• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 12
  • 10
  • Tagged with
  • 48
  • 28
  • 26
  • 25
  • 22
  • 19
  • 19
  • 18
  • 18
  • 17
  • 17
  • 14
  • 13
  • 13
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Caractérisation des atmosphères d'exoplanètes dans le contexte de leur formation et évolution

Piaulet, Caroline 20 June 2024 (has links)
Il y a près de trente ans, la première exoplanète a été détectée autour d'une étoile autre que le Soleil. Bien que plus de cinq mille exoplanètes aient été confirmées à ce jour, nous n’avons étudié l’atmosphère que de quelques dizaines d’entre elles et, dans la plupart des cas, n’avons eu accès qu’à une seule molécule. Nous commençons tout juste à découvrir la diversité des atmosphères exoplanétaires, et entrons dans une ère de caractérisation détaillée grâce à une nouvelle génération de télescopes, qui ouvre de nouvelles perspectives sur leur évolution et les processus chimiques et dynamiques qui les régissent. Au cours des dernières années, j'ai contribué à des études sur des exoplanètes allant de petites planètes de type terrestre jusqu’à des géantes gazeuses aux densités extrêmement faibles. Cette thèse contient quatre de ces études, qui exploitent une variété de méthodes d'observation et de modélisation. Dans le premier article, nous nous sommes penchés sur WASP-107 b, une planète de la taille de Jupiter avec une densité étonnamment faible, l'une de quelques énigmatiques ``super-puffs''. Nous avons obtenu une nouvelle mesure de la masse de cette planète en utilisant les données récoltées par une campagne de vitesses radiales sur quatre ans, ce qui était essentiel à l’étude de son atmosphère. Nous avons également détecté un compagnon planétaire lointain, WASP-107 c. Notre nouvelle mesure de la masse est encore plus faible que les estimations précédentes et, combinée aux contraintes existantes sur la composition de l'atmosphère obtenues à l'aide de spectroscopie de transmission, celle-ci semblait indiquer une masse très faible pour le noyau planétaire, remettant en question les modèles existants de formation des planètes géantes. Nous avons proposé de nouveaux scénarios dans lesquels de telles planètes géantes peuvent malgré tout accumuler leur envelope de gaz sur des noyaux de faible masse, à de grandes distances de leur étoile hôte. Dans la deuxième étude, nous nous sommes tournés vers un type de planète très différent avec Kepler-138 d, une petite planète de 1,5 rayons terrestres. Nous avons analysé les observations de transit obtenues avec les télescopes spatiaux Hubble et Spitzer et constaté que l'interaction gravitationnelle entre les trois planètes connues du système, Kepler-138 b, c et d, ne peut expliquer les variations des moments de transit de Kepler-138 d, nécessitant la présence d'une quatrième planète. Nous obtenons de nouvelles mesures des masses de Kepler-138 c et d, qui révèlent que leurs densités sont trop faibles pour être compatibles avec la composition rocheuse communément attendue pour des planètes de cette taille. En combinant la modélisation de la structure planétaire avec des calculs d'échappement atmosphérique, nous démontrons que ces planètes ont probablement des intérieurs supercritiques et des atmosphères composées d'eau ou d'autres espèces chimiques ayant une densité similairement élevée. La planète faisant l’objet de notre troisième étude, GJ 9827 d, mesure à peine 2 rayons terrestres. Comme Kepler-138 d, sa densité est intermédiaire entre les planètes plus grandes qui ont des enveloppes dominées par l'hydrogène, et les plus petites planètes rocheuses, ce qui suggère une composition atmosphérique potentiellement enrichie en métaux. Nous exploitons les observations de transit de l'atmosphère de GJ 9827 d avec JWST NIRISS/SOSS pour déterminer que sa composition atmosphérique est fortement enrichie en molécules au poids moléculaire élevé, y compris de grandes quantités d'eau, et est pauvre en hydrogène par rapport aux planètes légèrement plus grandes. Nous proposons des diagnostics observationnels pour déterminer l'origine de cet enrichissement en métaux, qui pourrait provenir de grandes quantités initiales de glaces accrétées, des interactions géochimiques entre l'atmosphère et l'océan de magma sous-jacent, ou de la perte progressive des constituants atmosphériques les plus légers au fil du temps. Le quatrième et dernier travail présenté dans cette thèse a pour objet une petite exoplanète rocheuse tempérée (température d’environ 12 degrés Celsius) et mesurant 0,8 rayon terrestre, TRAPPIST-1 d. Nous observons son spectre de transmission en utilisant JWST NIRSpec/PRISM, et ne détectons aucune signature atmosphérique planétaire, malgré notre haute sensibilité même aux atmosphères secondaires fines et de poids moléculaire élevé similaires aux planètes rocheuses du système solaire. Nous proposons que TRAPPIST-1 d a soit été dépouillée de son atmosphère par l'irradiation intense qu'elle reçoit de son étoile, soit qu'elle présente des signatures d'absorption très faibles en transmission, en raison d'une atmosphère de poids moléculaire élevé avec une pression de surface extrêmement faible, ou de la présence de nuages à haute altitude qui masquent les signatures d'une atmosphère plus profonde. Ces études