Spelling suggestions: "subject:"artificiella"" "subject:"artificiel.la""
61 |
Att täcka en obekant yta med Spanning Tree Covering, Topologisk Täckande Algoritm, Trilobite / Covering an unknown area with Spanning Tree Covering, Topologisk Täckande Algoritm, TrilobiteCarlsson, Josefin, Johansson, Madeleine January 2005 (has links)
Det har blivit mer och mer vanligt med ny, datoriserad teknik i hemmen. Fler människor har ett allt stressigare liv och inte längre samma tid att ta hand om det egna hemmet. Behovet av en hjälpande hand med hushållsarbete har blivit allt större. Tänk själv att komma hem från jobbet eller skolan och så har golvet blivit skinande rent utan att Ni knappt har behövt göra någonting! Det finns idag flera olika robotar på marknaden för detta ändamål. En av dessa är den autonoma dammsugaren, som är det vi inriktat vår uppsats på. I huvudsak är uppsatsen inriktad på mjukvaran, som kan användas i en autonom dammsugare. Vi har valt att titta närmare på två stycken sökalgoritmer, som kan användas av autonoma mobila robotar, exempelvis en autonom dammsugare, som har i uppdrag att täcka en hel obekant yta. Dessa algoritmer är Spanning Tree Covering (STC) och ”A Topological Coverage Algorithm”, också kallad ”Landmark-based World Model” (fritt översatt till Topologisk Täckande Algoritm, TTA). Vi har också undersökt hur ett av Sveriges största märken på marknaden för autonoma dammsugare, nämligen Electrolux Trilobite ZA1, klarar sig i test. Vi har även analyserat testet med Trilobiten och jämfört detta med antaget beteende hos Trilobiten ifall den hade varit implementerad med sökalgoritmerna STC eller TTA. Hur fungerar sökalgoritmerna? Hur kan en autonom dammsugare hitta på en hel obekant yta? Hur beter sig Electrolux Trilobite ZA1? Täcker de alla en obekant yta? Är de effektiva?
|
62 |
Neural Network-Based Residential Water End-Use Disaggregation / Neurala nätverk för klassificering av vattenanvändning i hushållPierrou, Cajsa January 2023 (has links)
Sustainable management of finite resources is vital for ensuring livable conditions for both current and future generations. Measuring the total water consumption of residential households at high temporal resolutions and automatically disaggregating the sole signal into classified end usages (e.g. shower, sink) allows for identification of behavioural patterns that could be improved to minimise wasteful water consumption. Such disaggregation is not trivial, as water consuming patterns vary greatly depending on consumer behaviour, and further since at any given time, an unknown amount of fixtures may be used simultaneously. In this work, we approach the disaggregation problem by evaluating the performance of a set of recurrent and convolutional neural network structures provided approximately one year of high resolution water consumption data from a single apartment in Sweden. Unlike previous approaches to the problem, we let the models process the full, uninterrupted flow traces (as opposed to extracted segments of water consuming activity) in order to allow for temporal dependencies within and between water consuming activities to be learned. Out of four networks applied to the task, we find that a deeper temporal convolutional network structure yields the best overall results on the test data, with prediction accuracy of 85% and F1-score above 0.8 averaged over all end-use categories - a performance exceeding that of commercial analysis tools, and comparable to components of current state-of-the-art approaches. However, significant decreases in performance are observed for all of the networks, particularly for toilet and washing machine activity, when evaluating the models on unseen and augmented data from the apartment, indicating the results can not be fully generalised for usage in other households. / Hållbar användning av ändliga resurser är avgörande för att försäkra god livskvalitet för både nutida och framtida generationer. I Sverige är vatten för många en självklarhet, vilket öppnar upp för