Spelling suggestions: "subject:"prima models"" "subject:"arima models""
11 |
Předpovídání Realizované Volatility Pomocí Neuronových Sítí / Forecasting Realized Volatility Using Neural NetworksJurkovič, Jindřich January 2013 (has links)
In this work, neural networks are used to forecast daily Realized Volatility of the EUR/USD, GBP/USD and USD/CHF currency pairs time series. Their performan-ce is benchmarked against nowadays popular Hetero-genous Autoregressive model of Realized Volatility (HAR) and traditional ARIMA models. As a by-product of our research, we introduce a simple yet effective enhancement to HAR model, naming the new model HARD extension. Forecasting performance tests of HARD model are conducted as well, promoting it to become a reference benchmark for neural networks and ARIMA.
|
12 |
Time series analysis : textbook for students of economics and business administration ; [part 2]Strohe, Hans Gerhard January 2004 (has links)
No description available.
|
13 |
Forecasting daily maximum temperature of Umeånaz, saima January 2015 (has links)
The aim of this study is to get some approach which can help in improving the predictions of daily temperature of Umeå. Weather forecasts are available through various sources nowadays. There are various software and methods available for time series forecasting. Our aim is to investigate the daily maximum temperatures of Umeå, and compare the performance of some methods in forecasting these temperatures. Here we analyse the data of daily maximum temperatures and find the predictions for some local period using methods of autoregressive integrated moving average (ARIMA), exponential smoothing (ETS), and cubic splines. The forecast package in R is used for this purpose and automatic forecasting methods available in the package are applied for modelling with ARIMA, ETS, and cubic splines. The thesis begins with some initial modelling on univariate time series of daily maximum temperatures. The data of daily maximum temperatures of Umeå from 2008 to 2013 are used to compare the methods using various lengths of training period. On the basis of accuracy measures we try to choose the best method. Keeping in mind the fact that there are various factors which can cause the variability in daily temperature, we try to improve the forecasts in the next part of thesis by using multivariate time series forecasting method on the time series of maximum temperatures together with some other variables. Vector auto regressive (VAR) model from the vars package in R is used to analyse the multivariate time series. Results: ARIMA is selected as the best method in comparison with ETS and cubic smoothing splines to forecast one-step-ahead daily maximum temperature of Umeå, with the training period of one year. It is observed that ARIMA also provides better forecasts of daily temperatures for the next two or three days. On the basis of this study, VAR (for multivariate time series) does not help to improve the forecasts significantly. The proposed ARIMA with one year training period is compatible with the forecasts of daily maximum temperature of Umeå obtained from Swedish Meteorological and Hydrological Institute (SMHI).
|
14 |
AVALIAÇÃO DA QUALIDADE DO PROCESSO DE LINGOTAMENTO CONTÍNUO NA PRESENÇA DE CORRELAÇÃO CRUZADA / QUALITY EVALUATION OF CONTINUOUS CASTING PROCESS IN PRESENCE OF CROSS-CORRELATIONMezzomo, Meire 25 July 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In the current competitive market, a great part of companies has as the main goal the search for continuous improvement of their products and services. Therefore, the application of statistical methods has great relevance in the quality evaluation, helping in the understanding and monitoring of the processes. In such context, the present study concerns to the use of multivariate control charts in the evaluation of the productive processes in the presence of cross-correlation, which the objective is to verify the continuous casting process stability in the production of still billets by means of Hotelling's T2 multivariate control charts applied in the estimated residual mathematical linear models. Initially, the existence of data autocorrelation was verified, it is necessary the ARIMA modeling, because when it happens, it is necessary to determine the residues and apply multivariate control charts to the residues and not on the original variables. The existence of correlation showed to be meaningful among the variables, being one of the assumptions for the statistical application T2. When the T2 chart instability is verified, it was necessary to identify the variable or the set of variables of steel temperatures in the distributor and in the distributor weight, which are responsible for the instability. Later, the estimated residues were decomposed into principal components, and with the help of the correlation of the original variables and the principal components, the variables which most contributed to the formation of each component were identified. Therefore, it was possible to detect the variables which caused the system instability, once for the steel