ne représentent qu'un modeste sous-ensemble de la richesse des informations qui peuvent être obtenues sur la nature des exoplanètes et de leurs atmosphères grâce à des études observationnelles détaillées, soutenues par des approches de modélisation rigoureuses. De nouveaux télescopes tels que le JWST permettent maintenant la caractérisation atmosphérique de plus en plus précise d'un échantillon croissant d'exoplanètes. De telles observations nous permettront bientôt de construire un échantillon statistique d'atmosphères d'exoplanètes qui défiera sans aucun doute davantage nos modèles et hypothèses, et nous rapprochera de la compréhension des facteurs sous-jacents à leur diversité. / Exoplanet discoveries are closing in on the third decade since the first detection of a planet orbiting a star other than the Sun. While over five thousand exoplanets have been confirmed to date, only a few dozen of them have had their atmospheres studied, with, for most of them, constraints on only one molecular species. We are only now starting to uncover the diversity of exoplanet atmospheres, entering an era of detailed exoplanet atmosphere characterization and opening new windows into their evolution, chemistry, and dynamics. Over the past few years, I have contributed to studies of exoplanets ranging from small terrestrial worlds to the puffiest gas giants. This thesis contains four of these studies, which leverage a variety of observational methods and modeling perspectives. In the first work, we study WASP-107 b, a Jupiter-size planet with a stunningly low density, one of a few puzzling ``super-puffs''. We provide a new measurement of the planet's mass by leveraging a four-year radial-velocity campaign, which was essential to enable further atmosphere characterization. Our observations also enable us to detect a planetary companion, WASP-107c, on a wide orbit. Our new mass is even lower than previous estimates and, combined with the existing constraints on the atmosphere's metal content from transmission spectroscopy, seems to point to a very low core mass that challenges current models of giant planet formation. We propose a new channel of fast giant planet formation that would allow for such ``super-puffs'' to accrete their gas onto low-mass cores, at large distances from their host star. In the second study, we turn to a very different type of planet with Kepler-138 d, a small 1.5 Earth-radii planet, where we analyze transit observations obtained with the Hubble and Spitzer space telescopes. We find that the gravitational interaction between the three known planets in the system, Kepler-138 b, c, and d, cannot explain the variations in the transit times of Kepler-138 d, which require the presence of a fourth planet. We revise our estimates of the masses and compositions of Kepler-138 c and d, which reveal that their densities are too low to be compatible with the rocky compositions commonly assumed for planets in that size range. By combining planetary structure modeling with atmospheric escape calculations, we demonstrate that these planets are likely candidate ``water worlds'', with supercritical interiors and steam atmospheres. The third study focuses on a 2-Earth-radii planet, GJ 9827 d. Similarly to Kepler-138 d, GJ 9827 d has an intermediate density between larger planets with hydrogen-dominated envelopes, and smaller rocky planets, which suggests a potentially metal-enriched atmosphere composition. We leverage transit observations of GJ 9827 d's atmosphere with JWST NIRISS/SOSS to infer that its atmospheric composition is highly enriched in high mean molecular weight volatiles, including large amounts of water, and is hydrogen-poor compared to slightly larger planets. We propose observational diagnostics to further constrain the origin of this metal enrichment, which could originate from large initial amounts of accreted volatiles, magma ocean-atmosphere geochemistry, or gradual loss of lighter atmosphere constituents over time. The fourth and final work presented in this thesis focuses on a small temperate 0.8-Earth-radius rocky exoplanet, TRAPPIST-1 d. We observe its transmission spectrum using JWST NIRSpec/PRISM, and do not detect any planetary atmosphere signature, despite our high sensitivity to even thin, high mean molecular weight secondary atmospheres. We propose that TRAPPIST-1 d has either been stripped of its atmosphere by the intense irradiation it receives from its host star, or that it has very small spectral features from a high mean molecular weight atmosphere with an extremely low surface pressure, or with high-altitude clouds obscuring the signatures from a deeper atmosphere. These studies highlight only a modest subset of the breadth of information that can be uncovered by detailed observational studies supported by rigorous modeling approaches, revealing the nature of exoplanets and their atmospheres. With more and more precise atmospheric characterization of a growing sample of exoplanets enabled by new telescopes such as the JWST, we can now hope to build a statistical sample of well-characterized exoplanet atmospheres that will undoubtedly further challenge our models and assumptions, and bring us one step closer to understanding the factors underlying their diversity.
42

