• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 16
  • 14
  • 8
  • 7
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Path loss evaluation for mobile-to-mobile wireless channel

Zhu, Shaozhen (Sharon), Ghazaany, Tahereh S., Jones, Steven M.R., Abd-Alhameed, Raed, Noras, James M., Van Buren, T., Merrell, A. 06 1900 (has links)
No / Narrowband path loss measurements are reported for the vehicle-to-vehicle channel between a transmitting antenna 50 cm above the ground and a car-roof-mounted receiver array. Calibration procedures and measurement results are reported for typical urban, suburban and rural-motorway environments and compared with existing mobile channel models to give insight into the large-scale fading behavior in the vehicle-to-vehicle channel.
22

Communication Infrastructure for the Smart Grid: A Co-Simulation Based Study on Techniques to Improve the Power Transmission System Functions with Efficient Data Networks

Lin, Hua 24 October 2012 (has links)
The vision of the smart grid is predicated upon pervasive use of modern digital communication techniques in today's power system. As wide area measurements and control techniques are being developed and deployed for a more resilient power system, the role of communication networks is becoming prominent. Advanced communication infrastructure provides much wider system observability and enables globally optimal control schemes. Wide area measurement and monitoring with Phasor Measurement Units (PMUs) or Intelligent Electronic Devices (IED) is a growing trend in this context. However, the large amount of data collected by PMUs or IEDs needs to be transferred over the data network to control centers where real-time state estimation, protection, and control decisions are made. The volume and frequency of such data transfers, and real-time delivery requirements mandate that sufficient bandwidth and proper delay characteristics must be ensured for the correct operations. Power system dynamics get influenced by the underlying communication infrastructure. Therefore, extensive integration of power system and communication infrastructure mandates that the two systems be studied as a single distributed cyber-physical system. This dissertation proposes a global event-driven co-simulation framework, which is termed as GECO, for interconnected power system and communication network. GECO can be used as a design pattern for hybrid system simulation with continuous/discrete sub-components. An implementation of GECO is achieved by integrating two software packages: PSLF and NS2 into the framework. Besides, this dissertation proposes and studies a set of power system applications which can be only properly evaluated on a co-simulation framework like GECO, namely communication-based distance relay protection, all-PMU state estimation and PMU-based out-of-step protection. All of them take advantage of interplays between the power grid and the communication infrastructure. The GECO experiments described in this dissertation not only show the efficacy of the GECO framework, but also provide experience on how to go about using GECO in smart grid planning activities. / Ph. D.
23

Kinetic and Morphological Studies of Pd Oxidation in O2-CH4 mixtures

Han, Jinyi 29 April 2004 (has links)
The oxidation of Pd single crystals: Pd(111), Pd(100) and Pd(110) was studied using Temperature Programmed Desorption (TPD), X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES), Low Electron Energy Diffraction (LEED) and Scanning Tunneling Microscopy (STM) as they were subjected to O2 in the pressure range between 1 and 150 Torr at temperatures 600-900 K. The oxygen species formed during oxidation, the oxygen uptake dependence on the sample history, the Pd single crystal surface morphology transformations, and the catalytic methane combustion over Pd single crystals were investigated in detail. The Pd single crystal oxidation proceeded through a three-step mechanism. Namely, (1) oxygen dissociatively adsorbed on Pd surface, forming chemisorbed oxygen and then surface oxide; (2) atomic oxygen diffused through a thin surface oxide layer into Pd metal, forming near surface and bulk oxygen; (3) bulk PdO formed when a critical oxygen concentration was reached in the near surface region. The diffusion of oxygen through thin surface oxide layer into Pd metal decreased in the order: Pd(110)>Pd(100)>Pd(111). The oxygen diffusion coefficient was estimated to be around 10-16 cm2 s-1 at 600 K, with an activation energy of 80 kJ mol-1. Once bulk PdO was formed, the diffusion of oxygen through the bulk oxide layer was the rate-determining step for the palladium oxidation. The diffusion coefficient was equal to 10-18 cm2 s-1 at 600 K and the activation energy was approximately 120 kJ mol-1. The oxygen diffusion through thin surface oxide layer and bulk PdO followed the Mott-Cabrera parabolic diffusion law. The oxygen uptake on Pd single crystals depended on the sample history. The uptake amount increased with the population of the bulk oxygen species, which was achieved by high oxygen exposure at elevated temperatures, for example in 1 Torr O2 at above 820 K. Ar+ sputtering or annealing in vacuum at 1300 K depleted the bulk oxygen. The Pd single crystal surface morphology was determined by the oxidation conditions: O2 pressure, treatment temperature and exposure time. When bulk PdO was formed, the single crystal surface was covered with semi-spherical agglomerates 2-4 nm in size, which tended to aggregate to form a“cauliflower-like" superstructure. The single crystal surface area during oxidation, determined by integrating the STM image, experienced three major expansions in consistent with a three-step oxidation mechanism. The surface area on the oxidized single crystals increased in the order: Pd(110)
24