temperature in the distributor were the T4 and T5, followed by T6, T3, T7 and T2 and for the weight of the distributor, PD4, PD5, PD3, PD6 and PD2, respectively. This way, the estimated residues from the mathematical models, the use of multivariate chart control Hotelling's T2 and the decomposition into principal components which were able to represent the productive process. This methodology allowed the understanding of the behavior of the variables and helped the monitoring of this process, as well as, in the determination of the possible variables which caused the instability in the continuous casting process. / No atual mercado competitivo, grande parte das empresas tem como principal objetivo a busca da melhoria contínua dos seus produtos e serviços. Assim, a aplicação de métodos estatísticos apresenta grande relevância na avaliação da qualidade, auxiliando na compreensão e monitoramento de processos. Nesse contexto, o presente estudo aborda a utilização de gráficos de controle multivariados na avaliação do processo produtivo na presença de correlação cruzada, cujo objetivo é verificar a estabilidade do processo de lingotamento contínuo na fabricação de tarugos de aço por meio do gráfico de controle multivariado T2 de Hotelling aplicado nos resíduos estimados de modelos matemáticos lineares. Inicialmente, foi verificada a existência de autocorrelação nos dados, sendo necessária a utilização da modelagem ARIMA, pois quando isso ocorre, deve-se proceder à determinação dos resíduos e aplicar os gráficos de controle multivariados aos resíduos e não nas variáveis originais. A existência de correlação cruzada mostrou-se significativa entre as variáveis, sendo um dos pressupostos para a aplicação da estatística T2. Verificada a instabilidade no gráfico T2, buscaram-se identificar a variável ou conjunto de variáveis das temperaturas do aço no distribuidor e peso do distribuidor, responsáveis pela instabilidade. Posteriormente, os resíduos estimados foram decompostos em componentes principais, e com o auxílio da correlação entre as variáveis originais e as componentes principais, identificou-se as variáveis que mais contribuíram para a formação de cada componente. Assim, foi possível detectar as variáveis causadoras da instabilidade do sistema, sendo que para às temperaturas do aço no distribuidor foram às temperaturas T4 e T5, seguidas de T6, T3, T7 e T2 e para o peso do distribuidor, PD4, PD5, PD3, PD6 e PD2, respectivamente. Deste modo, os resíduos estimados oriundos dos modelos matemáticos, a aplicação dos gráficos de controle multivariados T2 de Hotelling e a decomposição em componentes principais foram capazes de representar o processo produtivo. Esta metodologia possibilitou a compreensão do comportamento das variáveis e auxiliou no monitoramento do processo, bem como, na determinação das possíveis variáveis causadoras da instabilidade no processo de lingotamento contínuo.
|
15 |
ESTUDO DO EMPREGO FORMAL POR SETOR DE ATIVIDADE ECONÔMICA NA REGIÃO SUL DO BRASIL DE 2003 A 2014 / FORMAL EMPLOYMENT STUDY IN ECONOMIC SECTOR IN THE SOUTH REGION OF BRAZIL 2003 2014Furtado, Juliana Haetinger 23 February 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The global and national political and economic situation reflects directly on changes in the labor market. Concern about the employability, generate new jobs, as well as security and formality of these, and, places that no longer exist causing unemployment, it is constantly agenda in the academic literature, the media and at the same time government concern. In this context, the objective in this research was to analyze the absolute indicators of formal employment, initially in the eight sectors of the economy (mineral extraction, manufacturing, industrial and public utility services, construction, trade, services, agriculture and public administration) and, subsequently adjust predictive models in four major economic sectors (construction, trade, manufacturing and services). First, there was a descriptive analysis of dismissals in the state of Rio Grande do Sul between January 2004 and December 2014. Then, the analysis extended to the other states of the South region of Brazil (Santa Catarina and Paraná) jointly between 05/2003 and 12/2014. For this, we used the secondary database of the General Register of Employed and Unemployed, made available by the Ministry of Labor and Employment. For data analysis and model adjustments, we used a methodology developed by Box and Jenkins to time series. Initial results indicated significant growth trend of dismissals in the state of Rio Grande do Sul, in seven of the eight sectors of this economy. Second time, were set twelve statistical models forecast that showed seasonal component. Through the models found, it was possible to determine the forecast of formal employment by sector of economic activity in southern Brazil, based on values outside of the sample. In conclusion, the models found showed satisfactory predictions as accompanied the process of the actual values, indicating low average percentage absolute error. / A situação político-econômica mundial e nacional