Spelling suggestions: "subject:"artificiella"" "subject:"artificiel.la""
41 |
Robust wlan-stödd positionering : För miljöer med starka flervägsfel-effekterLathe, Andreas January 2014 (has links)
Efterfrågan och tillhandahållandet av platsberoende tjänster blir allt större vilket i sin tur skapar intresse för billiga och skalbara tekniker i alla möjliga olika miljöer. Särskilt intressant blir tekniker som är lätta att installera på nya platser och vars hårdvarukomponenter är enkla och billiga. I denna rapport presenteras en experimentiell systemteknisk metod för positionsberäkning i inomhusmiljöer, specifikt de som på grund av lokala elektromagnetiska fält, rörliga större föremål eller oregelbundna ytor skapar störningar som gör det svårt att utföra förlitlig positionering. Systemet utgörs av ett antal wifi-routrar samt en signalmottagre kopplad till en dator med systemets mjukvarukomponent installerad. Resultatet bedömdes utifrån en förväntad nivå av korrekthet, närmare bestämt att minst hälften av systemets bedömningar inte har fel med mer än två meter, samt en övre gräns på högst tre meters fel i minst 90 procent av fallen. För att möta målsättningen utrustades mjukvaran med komponenter tänkta att minimera effekten av störningar. Ett Kalmanfilter ger en bättre tolkning av inkommande mätdata medan en för området vanlig estimeringsalgoritm, så kallad Location Fingerprinting, förstärks med en experimentell uppsättning artificiella neurala neuronnät. Som rapporten kommer visa möter systemet som helhet utmaningen och presterar initialt bättre än väntat (hälften av bedömningarna har ett fel på 1,5 meter eller lägre) men även att det beshöver testas i så många nya miljöer som möjligt så att det kan gå att dra slutsatser om dess mer generella användbarhet. / The demand for and supply of location based services (LBS) is constantly growing, which in turn leads to an unquenchable thirst for affordable, scalable localisation solutions in all kinds of surroundings. Technical solutions that are easy to set up at a new location and whose hardware components are simple and affordable, are especially of interest.This paper describes an experimental system designed for positioning a client in particularly challenging indoor environments – wether it's due to local electromagnetic fields, large moving objects or slanted surfaces, basically whatever could create difficulties in radiowave based positioning. This system consists of a number of wifi routers and a signal receiver connected to a computer running the central software component. The results were assessed out of an expected level of accuracy, namely that no more than half of the estimates are off by two meters or more, with an upper limit of no more than 90 percent of the estimates being off by three meters or more. In order to achieve this, the software includes algorithms designed to lessen the effect of signal disruption. A Kalman filter gives the system a better interpretation of sensor data, while the (for the field) common estimation method of Location Fingerprinting gets reinforced by an experimental array of artificial neural networks. As this paper will show, the system will within the initial testing fulfill the set criteria to satisfaction, however it will need future trials in a row of varying environments so as to give an indication of its general usefulness.
|
42 |
Replacing Setpoint Control with Machine Learning : Model Predictive Control Using Artificial Neural NetworksDahlberg, Emil, Mineur, Mattias, Shoravi, Linus, Swartling, Holger January 2020 (has links)
Indoor climate control is responsible for a substantial amount of the world's total energy expenditure. In a time of climate crisis where a reduction of energy consumption is crucial to avoid climate disaster, indoor climate control is a ripe target for eliminating energy waste. The conventional method of adjusting the indoor climate with the use of setpoint curves, based solely on outdoor temperature, may lead to notable inefficiencies. This project evaluates the possibility to replace this method of regulation with a system based on model predictive control (MPC) in one of Uppsala University Hospitals office buildings. A prototype of an MPC controller using Artificial Neural Networks (ANN) as its system model was developed. The system takes several data sources into account, including indoor and outdoor temperatures, radiator flowline and return temperatures, current solar radiation as well as forecast for both solar radiation and outdoor temperature. The system was not set in production but the controller's predicted values correspond well to the buildings current thermal behaviour and weather data. These theoretical results attest to the viability of using the method to regulate the indoor climate in buildings in place of setpoint curves. / Bibehållande av inomhusklimat står för en avsevärd del av världens totala energikonsumtion. Med dagens klimatförändringar där minskad energikonsumtion är viktigt för den hållbara utvecklingen så är inomhusklimat ett lämpligt mål för att förhindra slösad energi. Konventionell styrning av inomhusklimat använder sig av börvärdeskurvor, baserade enbart på utomhustemperatur, vilket kan leda till anmärkningsvärt energispill. Detta projekt utvärderar möjligheten att ersätta denna styrmetod med ett system baserat på model predictive control (MPC) och använda detta i en av Akademiska sjukhusets lokaler i Uppsala. En MPC styrenhet som använder Artificiella Neurala Nätverk (ANN) som sin modell utvecklades. Systemet använder sig av flera datakällor däribland inomhus- och utomhustemperatur, radiatorslingornas framlednings- och returtemperatur, rådande solinstrålning såväl som prognoser för solinstrålning och utomhustemperatur. Systemet sattes inte i produktion men dess prognos stämmer väl överens med tillgänglig väderdata och husets termiska beteende. De presenterade resultaten påvisar metoden vara ett lämpligt substitut för styrning med börvärdeskurvor.
