• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 20
  • 9
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 100
  • 100
  • 34
  • 32
  • 22
  • 20
  • 17
  • 15
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Analyse asymptotique en électrophysiologie cardiaque : applications à la modélisation et à l'assimilation de données / Asymptotic analysis in cardiac electrophysiology : applications in modeling and in data assimilation

Collin, Annabelle 06 October 2014 (has links)
Cette thèse est dédiée au développement d'outils mathématiques innovants améliorant la modélisation en électrophysiologie cardiaque.Une présentation du modèle bidomaine - un système réaction-diffusion - à domaine fixé est proposée en s'appuyant sur la littérature et une justification mathématique du processus d'homogénéisation (convergence «2-scale») est donnée. Enfin, une étude de l'impact des déformations mécaniques dans les lois de conservation avec la théorie des mélanges est faite.Comme les techniques d'imagerie ne fournissent globalement que des surfaces pour les oreillettes cardiaques dont l'épaisseur est très faible, une réduction dimensionnelle du modèle bidomaine dans une couche mince à une formulation posée sur la surface associée est étudiée. À l'aide de techniques développées pour les modèles de coques, une analyse asymptotique des termes de diffusion est faite sous des hypothèses de gradient d'anisotropie fort à travers l'épaisseur. Puis, une modélisation couplée du cœur - asymptotique pour les oreillettes et volumique pour les ventricules - permet la simulation d'électrocardiogramme complet. De plus, les méthodes asymptotiques sont utilisées pour obtenir des résultats de convergence forte pour les modèles de coque-3D.Enfin, afin de «personnaliser» les modèles, une méthode d'estimation est proposée. Les données médicales intégrées dans notre modèle - au moyen d'un filtre d'état de type Luenberger spécialement conçu - sont les cartes d'activation électrique. Ces problématiques apparaissent dans d'autres domaines où les modèles (réaction-diffusion) et les données (position du front) sont similaires, comme la propagation de feux ou la croissance tumorale. / This thesis aims at developing innovative mathematical tools to improve cardiac electrophysiological modeling. A detailed presentation of the bidomain model - a system of reaction-diffusion equations - with a fixed domain is given based on the literature and we mathematically justify the homogenization process using the 2-scale convergence. Then, a study of the impact of the mechanical deformations in the conservation laws is performed using the mixture theory.As the atria walls are very thin and generally appear as thick surfaces in medical imaging, a dimensional reduction of the bidomain model in a thin domain to a surface-based formulation is studied. The challenge is crucial in terms of computational efficiency. Following similar strategies used in shell mechanical modeling, an asymptotic analysis of the diffusion terms is done with assumptions of strong anisotropy through the thickness, as in the atria. Simulations in 2D and 3D illustrate these results. Then, a complete modeling of the heart - with the asymptotic model for the atria and the volume model for the ventricles - allow the simulation of full electrocardiogram cycles. Furthermore, the asymptotic methods are used to obtain strong convergence results for the 3D-shell models.Finally, a specific data assimilation method is proposed in order to «personalize» the electrophysiological models. The medical data assimilated in the model - using a Luenberger-like state filter specially designed - are the maps of electrical activation. The proposed methods can be used in other application fields where models (reaction-diffusion) and data (front position) are very similar, as for fire propagation or tumor growth.
32

Low Complexity Precoder and Receiver Design for Massive MIMO Systems: A Large System Analysis using Random Matrix Theory