Teaching and learning the concept of area and perimeter of polygons without the use of formulas

Mickens, Jamie Robin Anderson 01 January 2007 (has links)
The purpose of this study was to increase the student's understanding of the measures of area and perimeter of polygons. The goal of the project was to create a supplemental geometry unit to develop the concept of the area and perimeter of a polygon without the use of formulas and numbers and to measure the effectiveness of this unit on student understanding. Two high school geometry classes with under 28 students each participated in this study.
25

Power Systems Frequency Dynamic Monitoring System Design and Applications

Zhong, Zhian 25 August 2005 (has links)
Recent large-scale blackouts revealed that power systems around the world are far from the stability and reliability requirement as they suppose to be. The post-event analysis clarifies that one major reason of the interconnection blackout is lack of wide area information. Frequency dynamics is one of the most important parameters of an electrical power system. In order to understand power system dynamics effectively, accurately measured wide-area frequency is needed. The idea of building an Internet based real-time GPS synchronized wide area Frequency Monitoring Network (FNET) was proposed to provide the imperative dynamic information for the large-scale power grids and the implementation of FNET has made the synchronized observations of the entire US power network possible for the first time. The FNET system consists of Frequency Disturbance Recorders (FDR), which work as the sensor devices to measure the real-time frequency at 110V single-phase power outlets, and an Information Management System (IMS) to work as a central server to process the frequency data. The device comparison between FDR and commercial PMU (Phasor Measurement Unit) demonstrate the advantage of FNET. The web visualization tools make the frequency data available for the authorized users to browse through Internet. The research work addresses some preliminary observations and analyses with the field-measured frequency information from FNET. The original algorithms based on the frequency response characteristic are designed to process event detection, localization and unbalanced power estimation during frequency disturbances. The analysis of historical cases illustrate that these algorithms can be employed in real-time level to provide early alarm of abnormal frequency change to the system operator. The further application is to develop an adaptive under frequency load shedding scheme with the processed information feed in to prevent further frequency decline in power systems after disturbances causing dangerous imbalance between the load and generation. / Ph. D.
26

High Accuracy Real-time GPS Synchronized Frequency Measurement Device for Wide-area Power Grid Monitoring

Xu, Chunchun 04 May 2006 (has links)
Frequency dynamics is one of the most important signals of a power system, and it is an indicator of imbalance between generation and load in the system. The Internet-based real-time GPS-synchronized wide-area Frequency Monitoring Network (FNET) was proposed to provide imperative frequency dynamics information for a variety of system-wide monitoring, analysis and control applications. The implementation of FNET has for the first time made the synchronized observation of the entire U.S. power network possible with very little cost. The FNET is comprised of many Frequency Disturbance Recorders (FDR) geographically dispersed throughout the U.S. and an Information Management System (IMS), currently located at Virginia Tech. The FDR works as a sensor, which performs local measurements and transmits calculations of frequency, voltage magnitude and voltage angle to the remote servers via the Internet. Compared with its commercial counterpart Phasor Measurement Unit (PMU), FDR provides less expensive version for networked high-resolution real-time synchronized. The improved single phase algorithm in the FDRs made it possible to measure at 110V level which is much more challenging than PMUs due to the noise involved at this level. This research work presents the challenges and issues of both software and hardware design for the novel measurement device FDR, which is one of the devices with the highest dynamic precision for power system frequency measurement. The DFT-based Phasor Angle Analysis algorithm has been improved to make sure the high-resolution measuring FDRs are installed at residential voltage outlets, instead of substation high-voltage inputs. An embedded 12-channel timing GPS receiver has been integrated to provide an accurate timing synchronization signal, UTC time stamp, and unit location. This research work also addresses the harmonics, voltage swing and other noise components' impacts on the measurement results, and the optimized design of filters and a coherent sampling scheme to reduce or eliminate those impacts. The verification test results show that the frequency measurement accuracy of the FDR is within +/-0.0005Hz, and the time synchronization error is within +/-500ns with suitable GPS antenna installation. The preliminary research results show the measurement accuracy and real-time performance of the FDR are satisfactory for a variety of FNET applications, such as disturbance identification and event location triangulation. / Ph. D.
27

