora biprodukten, koldioxid, är grön och ej bidrar till ökad växthuseffekt.Syftet med denna rapport är att bidra till utvecklingen av småskalig biogasproduktion, som idag ej är tillräckligt utvecklad för att kunna erbjuda självklara alternativ i situationer som har en god potential. Dessa situationer uppstår i exempelvis gårdsmiljöer där mycket avfall genereras i form av gödsel och jordbruksrester som är en utmärkt råvara för biogasproduktion. Men biogasanläggningar är idag optimerade för storskaliga verksamheter, som avloppsverk där stora volymer kommunalt avfall från hela städer hanteras. Mindre biogasanläggningar får problem med lönsamheten då volymerna idag är kraftigt kopplade till biogasavkastningen, men problem uppstår även vid drift och service av själva anläggningen då dessa är långt ifrån standardiserade och oftast platsbyggts för ändamålet.Biogas på ännu mindre skala, exempelvis i situationer med vanligt hushållsavfall har även det en potential då det i hushållen idag förbrukas väldigt mycket livsmedel, vatten och energi som med ett mer slutet kretslopp kan ta tillvara på mer resurser och på så sätt kan minska sitt ekologiska fotavtryck. Detta ledde till frågeställningen om hur det med en odling-och gårdsverksamhet kan, med hjälp av biogas, produceras en tillräcklig mängd mat och energi för att försörja ett hushåll.Arbetet inleddes med en litteraturstudie för att sammanställa data över viktiga parametrar och relevant bakgrundsinformation då mycket antaganden och schablonvärden behövde användas. Varje komponent i systemet fick input- och outputvärden gällande yta, energi, vatten m.fl. för att tillslut kunna uppskatta en landareal tillräcklig för matförsörjning, med eller utan energibalans.Resultaten från denna rapport visade att redan vid 593 m2 kunde ett hushålls matproduktion och förbrukning försörjas i ett år. Vidare utfördes en känslighetsanalys på viktiga variabler för att uppskatta hur ett framtida arbete med frågan bör utformas. / Around the world, energy supplying technologies need to advance regardless of its purpose of use. Burning of fossil fuels are the number one source of increase in greenhouse effect and its lifecycle is too long to be an option for the future. One of the more sustainable options is the production and use of biogas which utilizes more convenient resources like sewage waste, manure and domestic waste. This enables more local energy solutions and reduces the need for transport, but also contributes far less to the elevation and concentration of greenhouse gases in the atmosphere. The main component is methane which is also a potent greenhouse gas, but methane is also the one thing that is combustible in the gas and therefore the technology advances in utilizing more and more of this and reducing the loss fractions.Therefore, the purpose of this report is to contribute in the development of small-scale biogas production since most of the operating conditions today are optimized for large scale plants like sewage treatment plants, which handles much larger volumes of waste from whole towns and regions. The smaller scale operations are often in farm environments that have a lot of raw materials and wastes from their daily operations like manure and crop residues. Today these sizes struggle with profitability since biogas yield is strongly linked to production volume, and often maintenance becomes a problem because of on-site builds.The potential of biogas production is even located in smaller operations like household and domestic environments, mainly because of the high fraction of waste that originates in these sectors of society. Food waste and sewage are two important fractions that are being utilized today but mainly in scientific efforts or large-scale operations. This led to the question of how these two smaller-scale situations could work together, and how production of biogas could aid in becoming self-sufficient in food and energy consumption.The report started off with an overview of the literature on the subjects to help create a foundation for the many assumptions and template calculations that were required to model this situation. Each component in the system where given input- and output variables regarding energy, water and spacing required. This was then used to model a total area where it could take place.The results showed that already at 593 m2 you could grow enough food for a household to be self-sufficient for a year. This was without concern of energy usage which led to exceeding costs at about 540 000 SEK yearly, with a self-sufficiency rate of about 31 %. Furthermore, a sensitivity analysis was conducted on a few selected variables that was considered more uncertain which showed a variance in both total area and heating costs.
35

Moving toward sustainable food production: Aquaponics for healthy and nutritionally enriched fish and vegetables production