Probing the elemental composition of gas giant exoplanets in the context of their formation and evolution

Pelletier, Stefan 08 1900 (has links)
Relier la composition atmosphérique des planètes géantes aux conditions de formation dans le disque protoplanétaire est un objectif de longue date de la communauté scientifique planétaire. C’est d’ailleurs un des facteurs qui a motivé l’envoi de satellites spatiaux vers les planètes géantes du système solaire externe, pour tenter de déterminer leur composition atmosphérique. Mais si je vous disais que certaines choses sont plus faciles à mesurer sur des exoplanètes situées à des centaines d’années-lumière de nous que sur Jupiter ou Saturne dans notre propre arrière-cour cosmique, me croiriez-vous ? Dans cette thèse, nous utilisons la spectroscopie à haute résolution avec différents instruments pour caractériser les atmo- sphères des exoplanètes géantes chaudes et en tirer toute information possible sur ce que leur composition présente implique vis-à-vis de leur historique de formation et d’évolution. Dans une première étude, nous avons utilisé le spectrographe à haute résolution dans le proche infrarouge SPIRou pour observer l’émission thermique de la Jupiter chaude non transitante τ Boo b. Nos résultats ont révélé la présence d’une forte absorption de CO, mais une absence nette de signal du H2O. Grâce à un nouveau cadre d’analyse, nous avons pu déduire de manière robuste la forme de la structure verticale de température du côté jour de τ Boo b et contraindre les abondances de toutes les principales molécules contenant de l’oxygène et du carbone dans son atmosphère. Ceci nous a permis de dériver une abondance de C/H en phase gazeuse qui est élevée par rapport à celle du Soleil, comparable au niveau d’enrichissement de Jupiter. Nous avons également exploré l’hypothèse que la composition atmosphérique de τ Boo b pourrait être le résultat de son historique de formation, si elle s’est formée près de la ligne de glace du CO en accrétant du gaz enrichi. Dans un second projet, nous avons utilisé le spectrographe optique haute résolution MAROON-X pour observer l’exoplanète géante ultra-chaude WASP-76b alors qu’elle pas- sait devant son étoile hôte. Ces données nous ont permis de détecter 16 espèces dans son atmosphère, y compris une première détection sans ambiguïté de la molécule d’oxyde de vanadium, considérée comme le moteur des inversions thermiques. En mesurant l’abondance relative des espèces observées, nous avons pu découvrir une transition abrupte dans la tem- pérature de condensation : où les éléments étaient soit dans des proportions proches de celles du soleil par rapport au fer, soit appauvris par des ordres de grandeur s’ils avaient des tem- pératures de condensation supérieures à 1550K. Nos résultats ont également montré que presque toutes les espèces détectées ont des signaux d’absorption asymétriques, indiquant que WASP-76b a probablement un hémisphère plus froid ou plus nuageux que l’autre. Enfin, dans une troisième étude, nous avons observé l’émission thermique du côté jour de la Jupiter ultra-chaude WASP-121b en utilisant les spectrographes à haute résolution CRIRES+ et ESPRESSO. Avec cet ensemble de données combinées couvrant les longueurs d’onde optiques et proche infrarouge, nous avons pu détecter des signaux d’émission de CO, H2O, Fe, et Ni, indiquant que l’atmosphère de WASP-121b a une inversion thermique. Grâce à une analyse de récupération, nous avons ensuite mesuré simultanément et avec précision les abondances de C, O, Fe, et Ni, constatant que les éléments C et O, plus volatils, sont plus abondants que le Fe et Ni réfractaire. De cette composition atmosphérique déduite, nous avons pu conclure que WASP-121b a probablement accrété son enveloppe à une séparation orbitale beaucoup plus grande que sa position actuelle, à partir d’un matériau riche en glace. Avec ces travaux, nous avons démontré la puissance des instruments et des techniques dis- ponibles aujourd’hui pour extraire beaucoup d’informations sur les atmosphères des Jupiters chaudes et ultra-chaudes. En particulier, la capacité de mesurer leur composition avec une grande précision nous a permis d’explorer des liens potentiels avec la formation, ce qui peut nous donner un aperçu des mécanismes physiques qui permettent la formation des planètes géantes. Cependant, il reste encore beaucoup à faire et nous espérons continuer à repousser les limites de ce que nous pouvons réaliser avec la spectroscopie à haute résolution, ainsi qu’à exploiter les synergies avec les observations complémentaires qui peuvent être obtenues avec des télescopes spatiaux tels que le JWST. / Relating the atmospheric composition of giant planets to formation conditions in the protoplanetary disc is a longstanding goal of the planetary science community. Indeed this has been one of the motivating factors for sending spacecrafts to the giant planets in the outer Solar System and try to determine their atmospheric compositions. But what if I told you that certain things are easier for us to measure on exoplanets hundreds of light years away from us than they are for Jupiter or Saturn in our own cosmic backyard – would you believe me? In this thesis we use high-resolution spectroscopy with different instruments to characterize the atmospheres of hot giant exoplanets and tease out any information we can about what their present-day compositions entail about their formation and evolution histories. In a first work, we used the high-resolution SPIRou near-infrared spectrograph to observe the thermal emission of the non-transiting hot Jupiter τ Boo b. Our results showed the presence of strong CO absorption, but a distinct lack of an H2O signal. With a newly developed analysis framework, we were able to robustly infer the shape of the dayside vertical temperature structure of τ Boo b and constrain the abundances of all the major oxygen- and carbon-bearing molecules in its atmosphere. This allowed us to derive a gas-phase C/H abundance that is elevated with respect to that of the Sun, comparable to Jupiter’s enrichment levels. We further hypothesized that the atmospheric composition of τ Boo b may be the result of its formation history, if it formed near the CO snowline from enriched gas due to pebble drift. In a second project, we used the high-resolution MAROON-X optical spectrograph to observe the ultra-hot giant exoplanet WASP-76b as it passed in front of its host star. From this data, we were able to detect 16 species in its atmosphere, including a first unambiguous detection of the vanadium oxide molecule thought to be a driver for thermal inversions. By measuring the relative abundances of the species observed, we were further able to discover a sharp transition in condensation temperature wherein elements were either in near-solar proportions relative to iron, or depleted by orders of magnitudes if they had condensation temperatures above 1,550 K. Our findings also showed that nearly all species detected have asymmetric absorption signals, indicating that WASP-76b likely has one hemisphere that is either colder or cloudier than the other. Finally, in a third study we observed the dayside thermal emission of the ultra-hot Jupiter WASP-121b using both the CRIRES+ and ESPRESSO high-resolution spectrographs. With this combined data set covering both optical and near-infrared wavelengths, we were able to detect CO, H2O, Fe, and Ni emission signals, indicating that the atmosphere of WASP-121b has a thermal inversion. With a retrieval analysis, we then simultaneously and precisely measured abundances for C, O, Fe, and Ni finding that the more volatile C and O elements are more abundant than refractory Fe and Ni. From this inferred atmospheric composition, we were able to conclude that WASP-121b likely accreted its envelope at a much larger orbital separation than its present-day location, from material that was ice-rich. With these works, we have demonstrated the power of now-available instrumentation and techniques to extract a wealth of information about the atmospheres of hot and ultra-hot Jupiters. In particular the ability to measure their compositions to high degrees of precision has allowed us to explore potential links to formation that may give us insights into the physical mechanisms that allow for giant planets to form. However, still much work remains, and hopefully we will continue to push the boundaries of what we can achieve with high- resolution spectroscopy, as well as leverage synergies with complementary observations that can be obtained with space-based telescopes such as the JWST.
43