reflete diretamente nas transformações ocorridas no mercado de trabalho. A preocupação com a empregabilidade, geração de novos empregos, bem como a segurança e formalidade destes, e, as vagas que deixam de existir ocasionando o desemprego, é pauta constantemente na literatura acadêmica, na mídia e ao mesmo tempo preocupação do governo. Neste contexto, o objetivo proposto nesta pesquisa foi analisar os indicadores absolutos do emprego formal, inicialmente nos oito setores da economia (extrativa mineral, indústria de transformação, serviços industriais de utilidade pública, construção civil, comércio, serviços, agropecuária e administração pública) e, posteriormente, ajustar modelos de previsão no quatro maiores setores de atividade econômica (construção civil, comércio, indústria de transformação e serviços). Primeiramente, realizou-se uma análise descritiva dos desligamentos no estado do Rio Grande do Sul entre janeiro de 2004 e dezembro de 2014. Em seguida, a análise estendeu-se aos demais estados da região Sul do Brasil (Santa Catarina e Paraná) de forma conjunta entre 05/2003 e 12/2014. Para isso, utilizou-se a base de dados secundários do Cadastro Geral de Empregados e Desempregados, disponibilizados pelo Ministério do Trabalho e Emprego. Para as análises dos dados e ajustes de modelos, empregou-se a metodologia desenvolvida por Box e Jenkins para séries temporais. Os resultados iniciais indicaram tendência significativa de crescimento dos desligamentos no estado do Rio Grande do Sul, em sete dos oito setores da economia avaliados. Em segundo momento, foram ajustados doze modelos estatísticos de previsão que apresentaram componente sazonal. Por meio dos modelos encontrados, foi possível determinar a previsão do emprego formal por setor de atividade econômica na região Sul do Brasil, com base nos valores fora da amostra. Conclui-se que, os modelos encontrados apresentaram previsões satisfatórias, pois acompanharam o processo dos valores reais, evidenciando baixo erro absoluto percentual médio.
|
16 |
Uma avaliação de métodos de previsão aplicados à grandes quantidades de séries temporais univariadasPellegrini, Tiago Ribeiro 06 December 2012 (has links)
Made available in DSpace on 2016-06-02T20:06:07Z (GMT). No. of bitstreams: 1
4757.pdf: 552745 bytes, checksum: 4f9bf1ad04dfca4e80bbfdf36c909f6f (MD5)
Previous issue date: 2012-12-06 / Financiadora de Estudos e Projetos / Time series forecasting is probably one of the most primordial interests on economics and econometrics, and the literature on this subject is extremely vast. Due to technological growth in recent decades, large amounts of time series are daily collected; which, in a first moment, it requires forecasts according a fixed horizon; and on the second moment the forecasts must be constantly updated, making it impractical to human interaction. Towards this direction, computational procedures that are able to model and return accurate forecasts are required in several research areas. The search for models with high predictive power is an issue that has resulted in a large number of publications in the area of forecasting models. We propose to do a theorical and applied study of forecasting methods applied to multiple univariate time series. The study was based on exponential smoothing via state space approach, automatic ARIMA methods and the generalized Theta method. Each model and method were applied in large data bases of univariate time series and the forecast errors were evaluated. We also propose an approach to estimate the Theta coefficients, as well as a redefinition of the method regarding the number of decomposition lines, extrapolation methods and a combining approach. / A previsão de séries temporais é provavelmente um dos interesses mais primordiais na área de economia e econometria, e a literatura referente a este assunto é extremamente vasta. Devido ao crescimento tecnológico nas últimas décadas, diariamente são geradas e disponibilizadas grandes quantidades de séries temporais; que em um primeiro momento, requerem previsões de acordo com um horizonte fixado; e no segundo momento as previsões precisam ser constantemente atualizadas, tornando pouco prática a interação humana. Desta forma, procedimentos computacionais que modelem e posteriormente retornem previsões acuradas são exigidos em diversas áreas do conhecimento. A busca por modelos com alto poder de preditivo é uma questão que tem resultado em grande quantidade de publicações na área de modelos para previsão. Neste trabalho, propõe-se um estudo teórico e aplicado de métodos de previsão aplicado à múltiplas séries temporais univariadas. O estudo foi baseado em modelos de alisamento exponencial via espaço de estados, método ARIMA automático e o método Theta generalizado. Cada modelo e método foi aplicado em grandes bases de séries temporais univariadas e avaliado o resultado em relação aos erros de previsão. Também foi proposta uma abordagem para estimação dos coeficientes Theta, assim como redefinição do método em relação a quantidade de linhas para decomposição, métodos de extrapolação e combinação das linhas para previsão.