Pattadar, Shib Nath 10 November 2022 (has links)
No description available.
36

Sustainable food production with aquaponics

Peng Chen (13176510) 01 August 2022 (has links)
<p>Sustainable food production is about producing more and better with less.As an emerging CEA system, aquaponics integrates recirculating aquaculture systems and hydroponics and can achieve the three SDGs mentioned above. However, challenges in sustainable aquaponics commercialization remains and my thesis addresses the following three layers of sustainable aquaponics  development:  sustainability  assessment,  sustainable  system  design  and management, understanding biological mechanisms for scalability.</p> <p>I conducted acradle-to-gate life cycle assessment (LCA)and compared the environmental performance, on an economic basis, of aquaponics andhydroponics withidentical system design in Indiana, US. Aquaponics produced 45% lower endpoint environmental impact than hydroponics.Electricity use for greenhouse heating and lighting, and water pumping and heating contributed to themajority of the environmental impacts of both systems, which was followed by the production of fishfeed and fertilizers. However, changing the energy source from coal to wind power could make thehydroponic system more environment-friendly than the aquaponic system. This LCA study can provideCEA farmers with the groundwork to reduce the environmental cost of their production.</p> <p>Aquaponics uses bacterial processes and plant nutrient uptake to recover nutrient from aquaculture wastewater. However, little is known which wastewater management strategy, autotrophic or heterotrophic, is best suited for the four objectives: nutrient recovery, system reliability, and growth and physiological welfare of fish and plants. In this study, I found that pH6 had the highest nitrogen (N) use efficiency (NUE) (assimilated by fish and plants, 65.5%) and the lowest N loss as gas (34.5%), followed by pH6M (55.5% and 44.5%,respectively), suggesting that lower pH and less organic carbon in aquaponics could enhance NUE and reduce N loss. pH6M had the highest phosphorus (P) use efficiency (PUE) (assimilated by fish and plants, 65.0%) suggesting that lower pH and organic carbonaddition could facilitate P recovery from wastewater. </p> <p>Reverse osmosis (RO) water enables aquaculture to expand in places where natural water is not desirable and reduces uncertainty in the operation. However, high K+environment of RO in  aquaponics  couldinduce  physiological  stress,  but  adaptation  mechanism  is  unknown. Proteomic analysis revealed up-regulation of stress response proteins and down-regulation of V-type H+-ATPase and other ion transporters, suggesting cellular adaptation of fish to RO water stress. In conclusion, fish was able to accommodate to the RO environment and the benefits of efficient ammonia excretion and increased feed consumption outweighed the stress caused by RO. RO water could be a standardized water source for better animal welfare, reduce uncertainty in production and assist scaling up aquaponics industry.</p>
37

Análise de viabilidade econômica de implantação de uma aquaponia no município de Santa Cruz das Palmeiras - SP / Economic feasibility analysis of an aquaponics implantation in the municipality of Santa Cruz das Palmeiras - SP