Space and time characterization of laser-induced plasmas for applications in chemical analysis and thin film deposition / Caractérisation spatio-temporelle de plasmas induits par laser pour des applications à la chimie analytique et au dépôt de couches minces

Dawood, Mahmoud 12 1900 (has links)
Après des décennies de développement, l'ablation laser est devenue une technique importante pour un grand nombre d'applications telles que le dépôt de couches minces, la synthèse de nanoparticules, le micro-usinage, l’analyse chimique, etc. Des études expérimentales ainsi que théoriques ont été menées pour comprendre les mécanismes physiques fondamentaux mis en jeu pendant l'ablation et pour déterminer l’effet de la longueur d'onde, de la durée d'impulsion, de la nature de gaz ambiant et du matériau de la cible. La présente thèse décrit et examine l'importance relative des mécanismes physiques qui influencent les caractéristiques des plasmas d’aluminium induits par laser. Le cadre général de cette recherche forme une étude approfondie de l'interaction entre la dynamique de la plume-plasma et l’atmosphère gazeuse dans laquelle elle se développe. Ceci a été réalisé par imagerie résolue temporellement et spatialement de la plume du plasma en termes d'intensité spectrale, de densité électronique et de température d'excitation dans différentes atmosphères de gaz inertes tel que l’Ar et l’He et réactifs tel que le N2 et ce à des pressions s’étendant de 10‾7 Torr (vide) jusqu’à 760 Torr (pression atmosphérique). Nos résultats montrent que l'intensité d'émission de plasma dépend généralement de la nature de gaz et qu’elle est fortement affectée par sa pression. En outre, pour un délai temporel donné par rapport à l'impulsion laser, la densité électronique ainsi que la température augmentent avec la pression de gaz, ce qui peut être attribué au confinement inertiel du plasma. De plus, on observe que la densité électronique est maximale à proximité de la surface de la cible où le laser est focalisé et qu’elle diminue en s’éloignant (axialement et radialement) de cette position. Malgré la variation axiale importante de la température le long du plasma, on trouve que sa variation radiale est négligeable. La densité électronique et la température ont été trouvées maximales lorsque le gaz est de l’argon et minimales pour l’hélium, tandis que les valeurs sont intermédiaires dans le cas de l’azote. Ceci tient surtout aux propriétés physiques et chimiques du gaz telles que la masse des espèces, leur énergie d'excitation et d'ionisation, la conductivité thermique et la réactivité chimique. L'expansion de la plume du plasma a été étudiée par imagerie résolue spatio-temporellement. Les résultats montrent que la nature de gaz n’affecte pas la dynamique de la plume pour des pressions inférieures à 20 Torr et pour un délai temporel inférieur à 200 ns. Cependant, pour des pressions supérieures à 20 Torr, l'effet de la nature du gaz devient important et la plume la plus courte est obtenue lorsque la masse des espèces du gaz est élevée et lorsque sa conductivité thermique est relativement faible. Ces résultats sont confirmés par la mesure de temps de vol de l’ion Al+ émettant à 281,6 nm. D’autre part, on trouve que la vitesse de propagation des ions d’aluminium est bien définie juste après l’ablation et près de la surface de la cible. Toutefois, pour un délai temporel important, les ions, en traversant la plume, se thermalisent grâce aux collisions avec les espèces du plasma et du gaz. / After decades of development, laser ablation has become an important technique for a large number of applications such as thin film deposition, nanoparticle synthesis, micromachining, chemical analysis, etc. Experimental and theoretical studies have been conducted to understand the physical mechanisms of the laser ablation processes and their dependence on the laser wavelength, pulse duration, ambient gas and target material. The present dissertation describes and investigates the relative importance of the physical mechanisms influencing the characteristics of aluminum laser-induced plasmas. The general scope of this research encompasses a thorough study of the interplay between the plasma plume dynamics and the ambient gas in which they expand. This is achieved by imaging and analyzing the temporal and spatial evolution the plume in terms of spectral intensity, electron density and excitation temperature within various environments extending from vacuum (10‾7 Torr) to atmospheric pressure (760 Torr), in an inert gas like Ar and He, as well as in a chemically active gas like N2. Our results show that the plasma emission intensity generally differs with the nature of the ambient gas and it is strongly affected by its pressure. In addition, for a given time delay after the laser pulse, both electron density and plasma temperature increase with the ambient gas pressure, which is attributed to plasma confinement. Moreover, the highest electron density is observed close to the target surface, where the laser is focused and it decreases by moving away (radially and axially) from this position. In contrast with the significant axial variation of plasma temperature, there is no large variation in the radial direction. Furthermore, argon was found to produce the highest plasma density and temperature, and helium the lowest, while nitrogen yields intermediate values. This is mainly due to their physical and chemical properties such as the mass, the excitation and ionization levels, the thermal conductivity and the chemical reactivity. The expansion of the plasma plume is studied by time- and space-resolved imaging. The results show that the ambient gas does not appreciably affect plume dynamics as long as the gas pressure remains below 20 Torr and the time delay below 200 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important and the shorter plasma plume length corresponds to the highest gas mass species and the lowest thermal conductivity. These results are confirmed by Time-Of-Flight (TOF) measurements of Al+ line emitted at 281.6 nm. Moreover, the velocity of aluminum ions is well defined at the earliest time and close to the target surface. However, at later times, the ions travel through the plume and become thermalized through collisions with plasma species and with surrounding ambient gas.
44