|
43 |
Tumörspridning med artificiell evolution : Warburgeffekten och cancercellers metabolismNäsström, David, Medhage, Marcus January 2022 (has links)
Denna rapport syftar till att implementera en metod för att simulera cancerceller och skapa en ökad förståelse för hur Warburgeffekten, vilket är cancercellers användning av anaerob metabolism under aeroba förhållanden, påverkar cancerceller. Detta undersöks genom att simulera i en dator hur syrehalten påverkar andelen anaeroba cancerceller i en tumör och dess spridning. I studien undersöks fem olika syrenivåer. Simuleringen görs med en Cellular Automaton-modell och startar med ett mindre antal cancerceller i mitten av ett 200x200-rutnät, omgivna av friska celler. Cancercellerna och deras beslutsmekanismer modelleras med artificiella neurala nätverk och friska celler med fastställda regler. Cancercellerna kan vid delning muteras och ge upphov till nya beteenden som sedan blir en del av selektionsprocessen. Simuleringarna visar att cancercellerna, oberoende av syrehalten, sprider sig på ett likartat vis. Genom att vissa av cancercellerna övergår från aerob till anaerob metabolism så försurar cancertumören sin omgivning, vilket dödar friska celler. Syrehaltens påverkan på andelen anaeroba celler hos tumören visar sig ha betydelse, men det är främst hos den lägsta syrehalten en markant ökning av andelen anaeroba celler noteras. Noterbart är även att andelen anaeroba celler i den här studien, för alla syrehalter, är avsevärt lägre än de 60 % som påvisats i vissa studier av Warburgeffekten gjorda på levande celler.
|
44 |
Using deep learning time series forecasting to predict dropout in childhood obesity treatment / Förutsägelse av bortfall i ett behandlingsprogram för barnfetma med hjälp av djupinlärda tidsserieförutsägelserSchoerner, Jacob January 2021 (has links)
The author investigates the performance of a time series based approach in predicting the risk of patients abandoning treatment in a treatment program for childhood obesity. The time series based approach is compared and contrasted to an approach based on static features (which has been applied in similar problems). Four machine learning models are constructed; one ‘Main model’ using both time series forecasting and three ‘reference models’ created by removing or exchanging parts of the main model to test the performance of using only time series forecasting or only static features in the prediction. The main model achieves an ROC-AUC of 0.77 on the data set. ANOVA testing is used to determine whether the four models perform differently. A difference cannot be verified at the significance level of 0.05, and thus, the author concludes that the project cannot show either an advantage or a disadvantage to employing a time series based approach over static features in this problem. / Författaren jämför modeller baserade på tidsserieförutsägelser med modeller baserade på statiska, fasta värden, till syfte att identifera patienter som riskerar att lämna ett behandlingsprogram för barnfetma. Fyra maskininlärningsmodeller konstrueras, en ‘Huvudmodell’ som använder sig av både tidsserieförutsägelser och statiska värden, och tre modeller som bryter ut delar av huvudmodellen för undersöka beteendet i modeller baserade enbart på statiska värden respektive enbart baserade på tidsserieförutsägelser. Huvudmodellen uppnår ROC-AUC0.77 på datasetet. ANOVA(variansanalys) används för att avgöra huruvida de fyra modellernas resultat skiljer sig, och en skillnad kan ej verieras vid P = 0:05. Följaktligen drar författaren slutsatsen att projektet inte har kunnat visa vare sig en signifikant fördel eller nackdel med att använda sig av tidsserieförutsägelser inom den aktuella problemdomänen.