slösaktigt användande. En metod för att utbilda användare och identifiera icke hållbara beteenden är att kvantifiera vattenförbrukningen i hushåll baserat på syfte (t.ex. tvätta händerna, diska) eller källa (t.ex. dusch, handfat) av slutanvändningen. För att göra en sådan sammanställning mäts den totala åtkomsten av vatten i hög upplösning från hushåll, och signalen delas sedan upp i respektive kategori av slutanvändning. En sådan disaggregering är inte trivial, och försvåras av skillnader i beteendemönster hos användare samt faktumet att vi inte vid någon tidpunkt vet hur många vattenarmaturer som används samtidigt. I syftet att förbättra nuvarande tekniker för disaggregeringsproblemet implementerar och utvärderar vi alternativa lösningar baserade på rekurrenta och konvolutionerande neurala nätverk, på flödesdata insamlad med hög upplösning från en lägenhet i Sverige under en period av cirka ett år. Till skillnad från tidigare förhållningssätt till problemet låter vi våra modeller bearbeta den fullständiga, oavbrutna, flödesdatan (i motsats till extraherade segment av vattenförbrukande aktiviteter) för att möjliggöra lärandet av tidsmässiga beroenden inom och mellan vattenförbrukande aktiviteter. Utav fyra testade nätverk finner vi att ett djupt konvolutionerande nätverk ger den bästa klassificeringen överlag, givet testdata, med genomsnittlig igenkänningsnogrannhet på 85%. Signifikant försämrade resultat observerades för samtliga modeller i kategorierna toalett och tvättmaskin när nätverken testades på augmenterad data från hushållet, vilket indikerar att resultaten inte kan generaliseras för användning i andra lägenheter.
|
63 |
Maskininlärning för automatisk extrahering av citat från recensioner : Med användning av BERT, Inter-Sentence Transformer och artificiella neuronnätverk / Machine learning for automatic extraction of quotes from reviews : Using BERT, Inter-Sentence Transformer, and artificial neural networksHällgren, Clara, Kristiansson, Alexander January 2021 (has links)
Att manuellt välja en eller flera meningar ur en filmrecension att använda som citat kan vara en tidskrävande uppgift. Denna rapport utvärderar övervakade maskininlärningsmodeller för att skapa en prototyp som automatiskt kan välja lämpliga citat ur recensioner. Utifrån resultatet av en litteraturstudie valdes två modeller att implementera och utvärdera på data bestående av filmrecensioner och tillhörande manuellt valda citat. Av arbetets två implementerade modeller, BERT med Inter-Sentence Transformer och BERT med ett artificiellt neuronnät, visade den sistnämnda marginellt bättre resultat. Modellerna utvärderades med ROUGE och jämfördes med tidigare studiers toppresultat inom automatisk textsummering. Slutsatsen är att de modeller som utvärderades inte presterar tillräckligt väl inom problemområdet för att motivera en driftsättning utan ytterligare utvecklingsarbete. Dock visar resultaten att det finns potential i att de utvärderade tillvägagångssätten delvis kan ersätta manuella val av citat i framtiden. / To choose a number of sentences from a movie review to use as a quote can be time consuming if done manually. This thesis evaluates supervised machine learning models to create a prototype that automatically can choose such quotes. The thesis chose, based on a literature study, two models to implement and evaluate on data consisting of movie reviews and their respective corresponding manually chosen quotes. Out of the thesis two implemented models, BERT with Inter-Sentence Transformer and BERT with an artificial neural network, the latter showed marginally better results. The models were evaluated with ROUGE and was compared with state-of-the-art models regarding automatic text summarization. The conclusion is that the models that were evaluated do not perform well enough for the problem to motivate full deployment without further development efforts. However, the results show that there is potential that the evaluated methods can partially replace manual labour when choosing quotes.