Centralized Control of Power System Stabilizers

Sanchez Ayala, Gerardo 09 October 2014 (has links)
This study takes advantage of wide area measurements to propose a centralized nonlinear controller that acts on power system stabilizers, to cooperatively increase the damping of problematic small signal oscillations all over the system. The structure based on decision trees results in a simple, efficient, and dependable methodology that imposes much less computational burden than other nonlinear design approaches, making it a promising candidate for actual implementation by utilities and system operators. Details are given to utilize existing stabilizers while causing minimum changes to the equipment, and warranting improvement or at least no detriment of current system behavior. This enables power system stabilizers to overcome their inherent limitation to act only on the basis of local measurements to damp a single target frequency. This study demonstrates the implications of this new input on mathematical models, and the control functionality that is made available by its incorporation to conventional stabilizers. In preparation of the case of study, a heuristic dynamic reduction methodology is introduced that preserves a physical equivalent model, and that can be interpreted by any commercial software package. The steps of this method are general, versatile, and of easy adaptation to any particular power system model, with the aggregated value of producing a physical model as final result, that makes the approach appealing for industry. The accuracy of the resulting reduced network has been demonstrated with the model of the Central American System. / Ph. D.
28

PMU-Based Applications for Improved Monitoring and Protection of Power Systems

Pal, Anamitra 07 May 2014 (has links)
Monitoring and protection of power systems is a task that has manifold objectives. Amongst others, it involves performing data mining, optimizing available resources, assessing system stresses, and doing data conditioning. The role of PMUs in fulfilling these four objectives forms the basis of this dissertation. Classification and regression tree (CART) built using phasor data has been extensively used in power systems. The splits in CART are based on a single attribute or a combination of variables chosen by CART itself rather than the user. But as PMU data consists of complex numbers, both the attributes, should be considered simultaneously for making critical decisions. An algorithm is proposed here that expresses high dimensional, multivariate data as a single attribute in order to successfully perform splits in CART. In order to reap maximum benefits from placement of PMUs in the power grid, their locations must be selected judiciously. A gradual PMU placement scheme is developed here that ensures observability as well as protects critical parts of the system. In order to circumvent the computational burden of the optimization, this scheme is combined with a topology-based system partitioning technique to make it applicable to virtually any sized system. A power system is a dynamic being, and its health needs to be monitored at all times. Two metrics are proposed here to monitor stress of a power system in real-time. Angle difference between buses located across the network and voltage sensitivity of buses lying in the middle are found to accurately reflect the static and dynamic stress of the system. The results indicate that by setting appropriate alerts/alarm limits based on these two metrics, a more secure power system operation can be realized. A PMU-only linear state estimator is intrinsically superior to its predecessors with respect to performance and reliability. However, ensuring quality of the data stream that leaves this estimator is crucial. A methodology for performing synchrophasor data conditioning and validation that fits neatly into the existing linear state estimation formulation is developed here. The results indicate that the proposed methodology provides a computationally simple, elegant solution to the synchrophasor data quality problem. / Ph. D.
29

From the measurement of synchrophasors to the identification of inter-area oscillations in power transmission systems