Sifaou, Houssem 05 1900 (has links)
Massive MIMO systems are shown to be a promising technology for next generations of wireless communication networks. The realization of the attractive merits promised by massive MIMO systems requires advanced linear precoding and receiving techniques in order to mitigate the interference in downlink and uplink transmissions. This work considers the precoder and receiver design in massive MIMO systems. We first consider the design of the linear precoder and receiver that maximize the minimum signal-to-interference-plus-noise ratio (SINR) subject to a given power constraint. The analysis is carried out under the asymptotic regime in which the number of the BS antennas and that of the users grow large with a bounded ratio. This allows us to leverage tools from random matrix theory in order to approximate the parameters of the optimal linear precoder and receiver by their deterministic approximations. Such a result is of valuable practical interest, as it provides a handier way to implement the optimal precoder and receiver. To reduce further the complexity, we propose to apply the truncated polynomial expansion (TPE) concept on a per-user basis to approximate the inverse of large matrices that appear on the expressions of 4 the optimal linear transceivers. Using tools from random matrix theory, we determine deterministic approximations of the SINR and the transmit power in the asymptotic regime. Then, the optimal per-user weight coefficients that solve the max-min SINR problem are derived. The simulation results show that the proposed precoder and receiver provide very close to optimal performance while reducing significantly the computational complexity. As a second part of this work, the TPE technique in a per-user basis is applied to the optimal linear precoding that minimizes the transmit power while satisfying a set of target SINR constraints. Due to the emerging research field of green cellular networks, such a problem is receiving increasing interest nowadays. Closed form expressions of the optimal parameters of the proposed low complexity precoding for power minimization are derived. Numerical results show that the proposed power minimization precoding approximates well the performance of the optimal linear precoding while being more practical for implementation.
33

Studies on Discrete-Valued Vector Reconstruction from Underdetermined Linear Measurements / 劣決定線形観測に基づく離散値ベクトル再構成に関する研究

Hayakawa, Ryo 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第22587号 / 情博第724号 / 新制||情||124(附属図書館) / 京都大学大学院情報学研究科システム科学専攻 / (主査)教授 下平 英寿, 教授 田中 利幸, 教授 山下 信雄, 教授 林 和則(大阪市立大学) / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
34

MATHEMATICAL MODELS OF PATTERN FORMATION IN CELL BIOLOGY

Yang, Xige January 2018 (has links)
No description available.
35

A viscoelastic constitutive model for thixotropic yield stress fluids: asymptotic and numerical studies of extension

Grant, Holly Victoria 17 November 2017 (has links)
This dissertation establishes a mathematical framework for analyzing a viscoelastic model that displays thixotropic behavior as a model parameter gets very small. The model is the partially extending strand convection model, originally derived for polymeric melts that have long strands that get in the way of fully retracting. A Newtonian solvent is added. The uniaxial and equibiaxial extensional flows are studied using combined asymptotic analysis and numerical simulations. An initial value problem with a prescribed elongational stress is solved in the limit of large relaxation time. This gives rise to multiple time scales. If the initial stress is less than a critical value, the initial elastic elongation is followed by settling to an unyielded state at the slow time scale. If the initial stress is larger than the critical value, then yielding ensues. The extensional flows produce delayed yielding and hysteresis, both associated with thixotropy in complex fluids. / Ph. D.
36

Geometric Properties of Orbits of Integral Operators

Beil, Joel S. 08 April 2010 (has links)
No description available.
37

Homogénéisation des interfaces ondulées dans les composites / Homogenization of rough interfaces in composites

Le, Huy Toan 15 March 2011 (has links)
Les surfaces et interfaces rugueuses sont rencontrées dans de nombreuses situations en mécanique et physique des solides. En particulier, une surface ou interface considérée comme lisse à une échelle donnée se révèle souvent rugueuse à autre échelle plus petite. Ce travail étudie les interfaces planes et courbées dont la rugosité peut être raisonnablement décrite comme des ondulations périodiques. Il a pour objectif de modéliser ces interfaces dans des composites et de déterminer leurs effets sur les propriétés effectives élastiques et conductrices des composites concernés. L'approche élaborée pour atteindre cet objectif consiste d'abord à utiliser l'analyse asymptotique pour modéliser une zone d'interface rugueuse comme une interphase hétérogène uniquement suivant son épaisseur et ensuite à faire appel à des schémas micromécaniques pour quantifier les influences de cette interphase sur les propriétés effectives. Ce travail considère trois types de composites dans lesquels de s interfaces périodiquement ondulées sont présentes : composites stratifiés, fibreux et à inclusions. Les résultats obtenus pour ces composites contribuent au développement de la micromécanique et apportent des solutions à des problèmes d'intérêt pratique rencontrés en physique et mécanique des matériaux hétérogènes / Rough surfaces and interfaces are encountered in many situations in mechanics and physics of solids. In particular, a surface or interface considered smooth at a given scale turns out often to be rough at another smaller scale. This work studies the flat and curved interfaces whose roughness can be reasonably described as periodic undulations. It aims to model these interfaces in composites and to determine their effects on the effective elastic and conductive properties of the composites in question. The approach elaborated to achieve this objective consists first in using asymptotic analysis to model a zone of rough interface as an interphase being heterogeneous only along its thickness direction and then in resorting to some micromechanical schemes to quantify the influences of the interphase on the effective properties. This work considers three types of composites in which periodically corrugated interfaces are present: laminated, fibrous and particulate composites. The results obtained for these composites contribute to the development of micromechanics and provide solutions to problems of practical interest encountered in physics and mechanics of heterogeneous materials
38