|
45 |
Strategisk förnyelseplanering av spillvattenledningar : Med ett artificiellt neuralt nätverk som analysverktyg / Strategic sewage pipe renewal process with the help of artificial neural networksRehn, David January 2017 (has links)
Sveriges kommunala spillvattenledningsnät står idag inför en enorm utmaning, då eftersattunderhåll i kombination med klimatförändringar kommer kräva stora framtida investeringaroch tidskrävande analyser. Detta examensarbete har utförts med målet att förenkla dettastundande förnyelsearbete. Som metod har en enkät utformats, och besvarats av totalt 84kommuner, med syftet att presentera en lägesbild. Vidare har ett artificiellt neuralt nätverkutvecklats, och tillämpats på data från Täby kommun, med syftet att förutspå vilkaspillvattenledningar i ett ledningsnät som har behov av förnyelse. Resultatet visar att det finns ett stort förbättringsbehov i det strategiska förnyelsearbetet.Störst behov, och potential, finns i hantering och insamling av data, där artificiella neuralanätverk kan tillämpas och utnyttjas som ett effektivt och intelligent verktyg. Det artificiellaneurala nätverket som utvecklats, och tillämpats, i detta examensarbete uppnådde en högprecision (93 %), och beräknade att Täby kommun har ca 10-20 spillvattenledningar medoupptäckt förnyelsebehov. Detta bör dock tas med viss reservation pga. bristandedatakvalitet. Avslutningsvis kan konstateras att lösningen för framtidens ledningsförnyelserelateradeproblem och utmaningar, ligger i förmågan att effektivt och intelligent samla in, struktureraoch analysera data om ledningsnäten. Artificiella neurala nätverk är ett verktyg som kanoch bör användas för detta ändamål då man, med hjälp av artificiell intelligens, kan göraprecisa analyser och skapa helhetsbilder över ledningsnät, vilket kan spara bådefinansiella, temporala och personella resurser. / Aging sewer systems and deferred maintenance pose one of the greatest challenges toSwedish municipal infrastructure in the future. This degree project has been completedwith the aim to develop a method with which to sufficiently solve these future challenges,and help decision makers to properly invest in the networks, and optimise the pipe renewalprocess. As a methodology, a survey has been created, and answered by 84representatives from various municipalities and water and waste organisations, in order topresent a deeper understanding of the current situation in Sweden. Furthermore, anartificial neural network has been developed, and trained with data from Täby municipality,with the purpose of predicting which pipes in a sewer network that need to be renewed. The results show that there is a great need for improvement in the strategic renewalplanning. The greatest need, and potential, is found in the collection and processing ofdata, where artificial neural networks can be applied as a highly efficient and intelligenttool, which is proven by the high accuracy (93 %) and strong ability to predict pipes withrenewal needs (ca 10-20 pipes for Täby municipality) that the neural network developedfor this degree project showed. It is, however, important to emphasize that the quality ofthe obtained data from Täby was relatively low, and that the results therefore has to beviewed with some skepticism. It is nevertheless reasonable to assume that artificial intelligence, and more specifically,artificial neural networks, will play an important role in tackling future challenges related tostrategic asset management and renewal planning for underground sewer infrastructure.The main solution lies in the ability to efficiently and intelligently collect, structure, andprocess data, and this is a field where artificial neural networks, as made evident by thisdegree project, certainly have abilities to flourish and contribute to savings in bothfinancial, temporal and human resources.