Warichet, Jacques 26 February 2013 (has links)
In the early 1980s, relaying engineers conceived a technology allowing a huge step forward in the monitoring of power system behavior: the synchrophasor, i.e. the estimation of a phasor representation - amplitude and phase - of a sinusoidal waveform at a given point in time thanks to highly accurate time synchronization of a digital relay. By measuring synchrophasors across the power system several times per second, and centralizing the appropriate information in a hierarchical way through a telecommunication network link, it is now possible to continuously monitor the state of very large systems at a high refresh rate. <p><p>At the beginning, the phase angle information of synchrophasors was used to support or improve the performance of classic monitoring applications, such as state estimation and post-mortem analysis. Later, synchrophasors were found to be valuable for the detection and analysis of phenomena that were not monitored previously, such as system islanding and angular stability. This allows a better understanding of system behavior and the design of remedial actions in cases where system security appears to be endangered. Early detection and even prediction of instabilities, as well as validation and improvement of the dynamic models used for studies, have thus become possible.<p><p>However, a power system is rarely stationary and the assumptions behind the definition of “phasor” are not completely fulfilled because the waveforms' frequency and amplitude are not constant over a signal cycle at fundamental frequency. Therefore, accuracy of synchrophasor measurements during dynamic events is an important performance criterion. Furthermore, when discontinuities (phase jumps and high magnitude variations) and harmonics disturb the measured analog signals as a consequence of switching actions or external disturbances, measurements provided to the “user” (the operator or the algorithms that will take decisions such as triggering alarms and remedial actions) require a certain robustness. <p><p>The efforts underpinning this thesis have lead to the development of a method that ensures the robustness of the measurement. This scheme is described and tested in various conditions. In order to achieve a closer alignment between required and actual measurement performance, it is recommended to add an online indicator of phasor accuracy to the phasor data. <p><p>Fast automated corrective actions and closed-loop control schemes relying on synchrophasors are increasingly deployed in power systems. The delay introduced in the measurement and the telecommunication can have a negative impact on the efficiency of these schemes. Therefore, measurement latency is also a major performance indicator of the synchrophasor measurement. <p><p>This thesis illustrates the full measurement chain, from the measurement of analog voltages and currents in the power system to the use of these measurements for various purposes, with an emphasis on real-time applications: visualization, triggering of alarms in the control room or remedial actions, and integration in closed-loop controls. It highlights the various elements along this chain, which influence the availability, accuracy and delay of the data. <p><p>The main focus is on the algorithm to estimate synchrophasors and on the tradeoff between accuracy and latency that arises in applications for which measurements are taken during dynamic events and the data must be processed within a very limited timeframe. <p><p>If both fast phasors and slower, more accurate phasors are made available, the user would be able to select the set of phasors that are the most suitable for each application, by giving priority to either accuracy or a short delay.<p><p>This thesis also tentatively identifies gaps between requirements and typical measurements in order to identify current barriers and challenges to the use of wide area measurement systems. <p><p>A specific application, the continuous monitoring of oscillatory stability, was selected in order to illustrate the benefits of synchrophasors for the monitoring, analysis and control of power system behavior. This application requires a good phasor accuracy but can allow for some measurement delay, unless phasor data are used in an oscillation damping controller. In addition, it also relies on modal estimators, i.e. techniques for the online identification of the characteristics of oscillatory modes from measurements. This field of ongoing research is also introduced in this thesis. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
30

Návrh a realizace plošného měření rezistivity půdy / Design and implementation of the soil resistivity measurement system

Dirbák, Štefan January 2020 (has links)
This diploma thesis deals with research and study of soil impedance measurement and soil resistivity. Currently, the issue of measuring and determining soil resistance is ensured through the gradual measurement of certain soil parameters at individual points of the surface (or depth of the ground). This thesis focuses on the idea of measuring soil resistance on a certain area using a network of electrodes through a suitably designed test, measurement and evaluation system. Such an approach may find application in the need to determine soil parameters (such as resistivity) on a specific demarcated area (or depth). The prospect of such an application can be seen in saving time, energy and money needed to measure the soil resistivity of a certain area (as opposed to gradual point measurements). The configuration possibilities of OMICRON CPC 100 measuring instrument were used for the design and implementation of the measuring system for the mentioned purpose. The work is completed by verification of the proposed solution by real measurement with evaluation of the results.

Page generated in 0.0672 seconds