Analysis of complete contacts subject to fatigue

Flicek, Robert C. January 2015 (has links)
Engineering assemblies are very frequently subject to fretting fatigue, which is a damage process that results when very small slip displacements arise at nominally stationary frictional interfaces. Fretting accelerates the initiation and early propagation of fatigue cracks, thereby causing significant reductions in the fatigue performance of many critical engineering components. A majority of the previous research on fretting fatigue has focused on incomplete (i.e. smooth-edged) contacts, while complete (i.e. sharp-edged) contacts have received less attention. The aim of this thesis is to contribute to the theoretical understanding of complete contacts, especially when they are subject to fatigue conditions. This problem is addressed in two separate ways. First, because fretting failures almost invariably initiate from the edge of contact, a detailed understanding of the conditions in this region should enable more accurate assessments of fatigue performance to be made. Thus, an asymptotic analysis is presented, which provides an accurate description of the contact edge under many conditions. This is done by using the elasticity solution for a semi-infinite notch to represent the state of stress near the contact edge in an asymptotic sense. Attention is then placed on the fact that cyclically loaded frictional contacts tend toward a steady-state response in which less frictional slip (and energy dissipation) occurs than in the first few load cycles. To investigate this effect, a numerical sub-structuring procedure is described, which significantly reduces the number of degrees of freedom in finite element models of frictional contact. This reduced model is then used to calculate the shakedown limit, i.e. the amplitude of cyclic load above which frictional slip is guaranteed to persist in the steady state. The sensitivity of the steady-state solution to the initial residual displacement state is then investigated, and it is shown that initial conditions can have a large influence on the steady-state behaviour of complete contacts.
39

Elastodynamic homogenization of periodic media / Homogénéisation élastodynamique de milieux périodiques

Nassar, Hussein 01 October 2015 (has links)
La problématique récente de la conception de métamatériaux a renouvelé l'intérêt dans les théories de l'homogénéisation en régime dynamique. En particulier, la théorie de l'homogénéisation élastodynamique initiée par J.R. Willis a reçu une attention particulière suite à des travaux sur l'invisibilité élastique. La présente thèse reformule la théorie de Willis dans le cas des milieux périodiques, examine ses implications et évalue sa pertinence physique au sens de quelques ``conditions d'homogénéisabilité'' qui sont suggérées. En se basant sur les résultats de cette première partie, des développements asymptotiques approximatifs de la théorie de Willis sont explorés en relation avec les théories à gradient. Une condition nécessaire de convergence montre alors que toutes les branches optiques de la courbe de dispersion sont omises quand des développements asymptotiques de Taylor de basse fréquence et de longue longueur d'onde sont déployés. Enfin, une nouvelle théorie de l'homogénéisation est proposée. On montre qu'elle généralise la théorie de Willis et qu'elle l'améliore en moyenne fréquence de sorte qu'on retrouve certaines branches optiques omises auparavant. On montre également que le milieu homogène effectif défini par la nouvelle théorie est un milieu généralisé dont les champs satisfont une version élastodynamique généralisée du lemme de Hill-Mandel / The recent issue of metamaterials design has renewed the interest in homogenization theories under dynamic loadings. In particular, the elastodynamic homogenization theory initiated by J.R. Willis has gained special attention while studying elastic cloaking. The present thesis reformulates Willis theory for periodic media, investigates its outcome and assesses its physical suitability in the sense of a few suggested ``homogenizability conditions''. Based on the results of this first part, approximate asymptotic expansions of Willis theory are explored in connection with strain-gradient media. A necessary convergence condition then shows that all optical dispersion branches are lost when long-wavelength low-frequency Taylor asymptotic expansions are carried out. Finally, a new homogenization theory is proposed to generalize Willis theory and improve it at finite frequencies in such a way that selected optical branches, formerly lost, are recovered. It is also proven that the outcome of the new theory is an effective homogeneous generalized continuum satisfying a generalized elastodynamic version of Hill-Mandel lemma
40

