• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear Schrödinger Type Equations with Asymptotically Linear Terms

van Heerden, Francois A. 01 May 2002 (has links)
We study the nonlinear Schrödinger type equation - Δu + (λg(x) + l)u = f(u) on the whole space R^N. The nonlinearity f is assumed to be asymptotically linear and g(x) ≥ 0 has a potential well. We do not assume a limit for g(x) as lxl →∞ . Using variational techniques, we prove the existence of a positive solution for λ large. In the case where f is odd we obtain multiple pairs of solutions. The limiting behavior of solutions as λ →∞ is also considered.
2

Resultados de existência de soluções para problemas elípticos assintoticamente lineares / On results about existence of solutions to asymptotic linear elliptic problems

Gonzaga, Anderson dos Santos [UNESP] 21 February 2017 (has links)
Submitted by Anderson dos Santos Gonzaga null (andersongonzaga25@yahoo.com.br) on 2018-01-16T17:28:55Z No. of bitstreams: 1 Gonzaga.dissertação.pdf: 1264952 bytes, checksum: e682e5fd46c5a7d68506f3f9499cded5 (MD5) / Approved for entry into archive by Claudia Adriana Spindola null (claudia@fct.unesp.br) on 2018-01-16T17:58:17Z (GMT) No. of bitstreams: 1 gonzaga_as_me_prud.pdf: 1264952 bytes, checksum: e682e5fd46c5a7d68506f3f9499cded5 (MD5) / Made available in DSpace on 2018-01-16T17:58:17Z (GMT). No. of bitstreams: 1 gonzaga_as_me_prud.pdf: 1264952 bytes, checksum: e682e5fd46c5a7d68506f3f9499cded5 (MD5) Previous issue date: 2017-02-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nesse trabalho teórico na área das equações diferenciais parciais elípticas, estudamos uma versão estacionária da equação de Schrödinger não-linear, com não-linearidade do tipo assintoticamente linear. O objetivo principal versa sobre obter resultados de existência de uma solução nodal radialmente simétrica. Ainda, sob algumas condições, buscamos também obter informações sobre o seu índice de Morse. / In this theoretical work in elliptic partial di erential equations, we study a stationary version for the nonlinear Schödinger equation with nonlinearity of the assymptotically linear type. The main objective is getting, some results of existence for a radially symmetric nodal solution. Moreover, under some conditions, we look also obtaining information about its Morse index.
3

Solução positiva de uma equação de Schrödinger assintoticamente linear no infinito via variedade de Pohozaev / Solución positiva de una ecuación de Schrödinger asintóticamente lineal en el infinito via variedad de Pohozaev

Chata, Juan Carlos Ortiz [UNESP] 21 February 2017 (has links)
Submitted by JUAN CARLOS ORTIZ CHATA null (hacermate@outlook.com) on 2017-03-03T19:11:52Z No. of bitstreams: 1 Disertação de Juan.pdf: 912482 bytes, checksum: 29a29c6ba283441a6c2e0008e8345af8 (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-03-09T13:50:24Z (GMT) No. of bitstreams: 1 chata_jco_me_prud.pdf: 912482 bytes, checksum: 29a29c6ba283441a6c2e0008e8345af8 (MD5) / Made available in DSpace on 2017-03-09T13:50:24Z (GMT). No. of bitstreams: 1 chata_jco_me_prud.pdf: 912482 bytes, checksum: 29a29c6ba283441a6c2e0008e8345af8 (MD5) Previous issue date: 2017-02-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho teórico em Equações Diferenciais Parciais Elípticas, iremos apresentar uma abordagem diferente e mais geral na busca de solução positiva da equação de Schrödinger assintoticamente linear no infinito -Δ u +λ u = a(x)f(u) em R^N para N≥ 3 e λ > 0$. Métodos variacionais são usados para o estudo da existência das soluções fracas positivas sobre um apropriado subconjunto da variedade de Pohozaev associado ao problema, sob certas condições na não-linearidade. / In this theoretical work in Elliptic Partial Differential Equation, we will present a different and more general approach in the search of positive solution of asymptotically linear Schrödinger equation -Δ u +λ u = a(x)f(u) em R^N para N≥ 3 e λ > 0$. Variational methods are used to study the existence of the weak positive solutions on an appropriate subset of Pohozaev manifold associated with the problem, under certain assumptions on the nonlinearty.
4

Estudo de uma classe de equações elípticas via métodos variacionais e topológicos / Study of a class of elliptic equations via variational and topological methods

Borges, Júlia Silva Silveira 23 April 2012 (has links)
Alguns problemas elípticos assintoticamente lineares são considerados e é provada a existência de solução. Os principais resultados são estabelecidos de dois modos distintos e as provas são baseadas em resultados clássicos da teoria de pontos críticos, a saber: minimização, princípio variacional de Ekeland, grau topológico, teorema do ponto de sela e o teorema do passo da montanha / Some asymptotically linear elliptic problems are considered and solutions are proved to exist. The main results are proved in two different ways. The proofs rely on some classical results in Critical Point Theory such as minimization, Ekeland variational principle, topological degree, saddle point theorem and mountain pass theorem
5