Modèles d'atmosphères hors-ETL avec métaux : applications aux étoiles sous-naines chaudes

Latour, Marilyn 04 1900 (has links)
No description available.
45

Modélisation des effets de haute densité à la photosphère des naines blanches froides

Blouin, Simon 04 1900 (has links)
No description available.
46

Towards understanding the nature and diversity of small planets in the universe : discovery and initial characterization of Wolf 503 b and LP 791-18 d

Peterson, Merrin 05 1900 (has links)
Avec la découverte de milliers de nouvelles planètes au cours des vingt dernières années, une nouvelle population complexe de planètes plus petites que Neptune et plus grandes que la Terre a été découverte. Ces planètes se divisent en deux groupes : les plus grandes sub-Neptunes avec des atmosphères étendues dominées par H, et les plus petites super-Terres qui ont tout au plus des atmosphères minces. Cette division peut être expliquée par une variété de mécanismes, y compris la photoévaporation, la perte de masse alimentée par le noyau, et la formation de gaz pauvres et vides : la population de petites planètes est probablement façonnée par une combinaison de ces mécanismes qui peut dépendre du type stellaire. Dans ce travail, nous décrivons la découverte de deux nouvelles planètes qui sont bien adaptées à l'étude de la nature de la population des petites planètes : Wolf 503 b et LP 791-18 d. Wolf 503 b est une planète de \(2.03^{+0.08}_{-0.07} R_{\oplus}\) orbitant autour de l'étoile brillante (\(J=8.32\) mag), proche (\(D=44.5\) pc) à mouvement propre élevé K3.5V Wolf 503 (EPIC 212779563). Nous confirmons que la signature du transit K2 est planétaire en utilisant à la fois des images d'archives et des images d'optique adaptative à haut contraste de l'observatoire Palomar. Son rayon place Wolf 503b directement entre les populations de super-Terre et de sub-Neptune, un rayon auquel les planètes sont rarement trouvées et la composition de masse attendue est ambiguë, et la luminosité de l'étoile hôte fait de Wolf 503b une cible de choix pour le suivi des vitesses radiales et la spectroscopie de transit. La deuxième planète que nous présentons est une planète de taille terrestre orbitant autour de la naine froide M6 LP 791-18. La nouvelle planète d rejoint un système bien aligné avec au moins deux autres planètes, la plus externe étant une sous-Neptune, offrant une occasion unique à ce jour d'étudier un système avec une planète de taille terrestre tempérée et une sous-Neptune qui a conservé son enveloppe gazeuse ou volatile. La découverte de LP 791-18d permet de mesurer la masse du système grâce aux variations du temps de transit, et nous trouvons une masse de \( {9.3_{-1.4}^{+1.5}\,M_\oplus}\) pour la sub-Neptune LP 791-18c et une masse de \( {0.8_{-0.4}^{+0.5}\,M_\oplus}\) pour l'exo-Terre LP 791-18d (\({<2.3 M_{\oplus}}\) à 3\( {\sigma}\)). La planète est également soumise à un fort réchauffement continu par les marées, ce qui peut entraîner une activité géologique et un dégazage volcanique. Pour l'avenir, LP 791-18d et Wolf 503b offrent des opportunités uniques d'étudier les origines et la conservation des atmosphères des petites planètes. / With the discovery of thousands of new planets in the past twenty years, a new and complex population of planets has been discovered which are smaller than Neptune and larger than the Earth. These planets are split into two groups: the larger sub-Neptunes with extended H-dominated atmospheres, and the smaller super-Earths which have at most thin atmospheres. This division can be explained by a variety of mechanisms, including photoevaporation, core-powered mass-loss, and gas-poor and gas-empty formation: the small-planet population is likely shaped by a combination of these which may depend on stellar type. In this work we describe the discovery of two new planets which are well-suited to investigating the nature of the small planet population: Wolf 503b and LP 791-18d. Wolf 503 b is a \(2.03^{+0.08}_{-0.07} R_{\oplus}\) planet orbiting the bright (\(J=8.32\) mag), nearby (\(D=44.5\) pc) high proper motion K3.5V star Wolf 503 (EPIC 212779563). We confirm that the K2 transit signature is planetary using both archival images and high-contrast adaptive optics images from the Palomar observatory. Its radius places Wolf 503 b directly between the populations of super-Earths and sub-Neptunes, a radius at which planets are rarely found and the expected bulk composition is ambiguous, and the brightness of the host star makes Wolf 503b a prime target for radial velocity follow-up and transit spectroscopy. The second planet we introduce is an Earth-sized planet orbiting the cool M6 dwarf LP 791-18. The new planet d joins a well-aligned system with at least two more planets, the outermost being a sub-Neptune, providing a to-date unique opportunity to investigate a system with a temperate Earth-sized planet and a sub-Neptune that retained its gas or volatile envelope. The discovery of LP 791-18d makes the system amenable to mass measurements via transit timing variations, and we find a mass of \( {9.3_{-1.4}^{+1.5}\,M_\oplus}\) for the sub-Neptune LP 791-18c and a mass of \( {0.8_{-0.4}^{+0.5}\,M_\oplus}\) for the exo-Earth LP 791-18d (\( {<2.3 M_{\oplus}}\) at 3\( {\sigma}\)). The planet is also subject to strong continued tidal heating, which may result in geological activity and volcanic outgassing. Looking forward, LP 791-18d and Wolf 503b offer unique opportunities to study the origins and retention of small-planet atmospheres.
47