Estimation a posteriori et méthode de décomposition de domaine / A posteriori estimation method and domain decomposition

Kamel, Slimani 27 March 2014 (has links)
Cette thèse est consacrée à l’analyse numérique en particulier aux estimations a posteriori de l’erreur dans la méthode de décomposition asymptotique partielle de domaine. Il s’agit de problèmes au dérivées partielles elliptiques linéaires et semi- linéaires avec une source qui ne dépend que d’une seule variable dans une partie du domaine. La MAPDD - Méthod of Asymptotic Partial Domain Decomposition - est une méthode inventée par Grigori . Panasenko et développée dans les références [G.P98, G.P99]. L’aidée principale est de remplacer un problème 3D ou 2D par un problème hybride combinée 3D−1D, 3D−2D ou 2D−1D, ou la dimension du problème diminue dans une partie du domaine. Des méthodes de calcul efficaces de solution pour le problème hybride en résultant sont récemment devenues disponibles pour plusieurs systèmes (linéaires/non linéaires, fluide/solide, etc.) ainsi chaque sous-problème est calcul ́ avec un code indépendant de type boîte noire [PBB10, JLB09, JLB11]. La position de la jonction entre les problèmes hétérogènes est asymptotiquement estimée dans les travaux de G. Panasenko [G.P98]. La méthode MAPDD a été conçu pour traiter des problèmes ou un petit paramètre apparaître, et fournit un développement en série de la solution avec des solutions de problèmes simplifiées à l’égard de ce petit paramètre. Dans le problème considéré dans les chapitres 3 et 4, aucun petit paramètre n’existe, mais en raison de considérations géométriques concernant le domaine on suppose que la solution ne diffère pas significativement d’une fonction qui dépend seulement d’une variable dans une partie du domaine Ω. La théorie de MAPDD n’est pas adaptée pour une telle situation, et si cette théorie est appliquée formellement elle ne fournit pas d’estimation d’erreur. / This thesis is devoted to numerical analysis in particular a postoriori estimates of the error in the method of asymptotic partial domain decomposition. There are problems in linear elliptic partial and semi-linear with a source which depends only of one variable in a portion of domain. Method of Asymptotic Partial Decomposition of a Domain (MAPDD) originates from the works of Grigori.Panasonko [12, 13]. The idea is to replace an original 3D or 2D problem by a hybrid one 3D − 1D; or 2D − 1D, where the dimension of the problem decreases in part of domain. Effective solution methods for the resulting hybrid problem have recently become available for several systems (linear/nonlinear, fluid/solid, etc.) which allow for each subproblem to be computed with an independent black-box code [21, 17, 18]. The location of the junction between the heterogeneous problems is asymptotically estimated in the works of Panasenko [12]. MAPDD has been designed for handling problems where a small parameter appears, and provides a series expansion of the solution with solutions of simplified problems with respect to this small parameter. In the problem considered in chapter 3 and 4, no small parameter exists, but due to geometrical considerations concerning the domain Ω it is assumed that the solution does not differ very much from a function which depends only on one variable in a part of the domain. The MAPDD theory is not suited for such a context, but if this theory is applied formally it does not provide any error estimate. The a posteriori error estimate proved in this chapter 3 and 4, is able to measure the discrepancy between the exact solution and the hybrid solution which corresponds to the zero-order term in the series expansion with respect to a small parameter when it exists. Numerically, independently of the existence of an asymptotical estimate of the location of the junction, it is essential to detect with accuracy the location of the junction. Let us also mention the interest of locating with accuracy the position of the junction in blood flows simulations [23]. Here in this chapter 3,4 the method proposed is to determine the location of the junction (i.e. the location of the boundary Γ in the example treated) by using optimization techniques. First it is shown that MAPDD can be expressed with a mixed domain decomposition formulation (as in [22]) in two different ways. Then it is proposed to use an a posteriori error estimate for locating the best position of the junction. A posteriori error estimates have been extensively used in optimization problems, the reader is referred to, e.g. [1, 11].

Page generated in 0.0725 seconds