|
46 |
Automatic wind turbine operation analysis through neural networks / Automatisk driftanalys av vindturbiner medels neurala nätverkBoley, Alexander January 2017 (has links)
This master thesis handles the development of an automatic benchmarking program for wind turbines and the thesis works as the theoretical basis for this program. The program is created at the request of the power company OX2 who wanted this potential to be investigated. The mission given by the company is to: 1. to find a good key point indicator for the efficiency of a wind turbine, 2. to find an efficient way to assess this and 3. to write a program that does this automatically and continuously. The thesis determines with a study of previous research that the best method to utilize for these kinds of continuous analyses are artificial neural networks which can train themselves on historical data and then assess if the wind turbine is working better or worse than it should with regards to its history. This comparison between the neural network predicted operation and the actual operation works as the measurement of the efficiency, the key point indicator for how the turbine work compared to how it historically should operate. The program is based on this principle and is completely written in MATLAB. Further testing of the program found that the best variables to use are wind speed and the blade pitch angle as input variables for the neural network and active power as the target used as the variable to predict and assess the operation. The final program was able to be fully automated and integrated into the OX2 system thanks to the possibility to continuously import wind turbine data through APIs. In the final testing was the program able to identify 75% of the anomalies manually found in the half year and in the five turbines used for this thesis, the small anomalies not found manually but identified by the program excluded. / Den här masteruppsatsen hanterar utvecklandet av ett automatiskt driftanalyseringsprogram för vindkraftverk och fungerar som det teoretiska underlaget för detta program. Programmet utvecklades på uppdrag av kraftbolaget OX2 som ville undersöka potentialen för ett sådant analysprogram i deras verksamhet. Uppdraget givet var att: 1. ta fram en bra indikator när det gäller den faktiska effektiviteten av ett vindkraftverk, 2. att hitta ett effektivt sätt att använda detta måttet i en analys där målet är att hitta avvikelser, och 3. skriva ett program som automatiskt kan använda måttet och metoden över tiden. Rapporten kommer via litteraturstudie fram till att tidigare forskning visar på att neurala nätverk är den mest lovande metoden för att genomföra sådan här analys. Dessa nätverk kan träna sig själva på historiska data och sedan analysera om vindturbinen arbetar bättre eller sämre än historiskt. Den här jämförelsen mellan den historiskt grundade förutspådda kraften ut och den faktiska kraften ut fungerar som kvalitetsmåttet på hur bra turbinen fungerar. Programmet är baserat på den här principen och är helt skriven i MATLAB. Vidare tester av programmet visar att de bästa variablerna att använda för att förutspå kraften ut är vindhastigheten och bladens vinkel mot vinden. Slutprogrammet var kapabelt att fullt automatiskt och integrerat i OX2s system identifiera 75% av alla avvikelser som manuellt hittats i ett halvårs data på de fem turbinerna använda för rapporten, småfel hittade av programmet men inte manuellt exkluderat.
|
47 |
A Comparative Study of the Effect of Features on Neural Networks within Computer-Aided Diagnosis of Alzheimer's Disease / En jämförelsestudie av oberoende variablers inverkan på neuronnät inom datorstödd diagnos av Alzheimers sjukdomKolanowski, Mikael, Stevens, David January 2019 (has links)
Alzheimer’s disease is a neurodegenerative disease that affects approximately 6% of the global population aged over 65 and is forecasted to become even more prevalent in the future. Accurately diagnosing the disease in an early stage can play a large role in improving the quality of life for the patient. One key development for performing this diagnosis is applying machine learning to perform computer-aided diagnosis. Current research in the field has been focused on removing assumptions about the used data sets, but in doing so they have often discarded objective metadata such as the patient’s age, sex or priormedical history. This study aimed to investigate the effect of including such metadata as additional input features to neural networks used for diagnosing Alzheimer’s disease through binary classification of magnetic resonance imaging scans. Two similar neural networks were developed and compared, one with these additional features and the other without them. Including the metadata led to significant improvements in the network’s classification accuracy, and should therefore be considered in future computer-aided diagnostic systems for Alzheimer’s disease. / Alzheimers sjukdom är en form av demens som påverkar ungefär 6% av den globala befolkningen som är äldre än 65 och förutspås bli ännu vanligare i framtiden. Tidig diagnos av sjukdomen är viktigt för att säkerställa högre livskvalitet för patienten. En viktig utveckling inom fältet är datorstödd diagnos av sjukdomen med hjälp av maskininlärning. Dagens forskning fokuserar på att ta bort subjektiva antaganden om datamängden som används, men har ofta även förkastat objektiv metadata såsom patientens ålder, kön eller tidigare medicinska historia. Denna studier ämnade därför undersöka om inkluderandet av denna metadata ledde till bättre prestanda hos neuronnät som används för datorstödd diagnos av Alzheimers genom binär klassificering av bilder tagna med magnetisk resonanstomografi. Två snarlika neuronnät utvecklades och jämfördes, med skillnaden att den ena även tog metadata om patienten som indata. Inkluderandet av metadatan ledde till en markant ökning i neuronnätets prestanda, och bör därför övervägas i framtida system för datorstödd diagnos av Alzheimers sjukdom.