|
64 |
Smartphone sensors are sufficient to measure smoothness of car driving / Smartphonesensorer är tillräckliga för att mäta mjukhet i bilkörningBränn, Jesper January 2017 (has links)
This study aims to look at whether or not it is sufficient to only use smartphone sensors to judge if someone who is driving a car is driving aggressively or smoothly. To determine this, data were first collected from the accelerometer, gyroscope, magnetometer and GPS sensors in the smartphone as well as values based on these sensors from the iOS operating system. After this the data, together with synthesized data based on the collected data, were used to train an artificial neural network.The results indicate that it is possible to give a binary judgment on aggressive or smooth driving with a 97% accuracy, with little model overfitting. The conclusion of this study is that it is sufficient to only use smartphone sensors to make a judgment on the drive. / Den här studien ämnar till att bedöma huruvida smartphonesensorer är tillräckliga för att avgöra om någon kör en bil aggressivt eller mjukt. För att kunna avgöra detta så samlades först data in från accelerometer, gyroskop, magnetometer och GPS-sensorerna i en smartphone, tillsammans med värden baserade på dessa data från iOS-operativ-systemet. Efter den datan var insamlad tränades ett artificiellt neuronnät med datan.Resultaten indikerar att det är möjligt att ge ett binärt utlåtande om aggressiv kontra mjuk körning med 97% säkerhet, och med liten överanpassning. Detta innebär att det är tillräckligt att enbart använda smartphonesensorer för att avgörande om körningen var mjuk eller aggressiv.
|
65 |
Dynamic Modelling of a Fluidic Muscle with a Comparison of Hysteresis Approaches / Dynamisk Modellering av en Fluidisk Muskel med en Jämförelse av HysteresmetoderAntonsson, Tess January 2023 (has links)
n recent years, there has been a surge in interest and research into the utilisation of soft actuators within the field of robotics, driven by the novel capabilities of their inherently compliant material. One such actuator is the Pneumatic Artificial Muscle (PAM) which offers a high power-to-mass ratio, compliance, safety, and biological mimicry when compared to their traditional counterparts. However, because of their flexible and complex physical structure and the compressibility of air inside the PAM, they exhibit nonlinear dynamic behaviour, largely due to the influence of the hysteresis phenomenon. In order to implement strategies to counteract this effect, it first needs to be modelled. As such, this thesis investigates two approaches, namely the Maxwell-Slip (MS) and generalised Bouc-Wen (BW) models. Firstly, the test muscle's initial braid angle, maximum displacement, and maximum force are determined to establish the static force using a modified model. Data is then collected on the PAM's force-displacement hysteresis for 2-6 bar of pressure. Using the results from these experiments, the MS and BW model parameters are identified through optimisation. With the static and hysteresis force components characterised, two complete dynamic models are created. The findings show that, when compared to the collected force-displacement data, the BW model has greater accuracy for all pressures except at 4 bar, although both approaches demonstrate results within a satisfactory margin. Lastly, a model validation is conducted to compare the models using a new dataset, separate from the one on which they were trained. Data for this test is recorded at a pressure of 4 bar with a more complex reference that covers four different regions of the muscle's displacement range. Thereafter, both dynamic models are applied to assess their performance. It is evident from the results that the BW model produces a better outcome than the MS, achieving a normalised error of 5.3746% as compared to the latter's 12.835%. The higher accuracy of the generalised BoucWen method is likely due to it having a more complex structure, specialised parameters, and the ability to model asymmetric hysteresis. The Maxwell-Slip model may however still be preferable in some applications due to its relative simplicity and faster optimisation. / Under de senaste åren har intresset och forskningen ökat kring användningen av mjuka ställdon inom robotik, drivet av den innovativa potentialen som erbjuds av egenskaperna hos deras naturligt flexibla material. Ett sådant ställdon är den Pneumatiska Artificiella Muskeln (PAM) som erbjuder hög kraft i förhållande till vikten, elasticitet, säkerhet och biologisk imitation jämfört med dess traditionella motsvarigheter. Trots dessa fördelar så uppvisar PAM:s ett icke-önskvärt olinjärt dynamiskt beteende, till stor del på grund av deras flexibla och komplexa fysiska struktur samt kompressibiliteten av luft inuti PAM:en. Dessa olinjäriteter orsakar hysteresfenomenet i muskeln. För att implementera strategier för att kunna motverka denna effekt så måste den först modelleras. Till följd därav så undersöker denna avhandling två tillvägagångssätt, nämligen Maxwell-Slip (MS) och den generaliserade Bouc-Wen (BW) modellen. Inledningsvis identifieras testmuskelns initiala flätvinkel, maximala förskjutning och maximala kraft för att fastställa den statiska kraften