Spelling suggestions: "subject:"assintoticamente 1inear"" "subject:"assintoticamente cinear""
1 |
Solução positiva de uma equação de Schrödinger assintoticamente linear no infinito via variedade de Pohozaev / Solución positiva de una ecuación de Schrödinger asintóticamente lineal en el infinito via variedad de PohozaevChata, Juan Carlos Ortiz [UNESP] 21 February 2017 (has links)
Submitted by JUAN CARLOS ORTIZ CHATA null (hacermate@outlook.com) on 2017-03-03T19:11:52Z
No. of bitstreams: 1
Disertação de Juan.pdf: 912482 bytes, checksum: 29a29c6ba283441a6c2e0008e8345af8 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-03-09T13:50:24Z (GMT) No. of bitstreams: 1
chata_jco_me_prud.pdf: 912482 bytes, checksum: 29a29c6ba283441a6c2e0008e8345af8 (MD5) / Made available in DSpace on 2017-03-09T13:50:24Z (GMT). No. of bitstreams: 1
chata_jco_me_prud.pdf: 912482 bytes, checksum: 29a29c6ba283441a6c2e0008e8345af8 (MD5)
Previous issue date: 2017-02-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho teórico em Equações Diferenciais Parciais Elípticas, iremos apresentar uma abordagem diferente e mais geral na busca de solução positiva da equação de Schrödinger assintoticamente linear no infinito -Δ u +λ u = a(x)f(u) em R^N para N≥ 3 e λ > 0$. Métodos variacionais são usados para o estudo da existência das soluções fracas positivas sobre um apropriado subconjunto da variedade de Pohozaev associado ao problema, sob certas condições na não-linearidade. / In this theoretical work in Elliptic Partial Differential Equation, we will present a different and more general approach in the search of positive solution of asymptotically linear Schrödinger equation -Δ u +λ u = a(x)f(u) em R^N para N≥ 3 e λ > 0$. Variational methods are used to study the existence of the weak positive solutions on an appropriate subset of Pohozaev manifold associated with the problem, under certain assumptions on the nonlinearty.
|
2 |
Problemas Elípticos Assintoticamente Lineares / An Asymptotically Linear Elliptic ProblemDAMKE, Caíke da Rocha 02 February 2012 (has links)
Made available in DSpace on 2014-07-29T16:02:19Z (GMT). No. of bitstreams: 1
Dissertacao Caike da R Damke.pdf: 510380 bytes, checksum: 4e479f17d8c052dd29cea88f0ca85df8 (MD5)
Previous issue date: 2012-02-02 / In this dissertation we analyze questions of existence and multiplicity of solutions
for Dirichlet problem in the asymptotically linear case. To obtain our main results we use
variational methods, such as Montain Pass Theorem and Linking Theorem.Moreover, we
use the Liapunov-Schmidt reduction. / Nesta dissertação analisamos questões de existência e multiplicidade de soluções do
problema de Dirichlet elíptico assintoticamente linear. Para obtermos os nossos principais
resultados utilizamos métodos variacionais, tais como o Teorema do Passo da Montanha
um Teorema de Linking. Além disso, utilizamos a redução de Liapunov-Schmidt.
|
3 |
Equações elípticas semilineares e quasilineares com potenciais que mudam de sinalOliveira Junior, José Carlos de 24 September 2015 (has links)
Neste trabalho, consideramos o problema autônomo {(-∆u+V(x)u=f(u) em R^N,@u∈H^1 (R^N)\\{0},)┤ em que N≥3, a função V é não periódica, radialmente simétrica e muda de sinal e a não linearidade f é assintoticamente linear. Além disso, impomos que V possui um limite positivo no infinito e que o espectro do operador L≔-∆+V tem ínfimo negativo. Sob essas condições, baseando-se em interações entre soluções transladadas do problema no infinito associado, é possível mostrar que tal problema satisfaz a geometria do teorema de linking clássico e garantir a existência de uma solução fraca não trivial. Em seguida, estabelecemos a existência de uma solução não trivial para o problema não autônomo {(-∆u+V(x)u=f(x,u) em R^N,@u∈H^1 (R^N)\\{0},)┤ sob hipóteses similares ao problema anterior, admitindo também que f(x,u)=f(|x|,u) dentre outras condições. Aplicamos novamente o teorema de linking para garantir que tal problema possui uma solução não trivial. Por fim, provamos que o problema quasilinear {(-∆u+V(x)u-u∆(u^2)=g(x,u) em R^3,@u∈H^1 (R^3)\\{0},)┤ em que o potencial V muda de sinal, podendo ser não limitado inferiormente, e a não linearidade g(x,u), quando |x|→∞, possui um certo tipo de monotonicidade, possui uma solução não trivial. A existência de tal solução é provada por meio de uma mudança de variável que transforma o problema num problema semilinear, nos permitindo, assim, empregar o teorema do passo da montanha combinado com o lema splitting. / In this work, we consider the autonomous problem {(-∆u+V(x)u=f(u) em R^N,@u∈H^1 (R^N)\\{0},)┤ where N≥3, V is a non-periodic radially symmetric function that changes sign and the nonlinearity f is asymptotically linear. Furthermore, we impose that V has a positive limit at infinity and the spectrum of the operator L≔-∆+V has negative infimum. Under these conditions, employing interaction between translated solutions of the problem at infinity, it is possible to show that such problem satisfies the geometry of the classical linking theorem and garantee the existence of a nontrivial weak solution. After that, we establish the existence of a nontrivial weak solution for the nonautonomous problem {(-∆u+V(x)u=f(x,u) em R^N,@u∈H^1 (R^N)\\{0},)┤ under similar hyphoteses to the previous problem, assuming also that f(x,u)=f(|x|,u) among others conditions. We apply again the classical linking theorem to ensure that such problem possesses a nontrivial weak solution. Finally, we prove that the quasilinear problem {(-∆u+V(x)u-u∆(u^2)=g(x,u) em R^3,@u∈H^1 (R^3)\\{0},)┤ where the potential V changes sign and may be unbounded from below and the nonlinearity g(x,u), as|x|→∞, has a kind of monotonicity, has a nontrivial weak solution. The existence of such solution is proved by means of a change of variables that makes the problem become a semilinear problem and hence allow us apply the mountain pass theorem combined with splitting lemma.
|
Page generated in 0.0945 seconds