Caractérisation et modélisation de l’évolution spectrale des étoiles naines blanches chaudes

Bédard, Antoine 07 1900 (has links)
Cette thèse présente une étude empirique et théorique approfondie de l'évolution spectrale des étoiles naines blanches, avec un accent particulier sur les naines blanches chaudes. La composition atmosphérique (et donc l'apparence spectrale) de ces cadavres stellaires peut changer drastiquement avec le temps à mesure qu'ils se refroidissent. Ce phénomène est généralement interprété comme le résultat d'une compétition entre divers mécanismes de transport des éléments dans l'enveloppe stellaire (tels que la diffusion, la convection, les vents et l'accrétion), mais demeure mal compris à plusieurs égards. Il est impératif de remédier à cette situation pour être en mesure d'exploiter le potentiel immense des naines blanches pour notre compréhension du passé de la Galaxie. Pour mieux caractériser l'incidence de l'évolution spectrale, nous effectuons tout d'abord une analyse spectroscopique exhaustive de près de 2000 naines blanches chaudes (Teff > 30,000 K) observées par le relevé SDSS. Nous déterminons les propriétés atmosphériques (notamment la température effective et la composition de surface) de ces objets à l'aide d'un nouvel ensemble de modèles d'atmosphère calculé spécifiquement à cet effet. En examinant la fréquence relative des étoiles riches en hydrogène et riches en hélium en fonction de la température, nous obtenons pour la première fois un portrait empirique détaillé de l'évolution spectrale des naines blanches chaudes. Plus spécifiquement, nous déduisons (1) qu'environ une étoile sur quatre arrive sur la séquence de refroidissement avec une atmosphère d'hélium, et (2) qu'environ deux tiers de ces objets développent ultérieurement une atmosphère d'hydrogène. En outre, nous accordons une attention particulière aux naines blanches hybrides (qui montrent à la fois des traces d'hydrogène et d'hélium) de notre échantillon et à ce que ces objets distinctifs nous apprennent sur l'évolution spectrale. Nous étudions ensuite l'évolution spectrale d'un point de vue théorique en modélisant les transformations chimiques qui s'opèrent dans les naines blanches. Pour ce faire, nous utilisons le code d'évolution stellaire STELUM, qui inclut un traitement cohérent et réaliste du transport des éléments et nous permet donc de réaliser les simulations numériques d'évolution spectrale les plus sophistiquées à ce jour. Nous modélisons la diffusion de l'hydrogène résiduel dans une enveloppe d'hélium à haute température, qui mène ultimement à la formation d'une atmosphère d'hydrogène. Nous simulons également le mélange convectif de cette couche superficielle d'hydrogène avec la couche sous-jacente d'hélium à basse température, qui produit à nouveau une surface dominée par l'hélium. En outre, nous étudions le transport du carbone dans les étoiles riches en hélium, incluant à la fois le tri gravitationnel à haute température et le dragage convectif à basse température. Ces calculs donnent lieu à plusieurs résultats astrophysiques d'intérêt. Nous obtenons notamment une contrainte inédite sur la quantité d'hydrogène résiduel contenue dans les naines blanches chaudes dominées par l'hélium. Nous démontrons aussi que la bifurcation observée dans le diagramme couleur-magnitude des naines blanches découvertes par le satellite Gaia est une signature du processus de mélange convectif à basse température. Par ailleurs, nos modèles fournissent de précieuses informations sur les propriétés des étoiles polluées par le carbone, en particulier sur leur masse et leur zone convective. Enfin, le résultat le plus important de cette thèse est la résolution définitive du problème le plus sérieux de la théorie de l'évolution spectrale, soit le problème de l'origine de l'hydrogène à la surface des naines blanches de type DBA. / This thesis presents an in-depth empirical and theoretical study of the spectral evolution of white dwarf stars, with a particular focus on hot white dwarfs. The atmospheric composition (and thus the spectral appearance) of these stellar remnants can change drastically over time as they cool. This phenomenon is generally interpreted as the result of an interplay between various element transport mechanisms in the stellar envelope (such as diffusion, convection, winds, and accretion), but remains poorly understood in several respects. It is imperative to remedy this situation to be able to exploit the immense potential of white dwarfs for our understanding of the past of the Galaxy. To better characterize the incidence of spectral evolution, we first carry out an exhaustive spectroscopic analysis of nearly 2000 hot white dwarfs (Teff > 30,000 K) observed by the SDSS survey. We determine the atmospheric properties (in particular the effective temperature and surface composition) of these objects using a new set of model atmospheres calculated specifically for this purpose. By examining the relative frequency of hydrogen-rich and helium-rich stars as a function of temperature, we obtain for the first time a detailed empirical picture of the spectral evolution of hot white dwarfs. More specifically, we infer (1) that about one in four stars enters the cooling sequence with a helium atmosphere, and (2) that about two-thirds of these objects eventually develop a hydrogen atmosphere. Furthermore, we pay special attention to the hybrid white dwarfs (which exhibit traces of both hydrogen and helium) in our sample and to what can be learned about spectral evolution from these distinctive objects. We then study spectral evolution from a theoretical point of view by modeling the chemical transformations that take place in white dwarfs. To do this, we use the stellar evolution code STELUM, which includes a consistent and realistic treatment of element transport and therefore allows us to perform the most sophisticated numerical simulations of spectral evolution to date. We model the diffusion of residual hydrogen in a helium envelope at high temperature, which ultimately leads to the formation of a hydrogen atmosphere. We also simulate the convective mixing of this superficial hydrogen layer with the underlying helium layer at low temperature, which once again produces a helium-dominated surface. Furthermore, we study the transport of carbon in helium-rich stars, including both gravitational settling at high temperature and convective dredge-up at low temperature. These calculations give rise to several astrophysical results of interest. In particular, we obtain an unprecedented constraint on the amount of residual hydrogen contained within hot helium-dominated white dwarfs. We also demonstrate that the bifurcation observed in the color-magnitude diagram of white dwarfs discovered by the Gaia satellite is a signature of the convective mixing process at low temperature. Furthermore, our models provide valuable information on the properties of carbon-polluted stars, in particular on their mass and convective zone. Finally, the most important result of this thesis is the definitive resolution of the most serious problem of the theory of spectral evolution, namely the problem of the origin of hydrogen at the surface of DBA-type white dwarfs.
48