|
48 |
Multilabel text classification of public procurements using deep learning intent detection / Textklassificering av offentliga upphandlingar med djupa artificiella neuronnät och avsåtsdetekteringSuta, Adin January 2019 (has links)
Textual data is one of the most widespread forms of data and the amount of such data available in the world increases at a rapid rate. Text can be understood as either a sequence of characters or words, where the latter approach is the most common. With the breakthroughs within the area of applied artificial intelligence in recent years, more and more tasks are aided by automatic processing of text in various applications. The models introduced in the following sections rely on deep-learning sequence-processing in order to process and text to produce a regression algorithm for classification of what the text input refers to. We investigate and compare the performance of several model architectures along with different hyperparameters. The data set was provided by e-Avrop, a Swedish company which hosts a web platform for posting and bidding of public procurements. It consists of titles and descriptions of Swedish public procurements posted on the website of e-Avrop, along with the respective category/categories of each text. When the texts are described by several categories (multi label case) we suggest a deep learning sequence-processing regression algorithm, where a set of deep learning classifiers are used. Each model uses one of the several labels in the multi label case, along with the text input to produce a set of text - label observation pairs. The goal becomes to investigate whether these classifiers can carry out different levels of intent, an intent which should theoretically be imposed by the different training data sets used by each of the individual deep learning classifiers. / Data i form av text är en av de mest utbredda formerna av data och mängden tillgänglig textdata runt om i världen ökar i snabb takt. Text kan tolkas som en följd av bokstäver eller ord, där tolkning av text i form av ordföljder är absolut vanligast. Genombrott inom artificiell intelligens under de senaste åren har medfört att fler och fler arbetsuppgifter med koppling till text assisteras av automatisk textbearbetning. Modellerna som introduceras i denna uppsats är baserade på djupa artificiella neuronnät med sekventiell bearbetning av textdata, som med hjälp av regression förutspår tillhörande ämnesområde för den inmatade texten. Flera modeller och tillhörande hyperparametrar utreds och jämförs enligt prestanda. Datamängden som använts är tillhandahållet av e-Avrop, ett svenskt företag som erbjuder en webbtjänst för offentliggörande och budgivning av offentliga upphandlingar. Datamängden består av titlar, beskrivningar samt tillhörande ämneskategorier för offentliga upphandlingar inom Sverige, tagna från e-Avrops webtjänst. När texterna är märkta med ett flertal kategorier, föreslås en algoritm baserad på ett djupt artificiellt neuronnät med sekventiell bearbetning, där en mängd klassificeringsmodeller används. Varje sådan modell använder en av de märkta kategorierna tillsammans med den tillhörande texten, som skapar en mängd av text - kategori par. Målet är att utreda huruvida dessa klassificerare kan uppvisa olika former av uppsåt som teoretiskt sett borde vara medfört från de olika datamängderna modellerna mottagit.