Problemas Elípticos Assintoticamente Lineares / An Asymptotically Linear Elliptic Problem

DAMKE, Caíke da Rocha 02 February 2012 (has links)
Made available in DSpace on 2014-07-29T16:02:19Z (GMT). No. of bitstreams: 1 Dissertacao Caike da R Damke.pdf: 510380 bytes, checksum: 4e479f17d8c052dd29cea88f0ca85df8 (MD5) Previous issue date: 2012-02-02 / In this dissertation we analyze questions of existence and multiplicity of solutions for Dirichlet problem in the asymptotically linear case. To obtain our main results we use variational methods, such as Montain Pass Theorem and Linking Theorem.Moreover, we use the Liapunov-Schmidt reduction. / Nesta dissertação analisamos questões de existência e multiplicidade de soluções do problema de Dirichlet elíptico assintoticamente linear. Para obtermos os nossos principais resultados utilizamos métodos variacionais, tais como o Teorema do Passo da Montanha um Teorema de Linking. Além disso, utilizamos a redução de Liapunov-Schmidt.
6

Estudo de uma classe de equações elípticas via métodos variacionais e topológicos / Study of a class of elliptic equations via variational and topological methods

Júlia Silva Silveira Borges 23 April 2012 (has links)
Alguns problemas elípticos assintoticamente lineares são considerados e é provada a existência de solução. Os principais resultados são estabelecidos de dois modos distintos e as provas são baseadas em resultados clássicos da teoria de pontos críticos, a saber: minimização, princípio variacional de Ekeland, grau topológico, teorema do ponto de sela e o teorema do passo da montanha / Some asymptotically linear elliptic problems are considered and solutions are proved to exist. The main results are proved in two different ways. The proofs rely on some classical results in Critical Point Theory such as minimization, Ekeland variational principle, topological degree, saddle point theorem and mountain pass theorem
7

Equações elípticas semilineares e quasilineares com potenciais que mudam de sinal

Oliveira Junior, José Carlos de 24 September 2015 (has links)
Neste trabalho, consideramos o problema autônomo {(-∆u+V(x)u=f(u) em R^N,@u∈H^1 (R^N)\\{0},)┤ em que N≥3, a função V é não periódica, radialmente simétrica e muda de sinal e a não linearidade f é assintoticamente linear. Além disso, impomos que V possui um limite positivo no infinito e que o espectro do operador L≔-∆+V tem ínfimo negativo. Sob essas condições, baseando-se em interações entre soluções transladadas do problema no infinito associado, é possível mostrar que tal problema satisfaz a geometria do teorema de linking clássico e garantir a existência de uma solução fraca não trivial. Em seguida, estabelecemos a existência de uma solução não trivial para o problema não autônomo {(-∆u+V(x)u=f(x,u) em R^N,@u∈H^1 (R^N)\\{0},)┤ sob hipóteses similares ao problema anterior, admitindo também que f(x,u)=f(|x|,u) dentre outras condições. Aplicamos novamente o teorema de linking para garantir que tal problema possui uma solução não trivial. Por fim, provamos que o problema quasilinear {(-∆u+V(x)u-u∆(u^2)=g(x,u) em R^3,@u∈H^1 (R^3)\\{0},)┤ em que o potencial V muda de sinal, podendo ser não limitado inferiormente, e a não linearidade g(x,u), quando |x|→∞, possui um certo tipo de monotonicidade, possui uma solução não trivial. A existência de tal solução é provada por meio de uma mudança de variável que transforma o problema num problema semilinear, nos permitindo, assim, empregar o teorema do passo da montanha combinado com o lema splitting. / In this work, we consider the autonomous problem {(-∆u+V(x)u=f(u) em R^N,@u∈H^1 (R^N)\\{0},)┤ where N≥3, V is a non-periodic radially symmetric function that changes sign and the nonlinearity f is asymptotically linear. Furthermore, we impose that V has a positive limit at infinity and the spectrum of the operator L≔-∆+V has negative infimum. Under these conditions, employing interaction between translated solutions of the problem at infinity, it is possible to show that such problem satisfies the geometry of the classical linking theorem and garantee the existence of a nontrivial weak solution. After that, we establish the existence of a nontrivial weak solution for the nonautonomous problem {(-∆u+V(x)u=f(x,u) em R^N,@u∈H^1 (R^N)\\{0},)┤ under similar hyphoteses to the previous problem, assuming also that f(x,u)=f(|x|,u) among others conditions. We apply again the classical linking theorem to ensure that such problem possesses a nontrivial weak solution. Finally, we prove that the quasilinear problem {(-∆u+V(x)u-u∆(u^2)=g(x,u) em R^3,@u∈H^1 (R^3)\\{0},)┤ where the potential V changes sign and may be unbounded from below and the nonlinearity g(x,u), as|x|→∞, has a kind of monotonicity, has a nontrivial weak solution. The existence of such solution is proved by means of a change of variables that makes the problem become a semilinear problem and hence allow us apply the mountain pass theorem combined with splitting lemma.
8

Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay

Biglands, Adrian Unknown Date
No description available.

Page generated in 0.0682 seconds