Caractérisation de l’atmosphères des exoplanètes par spectroscopie de transit à haute dispersion avec SPIRou

Boucher, Anne 04 1900 (has links)
L’objectif principal de cette thèse est de caractériser l’atmosphère de Jupiters chaudes par spectroscopie de transmission à haute résolution, dans l’infrarouge proche, avec l’instrument SPIRou. L’historique de formation, d’évolution et de migration des planètes est empreint dans leur composition chimique, et de retrouver cette composition permet d’en élucider le mystère. La spectroscopie de transit et d’émission a prouvé être fortement efficace à cette tâche, autant pour la détermination de la composition que pour la détermination d’autres caractéristiques atmosphériques comme le profil de température et la dynamique, accessibles à haute résolution. Les Jupiter Chaudes, planètes géantes gazeuses qui orbitent très près de leur étoile, offrent des conditions d’observations très favorables pour ce type d’étude. Encore beaucoup d’éléments nous échappent quant aux processus physiques, chimiques et dynamiques qui gouvernent l’atmosphère de ces objets astronomiques. Des études détaillées de ceux-ci, telles que celles présentées dans cette thèse, sont nécessaires pour mieux comprendre ces mécanismes. Dans un premier temps, nous avons fait l’étude de deux transits de HD 189733 b, une des exoplanètes les plus étudiées. Cela nous a permis de valider nos méthodes d’analyse avec des données provenant du spectropolarimètre infrarouge à haute résolution SPIRou, installé au télescope Canada-France-Hawaii, représentant d’ailleurs la première caractérisation d’une atmosphère en spectroscopie de transit pour le SPIRou Legacy Survey. Nous avons confirmé la présence d’un signal d’eau à un niveau de signification de plus de 5σ, basé sur les résultats de test-t. Nous présentons la première analyse de spectroscopie de transit haute résolution faite par méthode de récupération, basée sur l’inférence bayésienne et appliquée à une grille de modèles SCARLET interpolée. Celle-ci a permis d’inférer une abondance de log_10[H2O] ≃ −4.4. Les résultats obtenus sont cohérents avec la littérature et indiquent que l’atmosphère de HD 189733 b est relativement claire (sans nuages) et possède un C/O super-solaire (correspondant à une formation au-delà de la ligne de glace de l’eau). Un fort décalage vers le bleu de l’absorption par l’eau a été observé, indiquant la présence de forts vents allant du côté jour vers le côté nuit ou un signal dominé par le côté soir du terminateur (limbe arrière), ou une combinaison des deux. Dans un second temps, nous présentons la première analyse à haute résolution dans l’infrarouge proche de trois transits de la très peu dense sous-Saturne WASP-127 b. Une étude récente à basse résolution a montré un spectre de transmission riche et une abondance super-solaire de CO2 dans son atmosphère. La contribution de CO et de CO2 n’a cependant pu être démêlée étant donné la couverture spectrale et la résolution limitée des données HST et de Spitzer utilisées, menant à des scénarios équiprobables de faible et fort C/O. La couverture de la bande de CO à 2.3 μm par SPIRou a permis de faire cette différenciation, et nos résultats ont exclu la présence de CO en abondance supérieure à log_10[CO] = −4.3, impliquant que le signal détecté à 4.5μm dans les données Spitzer provient majoritairement du CO2. De plus, un calcul de test-t sur les données SPIRou a confirmé la détection de H2O à un niveau ajusté de 4.9σ, mais également une détection potentielle de OH, à 2.4σ. Cette présence extrêmement inattendue de OH pourrait potentiellement être expliquée si la température du côté jour est assez grande, aidée par l’irradiation amplifiée de l’étoile qui quitte la séquence principale, ou encore par du mélange vertical. Nous présentons également la première méthode de récupération complète appliquée à la spectroscopie de transit à haute résolution, en utilisant la suite de modèles petitRADTRANS, et sur trois ensembles de données différents : les données SPIRou, les données HST et Spitzer de l’étude initiale, et les deux ensembles de données combinés. Une comparaison des différents résultats obtenus confirme que l’analyse conjointe permet d’avoir de meilleures contraintes sur les paramètres atmosphériques. Alors que l’étude initiale favorisait un fort C/O, nos résultats pointent vers un C/O très sous-solaire, produit par un C/H sous-solaire et un O/H plutôt stellaire. Les scénarios de formation qui supportent une telle composition sont ceux au-delà des lignes de glace de H2O et de CO2 (∼ 10ua), avec