med hjälp av en modifierad modell. Data samlas sedan in på PAM:ens kraft-förskjutningshysteres för 2-6 bar av tryck. Med hjälp av resultaten från dessa experiment identifieras MS- och BW-modellparametrarna genom optimering. Med de statiska och hystereskraftskomponenterna karakteriserade kan två kompletta dynamiska modeller framkallas. Resultaten visar att jämfört med den insamlade kraft-förskjutningsdatan har BW-modellen en större noggrannhet för alla tryck förutom vid 4 bar, men båda metoderna uppvisar resultat som är inom en godtagbar marginal. Slutligen genomförs en modellvalidering för att jämföra modellerna med hjälp av ett nytt dataset, annorlunda från den som de tränades på. Datan för detta test mäts vid ett tryck på 4 bar med en mer komplex referens som täcker fyra olika regioner av muskelns förskjutningsområde. Därefter tillämpas båda dynamiska modellerna för att bedöma deras prestanda. Det är uppenbart från resultaten att BW-modellen ger ett bättre resultat än MS-modellen, och uppnår ett normaliserat fel på 5,3746% jämfört med den sistnämndas 12,835%. Den högre noggrannheten hos den generaliserade Bouc-Wen-metoden beror sannolikt på att den har en mer komplex struktur, specialiserade parametrar och förmågan att modellera asymmetrisk hysteres. Maxwell-Slipmodellen kan däremot ändå vara att föredra i vissa sammanhang på grund av dess relativa simplicitet och snabbare optimering
|
66 |
Modelling Cyber Security of Networks as a Reinforcement Learning Problem using Graphs : An Application of Reinforcement Learning to the Meta Attack Language / Cybersäkerhet för datornätverk representerat som ett förstärkningsinlärningsproblem med grafer : Förstärkningsinlärning applicerat på Meta Attack LanguageBerglund, Sandor January 2022 (has links)
ICT systems are part of the vital infrastructure in today’s society. These systems are under constant threat and efforts are continually being put forth by cyber security experts to protect them. By applying modern AI methods, can these efforts both be improved and alleviated of the cost of expert work. This thesis examines whether a reinforcement learning (RL) algorithm can be applied to a cyber security modelling of ICT systems. The research question answered is that of how well an RL algorithm can optimise the resource cost of successful cyber attacks, as represented by a cyber security model? The modelling, called Meta Attack Language (MAL), is a meta language for attack graphs that details the individual steps to be taken in a cyber attack. In the previous work of Manuel Rickli’s thesis, a method of automatically generating attack graphs according to MAL aimed at modelling industry-level computer networks, was presented. The method was used to generate different distributions of attack graphs that were used to train deep Q-learning (DQN) agents. The agents’ results were then compared with a random agent and a greedy method based on the A∗ search algorithm. The results show that attack step selection can be achieved with a higher performance than the uninformed choice of the random agent, by DQN. However, DQN was unable to achieve higher performance than the A∗ method. This may be due to the simplicity of the attack graph generation or the fact that the A∗ method has access to the complete attack graph, amongst other factors. The thesis also raises questions about general representation of MAL attack graphs as RL problems and how to apply RL algorithms to the RL problem. The source code of this thesis is available at: https://github.com/KTH-SSAS/sandor-berglund-thesis. / IT-system är i dagens samhälle en väsentlig del av infrastrukturen som är under konstant hot av olika personer och organisationer. IT-säkerhetsexperter lägger ner beständigt arbete på att hålla dessa system säkra och för att avvärja illvilliga auktioner mot IT-system. Moderna AI-metoder kan användas för att förbättra och lätta på kostnaden av expertarbetet inom området. Detta examensarbete avser att undersöka hur en förstärkningsinlärningsalgoritm kan appliceras på en cybersäkerhetsmodell. Det görs genom att besvara frågeställningen: Hur väl kan en förstärkningsinlärningsalgoritm optimera en cyberattack representerat av en cybersäkerhetsmodell? Meta Attack Language (MAL) är ett metaspråk för attackgrafer som beskriver varje steg i en cyberattack. I detta examensarbete användes Manuell Ricklis implementation av MAL samt attack grafs generation för att definiera ett förstärkningsinlärningsproblem. Förstärkningsinlärningsalgoritmen deep Q-learning (DQN) användes för att träna ett attention baserat neuronnät på olika fördelningar av attackgrafer och jämfördes med en slumpmässig agent och en girig metod baserad på sökalgoritmen A∗ . Resultaten visar att DQN kunde producera en agent som presterar bättre än den oinformerade slumpmässiga agenten. Agenten presterade däremot inte bättre än den giriga A∗ metoden, vilket kan bero på att A∗ har tillgång till den fulla attack grafen, bland andra bidragande faktorer. Arbetet som läggs fram här väcker frågor om hur MAL-attackgrafer representeras som förstärkningsinlärningsproblem och hur förstärkningsinlärningsalgoritmer appliceras där av. Källkoden till det här examensarbetet finns på: https://github.com/KTHSSAS/sandor-berglund-thesis.