Granja, Rafael Pereira 04 February 2019 (has links)
Os desafios de atender as necessidades do consumidor com uma oferta sustentável de alimentos desponta a aquaponia, que pode desempenhar importante papel no enfrentamento do aumento da demanda de uma crescente população mundial, apresentando resultados positivos incluindo renda, diversificação, melhoria na segurança alimentar, nutrição e benefícios ambientais. O presente trabalho teve como objetivo analisar a viabilidade econômico-financeira de investimento da implantação de uma aquaponia para cultivo de hortaliças (alface e rúcula) consorciadas à produção de tilápia, na cidade de Santa Cruz das Palmeiras/São Paulo. A metodologia seguida para o desenvolvimento deste estudo está amparada nos princípios da analise economia, dos custos de produção e dos aspectos técnicos da Engenharia de Pesca e Agronômica. Foi realizada a coleta de dados de campo para uma padronização de preços de insumos (ração, mudas, juvenil), serviços de documentação, embalagens, salarios, taxas, impostos, preço de mercado das hortaliças e do peixe, custo dos equipamentos e estrutura. Para o processo de avaliação do projeto de investimento foi elaborada uma análise financeira por meio do cálculo do volume de investimentos necessários para a instalação da aquaponia mediante a entrada das receitas e das despesas que ocorreram ao longo de dez anos. Os cálculos foram realizados com auxílio da planilha eletrônica do Software Excel. Para a implantação do empreendimento, a análise de Retorno do Investimento para um período de tempo de 10 anos aplicados a três diferentes cenários (C1 100% de venda para atacado, C2 100% de venda para o varejo e C3 50% de venda para tacado e 50% venda para varejo), indica uma Taxa Interna de Retorno (TIR) de -18,35% para C1, de 71,18% para C2 e de 35,35% para C3; Valor Presente Líquido (VPL) de R$ -168.406,61 para C1, de R$ 871.809,94 para C2 e de R$ 351.701,66 em C3; o Índice de Lucratividade de Longo-Prazo (IL) de 0,200 em C1, de 5,141 em C2 e de 2,670 em C3; a Taxa de Retorno (TR) em C1 é de -79,99%, em C2 de 414,07% e em C3 de 167,04%. Os investimentos produziram indicadores que apontam a viabilidade econômico-financeira para este projeto nos cenários 2 e 3 propostos. A implantação do empreendimento se mostrou favorável positivamente nestes dois cenários de receitas e o período de Retorno Econômico (Payback descontado) do investimento para estes cenários é de mais de 20 anos em C1, para o início do segundo ano em C2 e para o início do quarto ano em C3. / Challenges of meeting consumer needs with sustainable food supply highlight aquaponics that can play an important role in facing the rising demand of a growing world population, with positive results including income, diversification, improvement in food security, nutrition and benefits environmental impacts. The present paper had the objective of analyzing the economical and financial feasibility of investing the implantation of an aquapony for the cultivation of vegetables (lettuce and arugula) consorted to the production of tilapia, in the city of Santa Cruz das Palmeiras / São Paulo. The methodology used for the development of this study is based on the principles of economics, production costs and technical aspects of Fisheries and Agronomy Engineering. Field data were collected for a standardization of input prices (ration, seedlings, juvenile), documentation services, packaging, wages, taxes, market price of vegetables and fish, equipment costs and structure. For the evaluation of the investment project, a financial analysis was elaborated by calculating the volume of investments necessary for the installation of the aquaponics through the entry of revenues and expenses that occurred over ten years. The calculations were performed using the Excel Software spreadsheet. For the implementation of the enterprise, the Investment Return analysis for a time period of 10 years applied to three different scenarios (C1 100% for wholesale, C2 100% for retail and C3 50% for sale and 50% for retail), indicates an Internal Rate of Return (TIR) of -18.35% for C1, 71.18% for C2 and 35.35% for C3; Net Present Value (NPV) of R $ -168,406.61 for C1, R $ 871,809.94 for C2 and R $ 351,701.66 for C3; the Long-Term Profitability Index (IL) of 0.200 in C1, 5,141 in C2 and 2,670 in C3; the Return Rate (TR) in C1 is -79.99%, C2 is 414.07%, and C3 is 167.04%. The investments produced indicators that indicate the economic-financial viability for this project in scenarios 2 and 3 proposed. The implementation of the enterprise proved to be positively favorable in these two revenue scenarios and the Economic Payback period of the investment for these scenarios is more than 20 years in C1, for the beginning of the second year in C2 and for the beginning of the fourth year in C3.
38

Allotment Aquaponics : Synthesis of the two concepts allotment garden and aquaponics in conjunction with existing apartment buildings

Hendeberg, Martin January 2018 (has links)
No description available.
39

Effect of Aquafeed on Productivity of Red Amaranth and on Water Quality under Aquaponic Cultivation

Medina, Miles D 28 March 2014 (has links)
Aquaponics, the integrated production of fish and hydroponic crops in a recirculating system, is an intensive cultivation method in which metabolic fish wastes fertilize plants. This study compares the effects of two aquafeeds on Red amaranth (Amaranthus tricolor) productivity and on water quality under cultivation of Blue tilapia (Oreochromis aureus), with three aquaponic units (n=3) per treatment over a 60-day trial. The fishmeal-based control feed contains higher crude protein (40%) and phosphorus (1.12%) than the plant-based alternative feed (32% and 0.40%). The alternative feed resulted in a significantly higher amaranth crop yield (p
40