|
17 |
Análise de desempenho de indicadores de volatilidadeReis, Daniel Leal de Paula Esteves dos 16 December 2011 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-07-18T14:26:58Z
No. of bitstreams: 1
daniellealdepaulaestevesdosreis.pdf: 1239258 bytes, checksum: 75cc07cdf6eba15d62c43b78ac783fbc (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-07-22T15:03:54Z (GMT) No. of bitstreams: 1
daniellealdepaulaestevesdosreis.pdf: 1239258 bytes, checksum: 75cc07cdf6eba15d62c43b78ac783fbc (MD5) / Made available in DSpace on 2016-07-22T15:03:54Z (GMT). No. of bitstreams: 1
daniellealdepaulaestevesdosreis.pdf: 1239258 bytes, checksum: 75cc07cdf6eba15d62c43b78ac783fbc (MD5)
Previous issue date: 2011-12-16 / FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais / Medidas de volatilidade se constituem numa preocupação por parte de estudiosos e profissionais do mercado financeiro. Modelos da família ARCH/GARCH a partir dos retornos diários produzem um indicador de volatilidade, mas, não conferem ao pesquisador uma medida observável do grau de variabilidade dos retornos em torno de seu valor esperado. A recente disponibilidade de dados de frequência inferior a um dia de negociação permitiu a elaboração de indicadores de volatilidade observáveis por meio de uma medida conhecida como volatilidade realizada. A partir de então, é possível elaborar um indicador observável de volatilidade diária com base em dados de natureza intradiária, de modo a representar uma medida mais apropriada do grau de risco de um ativo ou carteira de ativos, e, a partir de então, estimar a volatilidade por meio de processo da família ARIMA. De posse dos dados de alta-frequência de um papel preferencial da Petrobrás S.A., o presente trabalho se propõe, portanto, em construir a medida de volatilidade realizada por meio da soma dos quadrados dos retornos obtidos em intervalos regulares (5, 15 e 30 minutos) durante cada dia de negociação do papel PETR4 durante o período de 02/01/2007 à 29/10/2010. Posteriormente à criação do indicador de volatilidade realizada que se supõe como mais apropriado para se mensurar o grau de risco, pretende-se comparar a qualidade do ajustamento e a capacidade preditiva de cada um dos métodos de modelagem da volatilidade. A comparação dos modelos baseados em dados diários e intradiários dar-se-á por meio do cômputo do erro quadrático médio (EQM) e dos testes de Diebold e Mariano e de Harvey para avaliação da acurácia preditiva dos modelos. Os resultados mostraram que, em geral, os modelos da família ARIMA são mais apropriados para a avaliação do grau de ajustamento, e produz previsões mais satisfatórias que os modelos da família ARCH/GARCH. / Volatility measures constitute a concern among scholars and professionals of the financial market. Models of the ARCH/GARCH class from the daily returns produce an indicator of volatility, but do not give the researcher an observable measure of the degree of variability of returns around their expected value. The recent availability of data at frequencies below a trading day allowed the development of indicators of volatility observable through a measurement known as realized volatility. Since then, they can build an observable indicator of daily volatility based on intraday data, so as to represent a more appropriate measure of the riskiness of an asset, and from then estimate volatility through a process of ARIMA family. Provided with the data of a high frequency preferential role of Petrobrás S. A., the present paper therefore proposes to construct a measure of realized volatility by the sum of the squares of the returns obtained at regular intervals (5, 15 and 30 minutes ) during each trading day for the paper PETR4 during 02/01/2007 to 29/10/2010. After the creation of the realized volatility indicator that is supposed to be more appropriate to measure the degree of risk, the intent is to compare the goodness of fit and predictive ability of each of the methods of volatility’s models. The comparison of models based on daily data and intraday give will be through the calculation of the mean square error (MSE) and tests of Diebold and Mariano and Harvey to evaluate the predictive accuracy of models. The results in general showed that the models of the ARIMA class are more suitable for assessing the degree of adjustment and produces predictions more satisfactory than the models of the ARCH/GARCH class.