|
67 |
On dysgraphia diagnosis support via the automation of the BVSCO test scoring : Leveraging deep learning techniques to support medical diagnosis of dysgraphia / Om dysgrafi diagnosstöd via automatisering av BVSCO-testpoäng : Utnyttja tekniker för djupinlärning för att stödja medicinsk diagnos av dysgrafiSommaruga, Riccardo January 2022 (has links)
Dysgraphia is a rather widespread learning disorder in the current society. It is well established that an early diagnosis of this writing disorder can lead to improvement in writing skills. However, as of today, although there is no comprehensive standard process for the evaluation of dysgraphia, most of the tests used for this purpose must be done at a physician’s office. On the other hand, the pandemic triggered by COVID-19 has forced people to stay at home and opened the door to the development of online medical consultations. The present study therefore aims to propose an automated pipeline to provide pre-clinical diagnosis of dysgraphia. In particular, it investigates the possibility of applying deep learning techniques to the most widely used test for assessing writing difficulties in Italy, the BVSCO-2. This test consists of several writing exercises to be performed by the child on paper under the supervision of a doctor. To test the hypothesis that it is possible to enable children to have their writing impairment recognized even at a distance, an innovative system has been developed. It leverages an already developed customized tablet application that captures the graphemes produced by the child and an artificial neural network that processes the images and recognizes the handwritten text. The experimental results were analyzed using different methods and were compared with the actual diagnosis that a doctor would have provided if the test had been carried out normally. It turned out that, despite a slight fixed bias introduced by the machine for some specific exercises, these results seemed very promising in terms of both handwritten text recognition and diagnosis of children with dysgraphia, thus giving a satisfactory answer to the proposed research question. / Dysgrafi är en ganska utbredd inlärningsstörning i dagens samhälle. Det är väl etablerat att en tidig diagnos av denna skrivstörning kan leda till en förbättring av skrivförmågan. Även om det i dag inte finns någon omfattande standardprocess för utvärdering av dysgrafi måste dock de flesta av de tester som används för detta ändamål göras på en läkarmottagning. Å andra sidan har den pandemi som utlöstes av COVID-19 tvingat människor att stanna hemma och öppnat dörren för utvecklingen av medicinska konsultationer online. Syftet med denna studie är därför att föreslå en automatiserad pipeline för att ge preklinisk diagnos av dysgrafi. I synnerhet undersöks möjligheten att tillämpa djupinlärningstekniker på det mest använda testet för att bedöma skrivsvårigheter i Italien, BVSCO-2. Testet består av flera skrivövningar som barnet ska utföra på papper under överinseende av en läkare. För att testa hypotesen att det är möjligt att göra det möjligt för barn att få sina skrivsvårigheter erkända även på distans har ett innovativt system utvecklats. Det utnyttjar en redan utvecklad skräddarsydd applikation för surfplattor som fångar de grafem som barnet producerar och ett artificiellt neuralt nätverk som bearbetar bilderna och känner igen den handskrivna texten. De experimentella resultaten analyserades med hjälp av olika metoder och jämfördes med den faktiska diagnos som en läkare skulle ha ställt om testet hade utförts normalt. Det visade sig att, trots en liten fast bias som maskinen införde för vissa specifika övningar, verkade dessa resultat mycket lovande när det gäller både igenkänning av handskriven text och diagnos av barn med dysgrafi, vilket gav ett tillfredsställande svar på den föreslagna forskningsfrågan.