|
49 |
Scraping bot detection using machine learning / Botdetektering med hjälp av maskininlärningDezfoli, Hamta, Newman, Joseph January 2022 (has links)
Illegitimate acquisition and use of data is a problematic issue faced by many organizations operating web servers on the internet today. Despite frameworks of rules to prevent ”scraping bots” from carrying out this action, they have developed advanced methods to continue taking data. Following research into what the problem is and how it can be handled, this report identifies and evaluates how machine learning can be used to detect bots. Since developing and testing a machine learning solution proved difficult, an alternative solution was also developed aiming to polarize (separate) bot and human traffic through behavioral analysis. This particular solution to optimize traffic session classification is presented and discussed, as well as, other key findings which can help in detecting and preventing these unwanted visitors. / Olaglig insamling och användning av data är problematiskt för många organisationer som idag använder sig av webbservrar på internet. Trots ramar av regler för att förhindra ”scraping bots” så har de utvecklat avancerade sätt att komma åt data. Efter forskning om vad problemet är och hur det kan hanteras, identifierar och evaluerar denna rapport hur maskininlärning kan användas för att detektera bottar. Då utvecklingen och testningen av en lösning med hjälp av maskininlärning visade sig bli svårt, utvecklades en alternativ lösning med målet att polarisera (separera) bottrafik och legitim trafik. Denna lösning presenteras och diskuteras i rapporten tillsammans med andra nyckelresultat som kan hjälpa till att upptäcka och förhindra dessa oönskade besökare.
|
50 |
Pricing collateralized loan obligation tranches using machine learning : Machine learning applied to financial data / Prissättning av collateralized loan obligation tranches med hjälp av maskininlärning : Artificiella neurala nätverk applicerade på finansiell dataEnström, Marcus January 2022 (has links)
Machine learning and neural networks have recently become very popular in a large category of domains, partly thanks to their ability to solve complex problems by finding patterns in data, but also due to an increase in computing power and data availability. Successful applications of machine learning include for example image classification, natural language processing, and product recommendation. Despite the potential upside of machine learning applied to financial data there exists relatively few articles published while the ones that do exist exhibit that there exists a potential for the tools that it provides. This thesis utilizes neural networks to price collateralized loan obligations which is a type of bond that is backed by a large pool of corporate loans, rather than being issued by a single company or government like a regular bond. The large pool of corporate loans and structure of a collateralized loan obligation makes it a good candidate for this type of research as it involves regressing a large number of variables into a final single real-valued price of the bond where the relations are not necessarily linear. The thesis establishes a relatively simple model and builds upon this using a state-of-the-art ensemble method while also exploring a volatility scaled loss function. The findings of this thesis are that artificial neural networks can price collateralized loan obligations using only their structural and loan pool data with an accuracy close to that of a human. Ensemble methods outperform non-ensemble methods and boost performance by up to 28% when only considering mean squared error while scaling the loss function with the inverse of market volatility does not boost performance. The best performing model can price a collateralized loan obligation tranche rated AAA with an average absolute error of 0.88 and an equity tranche with an average mean absolute error of 4.67. / Under de senaste åren har maskininlärning samt artificiella neurala nätverk blivit väldigt populära i många olika domäner. Detta är delvis tack vare deras förmåga att lösa komplexa problem genom att hitta mönster i data, men även tack vare en ökning i beräkningskraft samt att tillgängligheten av data har blivit bättre. Några exempel på områden där maskininlärning har applicerats med framgång är klassificering av bilder, språkteknologi samt produktrekommendationer. Trots att maskininlärning skulle kunna erbjuda en stor potentiell uppsida vid lyckad tillämpning på finansiella data finns relativt lite studier publicerade kring ämnet. De studier som däremot är publicerade visar på stora möjligheter inom området. Den här studien använder artificiella neurala nätverk för att prissätta ”collateralized loan obligations” (CLOs), som tyvärr inte har någon bra svensk översättning. En CLO utfärdar obligationer vars underliggande värde härstammar från en portfölj av företagslån, och är därmed ett finansiellt instrument. Strukturen av en CLO och dess underliggande lånportfölj ger upphov till en stor mängd data, vilket gör instrumentet till en bra kandidat för maskininlärning. Studien etablerar ett relativt enkelt neuralt nätverk som sedan används för ett jämföra med en ensemblemetod samt en modifierad loss funktion som tar höjd för volatilitet. Slutsatserna av den här studien är att neurala nätverk lyckas prissätta instrumenten näst intill lika bra som vad en människa skulle kunna göra med befintliga metoder som bygger på Monte Carlo simulering. Däremot är studiens metod inte lika beroende av antaganden som gör den befintliga metoden väldigt känslig. Vidare så bidrar ensemblemetoden som används till att minska det genomsnittliga felet i kvadrat med upp till 28%. Att ta höjd för volatilitet vid inlärning bidar inte till att minska felet.
|
Page generated in 0.0705 seconds