Bilance energie, vody a živin v aquaponickém cyklu / Balance of energy, water and nutrients in the aquaponic cycle

Szotkowski, Matěj January 2021 (has links)
Předložená diplomová práce byla zpracována s cílem vytvořit přehled poznatků v oblasti akvaponické potravinové produkce. Informace získané během tvorby tohoto přehledu pak měly vést, v kombinaci s daty získanými z funkčního provozu, k vytvoření matematického modelu akvaponického cyklu. Na akvaponické farmě provozované společností Flenexa plus s.r.o., která byla zdrojem potřebných procesních dat, měla být dále zpracována a vyhodnocena bilance energie a vody. Nakonec měla být v průběhu práce posouzena možnost implementace mikrořasového fotobioreaktoru do akvaponického cyklu. Úvod práce představuje motivaci vedoucí k potřebě inovovat dnešní potravinovou produkci. Kriticky jsou zhodnoceny predikce vývoje lidské populace, a to pak hlavně z pohledu dopadu, který by tento růst měl na zemědělskou produkci. Současná situace se na základě získaných poznatků ukazuje jako neudržitelná, primárně pak v oblastech vodohospodářství a energetické spotřeby. Následně je jako možné řešení vedoucí ke zlepšení udržitelnosti potravinové produkce zkoumána akvaponie. Akvaponie je definována a její jednotlivé komponenty jsou představeny z hlediska mechanismu jejich fungování a z pohledu jejich návrhu. Mezi popsané oblasti patří například principy tzv. coupled a decoupled akvaponie a popis možných typů hydroponického komponentu. V této části práce je pozornost věnována také představení cyklů jednotlivých živin v rámci akvaponie. Následující a poslední teoretická část práce je pak věnována mikrořasovému fotobioreaktoru. Jsou zde popsány mechanismy, jak motivující, tak odrazující od zakomponování bioreaktoru do akvaponie. V oblasti výhod se jedná hlavně o jeho roli ve stabilizaci pH a spotřebě toxikého amoniaku. Na druhou stranu jeho ekonomické dopady na profitabilitu akvaponie jsou velmi proměnlivé v závislosti na způsobu implementace. Samotný mikrořasový fotobioreaktor je pak v práci detailněji představen. Jednotlivé procesní ukazatele ovlivňující růst řas jsou rozebrány, a to společně s jednotlivými typy fotobioreaktoru, metodami sklizně a využitími pro vyprodukované mikrořasy. Na základě poznatků schromážděných v této práci pak lze jako nejvhodnější k implementaci do akvaponie doporučit hybridní fotobioreaktory, u kterých je většina osvětlení zajištěna v podobě slunečního svitu. Samotná experimentální část práce pak začíná popisem zkoumaného provozu společnosti Flenexa plus s.r.o. z pohledu aplikovaného akvaponického procesu. Jednotka podrobená měření byla provozně stabilní a využívala implementace hydroponického komponentu typu Deep Water Culture (DWC). Spolu s detailním popisem celého provozu jsou poskytnuty a vyhodnoceny vypracované bilance vody a energií. Pozornost je pak přesunuta k matematickým modelům vypracovaným a ověřeným na základě dat a poznatků shromážděných z provozu společnosti Felenexa plus s.r.o. Logika a algoritmy, na kterých jsou oba modely postaveny, jsou v této části vysvětleny a diskutovány společně s hlavními funkcemi a schopnostmi obou modelů. První, primárně statistický model je představen jako nástroj pro použití při uvádění akvaponie do provozu. Druhý, fyzikální model pak v uživatelsky přívětivém formátu představuje základ pro model řízení akvaponické farmy s mikrořasovým fotobioreaktorem. V neposlední řadě jsou nastíněny také cesty možného budoucího vývoje pro oba vytvořené modely. Práce je následně završena shrnutím a diskusí nad poznatky a výstupy získanými během celého tvůrčího procesu.

Page generated in 0.1174 seconds