|
68 |
Object detection for autonomous trash and litter collection / Objektdetektering för autonom skräpupplockningEdström, Simon January 2022 (has links)
Trashandlitter discarded on the street is a large environmental issue in Sweden and across the globe. In Swedish cities alone it is estimated that 1.8 billion articles of trash are thrown to the street each year, constituting around 3 kilotons of waste. One avenue to combat this societal and environmental problem is to use robotics and AI. A robot could learn to detect trash in the wild and collect it in order to clean the environment. A key component of such a robot would be its computer vision system which allows it to detect litter and trash. Such systems are not trivially designed or implemented and have only recently reached high enough performance in order to work in industrial contexts. This master thesis focuses on creating and analysing such an algorithm by gathering data for use in a machine learning model, developing an object detection pipeline and evaluating the performance of that pipeline based on varying its components. Specifically, methods using hyperparameter optimisation, psuedolabeling and the preprocessing methods tiling and illumination normalisation were implemented and analysed. This thesis shows that it is possible to create an object detection algorithm with high performance using currently available state-of-the-art methods. Within the analysed context, hyperparameter optimisation did not significantly improve performance and psuedolabeling could only briefly be analysed but showed promising results. Tiling greatly increased mean average precision (mAP) for the detection of small objects, such as cigarette butts, but decreased the mAP for large objects and illumination normalisation improved mAPforimagesthat were brightly lit. Both preprocessing methods reduced the frames per second that a full detector could run at whilst psuedolabeling and hyperparameter optimisation greatly increased training times. / Skräp som slängs på marken har en stor miljöpåverkan i Sverige och runtom i världen. Enbart i Svenska städer uppskattas det att 1,8 miljarder bitar skräp slängs på gatan varje år, bestående av cirka 3 kiloton avfall. Ett sätt att lösa detta samhälleliga och miljömässiga problem är att använda robotik och AI. En robot skulle kunna lära siga att detektera skräp i utomhusmiljöer och samla in den för att på så sätt rengöra våra städer och vår natur. En nyckelkomponent av en sådan robot skulle vara dess system för datorseende som tillåter den att se och hitta skräp. Sådana system är inte triviala att designa eller implementera och har bara nyligen påvisat tillräckligt hög prestanda för att kunna användas i kommersiella sammanhang. Detta masterexamensarbete fokuserar på att skapa och analysera en sådan algoritm genom att insamla data för att använda i en maskininlärningsmodell, utveckla en objektdetekterings pipeline och utvärdera prestandan när dess komponenter modifieras. Specifikt analyseras metoderna pseudomarkering, hyperparameter optimering samt förprocesseringsmetoderna kakling och ljusintensitetsnormalisering. Examensarbetet visar att det är möjligt att skapa en objektdetekteringsalgoritm med hög prestanda med hjälp av den senaste tekniken på området. Inom det undersökta sammanhanget gav hyperparameter optimering inte någon större förbättring av prestandan och pseudomarkering kunde enbart ytligt analyseras men uppvisade preliminärt lovande resultat. Kakling förbättrade resultatet för detektering av små objekt, som cigarettfimpar, men minskade prestandan för större objekt och ljusintensitetsnormalisering förbättrade prestandan för bilder som var starkt belysta. Båda förprocesseringsmetoderna minskade bildhastigheten som en detektor skulle kunna köra i och psuedomarkering samt hyperparameter optimering ökade träningstiden kraftigt.