|
18 |
Smart Metering for Smart Electricity ConsumptionVadda, Praveen, Seelam, Sreerama Murthy January 2013 (has links)
In recent years, the demand for electricity has increased in households with the use of different appliances. This raises a concern to many developed and developing nations with the demand in immediate increase of electricity. There is a need for consumers or people to track their daily power usage in houses. In Sweden, scarcity of energy resources is faced during the day. So, the responsibility of human to save and control these resources is also important. This research work focuses on a Smart Metering data for distributing the electricity smartly and efficiently to the consumers. The main drawback of previously used traditional meters is that they do not provide information to the consumers, which is accomplished with the help of Smart Meter. A Smart Meter helps consumer to know the information of consumption of electricity for appliances in their respective houses. The aim of this research work is to measure and analyze power consumption using Smart Meter data by conducting case study on various households. In addition of saving electricity, Smart Meter data illustrates the behaviour of consumers in using devices. As power consumption is increasing day by day there should be more focus on understanding consumption patterns i.e. measurement and analysis of consumption over time is required. In case of developing nations, the technology of employing smart electricity meters is still unaware to many common people and electricity utilities. So, there is a large necessity for saving energy by installing these meters. Lowering the energy expenditure by understanding the behavior of consumers and its correlation with electricity spot prices motivated to perform this research. The methodology followed to analyze the outcome of this study is exhibited with the help of a case analysis, ARIMA model using XLSTAT tool and a flattening technique. Based on price evaluation results provided in the research, hypothesis is attained to change the behavior of consumers when they have better control on their habits. This research contributes in measuring the Smart Meter power consumption data in various households and interpretation of the data for hourly measurement could cause consumers to switch consumption to off-peak periods. With the results provided in this research, users can change their behavior when they have better control on their habits. As a result, power consumption patterns of Smart electricity distribution are studied and analyzed, thereby leading to an innovative idea for saving the limited resource of electrical energy. / +91 9908265578
|
19 |
COMBINAÇÃO DAS PREVISÕES DOS MODELOS DE BOX-JENKINS E MLP/RNA PARA A PREVISÃO DE DEMANDA NO PLANEJAMENTO DA PRODUÇÃO / COMBINATION OF BOX-JENKINS AND MLP/RNA MODELS FOR FORECASTING IN PRODUCTION PLANNINGJacobs, William 26 June 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A forecast of future demand for the products is the main variable to be considered in the planning and in production control in organizations. Two methods of time series forecasting often used in the literature are the ARIMA and MLP/RNA models. A practice that began in 1969 and has consolidated for greater accuracy is the combination of individual forecasts from two or more models. Considering the need for organizations by predictive techniques that generate better results, this study aims to predict the future values of a time series of the demand for UHT milk in a dairy industry, through the combination of ARIMA and MLP/RNA models, and to compare the results obtained by the combinations compared to individual models, exemplifying the achievement of combined forecasting in production planning. Accuracy measures to measure the results and to select the best model were the RMSE and MAPE for forecasting. The results showed that the combination of models SARIMA(3,0,1)(1,1,0)12 and DMLP the inverse mean square method provided a performance forecast for the six months ahead, up to 66.5% higher than individual models used, where the combination of the predictions obtained a RMSE of 1.43, and a MAPE of 2.16. In the 12 month ahead prediction for the performance of the combination was up to 56.5% higher compared to individual models, in which case obtained a RMSE of 2.86 and 3.70% MAPE. The combination of time series models enabled a significant increase in performance prediction models, but in order to produce satisfactory absolute results should be used to complement their predictive abilities mutually. / A previsão da demanda futura dos produtos é a principal variável a ser considerada no planejamento e controle da produção nas organizações. As técnicas de previsão de demanda são fundamentais no planejamento da produção de nível tático e operacional, especialmente as séries temporais, pois não requerem do planejador, uma investigação mais aprofundada acerca dos fatores que influenciam a demanda. Dois métodos de previsão de séries temporais frequentemente utilizados na literatura são os modelos ARIMA e os modelos MLP/RNA. Uma prática que surgiu em 1969 e já consolidada para obter maior acurácia é a combinação das previsões individuais de dois ou mais modelos. Considerando a necessidade das organizações por técnicas preditivas que gerem melhores resultados, este estudo tem como objetivo prever os valores futuros de uma série temporal da demanda de leite UHT em uma indústria de lácteos, por meio da combinação dos modelos ARIMA e MLP/RNA, e comparar os resultados obtidos pelas combinações em relação aos modelos individuais, exemplificando a obtenção da previsão combinada no planejamento da produção. As medidas de acurácia para mensurar os resultados obtidos e selecionar o melhor modelo, foram o RMSE e o MAPE de previsão. Os resultados mostraram que a combinação dos modelos SARIMA(3,0,1)(1,1,0)12 e DMLP pelo método inverse mean square forneceu um desempenho na previsão para 6 meses adiante, de até 66,5% superior em relação aos modelos individuais utilizados, onde a combinação das previsões obteve um RMSE de 1,43 e um MAPE de 2,16. Na previsão para 12 meses adiante, o desempenho da combinação foi de até 56,5% superior em relação aos modelos individuais, caso em que obteve um RMSE de 2,86 e um MAPE de 3,70%. A combinação de modelos de séries temporais possibilitou um aumento significativo no desempenho de previsão dos modelos, mas para que se obtenham resultados absolutos satisfatórios, devem-se utilizar modelos previsores que complementem mutuamente a capacidade preditiva.