|
69 |
Deep Bayesian Neural Networks for Prediction of Insurance Premiums / Djupa Bayesianska neurala nätverk för prediktioner på fordonsförsäkringarOlsgärde, Nils January 2021 (has links)
In this project, the problem concerns predicting insurance premiums and particularly vehicle insurance premiums. These predictions were made with the help of Bayesian Neural Networks (BNNs), a type of Artificial Neural Network (ANN). The central concept of BNNs is that the parameters of the network follow distributions, which is beneficial. The modeling was done with the help of TensorFlow's Probability API, where a few models were built and tested on the data provided. The results conclude the possibility of predicting insurance premiums. However, the output distributions in this report were too wide to use. More data, both in volume and in the number of features, and better-structured data are needed. With better data, there is potential in building BNN and other machine learning (ML) models that could be useful for production purposes. / Detta projekt grundar sig i möjligheten till att predikera försäkringspremier, mer specifikt fordonsförsäkringspremier. Prediktioner har gjorts med hjälp av Bayesianska neurala nätverk, vilket är en typ av artificiella neurala nätverk. Det huvudsakliga konceptet med Bayesianska neurala nätverk är att parametrarna i nätverket följer distributioner vilket har vissa fördelar och inte är fallet för vanliga artificiella neurala nätverk. Ett antal modeller har konstruerats med hjälp av TensorFlow Probability API:t som tränats och testats på given data. Resultatet visar att det finns potential att prediktera premier med hjälp av de egenskapspunkter\footnote[2]{\say{Features} på engelska} som finns tillgängliga, men att resultaten inte är tillräckligt bra för att kunna användas i produktion. Med mer data, både till mängd och egenskapspunkter samt bättre strukturerad data finns potential att skapa bättre modeller av intresse för produktion.
|
70 |
Flood Prediction System Using IoT and Artificial Neural Networks with Edge ComputingSamikwa, Eric January 2020 (has links)
Flood disasters affect millions of people across the world by causing severe loss of life and colossal damage to property. Internet of things (IoT) has been applied in areas such as flood prediction, flood monitoring, flood detection, etc. Although IoT technologies cannot stop the occurrence of flood disasters, they are exceptionally valuable apparatus for conveyance of catastrophe readiness and counteractive action data. Advances have been made in flood prediction using artificial neural networks (ANN). Despite the various advancements in flood prediction systems through the use of ANN, there has been less focus on the utilisation of edge computing for improved efficiency and reliability of such systems. In this thesis, a system for short-term flood prediction that uses IoT and ANN, where the prediction computation is carried out on a low power edge device is proposed. The system monitors real-time rainfall and water level sensor data and predicts ahead of time flood water levels using long short-term memory. The system can be deployed on battery power as it uses low power IoT devices and communication technology. The results of evaluating a prototype of the system indicate a good performance in terms of flood prediction accuracy and response time. The application of ANN with edge computing will help improve the efficiency of real-time flood early warning systems by bringing the prediction computation close to where data is collected. / Översvämningar drabbar miljontals människor över hela världen genom att orsaka dödsfall och förstöra egendom. Sakernas Internet (IoT) har använts i områden som översvämnings förutsägelse, översvämnings övervakning, översvämning upptäckt, etc. Även om IoT-teknologier inte kan stoppa förekomsten av översvämningar, så är de mycket användbara när det kommer till transport av katastrofberedskap och motverkande handlingsdata. Utveckling har skett när det kommer till att förutspå översvämningar med hjälp av artificiella neuronnät (ANN). Trots de olika framstegen inom system för att förutspå översvämningar genom ANN, så har det varit mindre fokus på användningen av edge computing vilket skulle kunna förbättra effektivitet och tillförlitlighet. I detta examensarbete föreslås ett system för kortsiktig översvämningsförutsägelse genom IoT och ANN, där gissningsberäkningen utförs över en låg effekt edge enhet. Systemet övervakar sensordata från regn och vattennivå i realtid och förutspår översvämningsvattennivåer i förtid genom att använda långt korttidsminne. Systemet kan köras på batteri eftersom det använder låg effekt IoT-enheter och kommunikationsteknik. Resultaten från en utvärdering av en prototyp av systemet indikerar en bra prestanda när det kommer till noggrannhet att förutspå översvämningar och responstid. Användningen av ANN med edge computing kommer att förbättra effektiviteten av tidiga varningssystem för översvämningar i realtid genom att ta gissningsberäkningen närmare till där datan samlas.
|
Page generated in 0.0566 seconds