|
20 |
MODELOS DE SÉRIES TEMPORAIS APLICADOS A DADOS DE UMIDADE RELATIVA DO AR / MODELS OF TEMPORAL SERIES APPLIED TO AIR RELATIVE HUMIDITY DATATibulo, Cleiton 11 December 2014 (has links)
Time series model have been used in many areas of knowledge and have become a current necessity for companies to survive in a globalized and competitive market, as well as climatic factors that have always been a concern because of the different ways they interfere in human life. In this context, this work aims to present a comparison among the performances by the following models of time series: ARIMA, ARMAX and Exponential Smoothing, adjusted to air relative humidity (UR) and also to verify the volatility present in the series through non-linear models ARCH/GARCH, adjusted to residues of the ARIMA and ARMAX models. The data were collected from INMET from October, 1st to January, 22nd, 2014. In the comparison of the results and the selection of the best model, the criteria MAPE, EQM, MAD and SSE were used. The results showed that the model ARMAX(3,0), with the inclusion of exogenous variables produced better forecast results, compared to the other models SARMA(3,0)(1,1)12 and the Holt-Winters multiplicative. In the volatility study of the series via non-linear ARCH(1), adjusted to the quadrants of SARMA(3,0)(1,1)12 and ARMAX(3,0) residues, it was observed that the volatility does not tend to influence the future long-term observations. It was then concluded that the classes of models used and compared in this study, for data of a climatologic variable, showed a good performance and adjustment. We highlight the broad usage possibility in the techniques of temporal series when it is necessary to make forecasts and also to describe a temporal process, being able to be used as an efficient support tool in decision making. / Modelos de séries temporais vêm sendo empregados em diversas áreas do conhecimento e têm surgido como necessidade atual para empresas sobreviverem em um mercado globalizado e competitivo, bem como fatores climáticos sempre foram motivo de preocupação pelas diferentes formas que interferem na vida humana. Nesse contexto, o presente trabalho tem por objetivo apresentar uma comparação do desempenho das classes de modelos de séries temporais ARIMA, ARMAX e Alisamento Exponencial, ajustados a dados de umidade relativa do ar (UR) e verificar a volatilidade presente na série por meio de modelos não-lineares ARCH/GARCH ajustados aos resíduos dos modelos ARIMA e ARMAX. Os dados foram coletados junto ao INMET no período de 01 de outubro de 2001 a 22 de janeiro de 2014. Na comparação dos resultados e na seleção do melhor modelo foram utilizados os critérios MAPE, EQM, MAD e SSE. Os resultados mostraram que o modelo ARMAX(3,0) com a inclusão de variáveis exógenas produziu melhores resultados de previsão em relação aos seus concorrentes SARMA(3,0)(1,1)12 e o Holt-Winters multiplicativo. No estudo da volatilidade da série via modelo não-linear ARCH(1), ajustado aos quadrados dos resíduos dos modelos SARMA(3,0)(1,1)12 e ARMAX(3,0), observou-se que a volatilidade não tende a influenciar as observações futuras em longo prazo. Conclui-se que as classes de modelos utilizadas e comparadas neste estudo, para dados de uma variável climatológica, demonstraram bom desempenho e ajuste. Destaca-se a ampla possibilidade de utilização das técnicas de séries temporais quando se deseja fazer previsões e descrever um processo temporal, podendo ser utilizadas como ferramenta eficiente de apoio nas tomadas de decisão.
|
Page generated in 0.0605 seconds