une accrétion supplémentaire de matériel riche en O via la migration et le croisement des lignes de glaces. L’accrétion du matériel est soit dominée par le gaz et tardive (après 5 à 7 millions d’années), ou encore, mixte (de gaz et de glaces) et plus précoce, avec un mélange cœur-enveloppe substantiel. Bien qu’il en reste beaucoup à faire, ces travaux de recherche ont démontré que la spectroscopie de transit à haute résolution dans l’infrarouge proche est utile pour explorer les conditions atmosphériques des Jupiter et sous-Saturne chaudes, et plus spécifiquement, avec l’instrument SPIRou. La combinaison de données à faible et à haute résolution s’avère un outil très puissant pour l’étude des atmosphères, et le sera encore plus avec les capacités révolutionnaires de JWST. / The main objective of this thesis is to characterize the atmosphere of hot Jupiters with high resolution transmission spectroscopy in the near-infrared with the SPIRou instrument. The formation, evolution and migration history of exoplanets is imprinted in their chemical composition, and finding this composition makes it possible to trace back this history. Transit and emission spectroscopy have proven to be highly effective for this task, in the determination of the composition, but also of other atmospheric characteristics such as the temperature profile and the dynamics, accessible at high resolution. Hot Jupiters -- gas giant planets orbiting very close to their star -- offer highly favourable observation conditions for this type of study. Many pieces of the puzzle are still missing regarding the physical, chemical and dynamical processes that govern the atmospheres of these astronomical objects, and detailed studies, such as the ones presented in this thesis, are necessary to better understand those mechanisms. First, we present the results of our analysis of two HD189733b transits, one of the most studied exoplanets to date. This study allowed to validate our analysis method with SPIRou data, a high-resolution near-infrared spectro-polarimeter installed at the Canada-France-Hawaii Telescope. It also represents the first characterization of an atmosphere with transit spectroscopy as part of the SPIRou Legacy Survey. Our results confirmed the H2O detection in the planet's atmosphere at a 5 sigma level, based on a $t$-test. We present the first analysis of a Bayesian retrieval framework applied to high-resolution transmission spectroscopy, using a grid of SCARLET models. We constrained the H2O abundance to log_10[H2O] ~ -4.4$. The results are consistent with the literature and agree on the atmosphere of HD189733b being relatively clear (without clouds) and having a super-solar C/O (corresponding to a formation beyond the H2O ice line). A strong blue shift of the water absorption signal was observed, indicative of strong day-to-night winds or a signal dominated by the terminator's evening side (trailing limb), or a combination of both. Second, we present the first high-resolution analysis in the near-infrared of three transits of the super low-density sub-Saturn WASP-127b. A recent low-resolution study showed a rich transmission spectrum and super-solar abundance of CO2 in its atmosphere. However, the contribution of CO and CO2 could not be disentangled given the limited spectral coverage and resolution of the HST and Spitzer data, leading to equiprobable low and high C/O scenarios. The coverage of the CO band at 2.3um by SPIRou made it possible to differentiate between the two cases, and our results excluded CO abundances greater than 10^(-4.3), implying that the signal at 4.5um seen in the Spitzer data mostly comes from CO2. Moreover, a t-test analysis on the SPIRou data confirmed the detection of H2O at an adjusted level of 4.9 sigma, but also a tentative detection of OH, at 2.4 sigma. The presence of OH, although extremely unexpected, could potentially be explained from a high enough dayside temperature, increased by the amplified irradiation of the star leaving the main sequence, or from vertical mixing. We also present the first full-retrieval framework applied to transmission spectroscopy at high resolution, using the petitRADTRANS model suite on three different datasets: on the SPIRou data, on the HST and Spitzer data from the original study, and on both datasets combined. A comparison of the different results obtained confirms that the joint analysis provides better constraints on the atmospheric parameters. While the initial study favored a high C/O, our results point toward a highly subsolar C/O, produced by a sub-stellar C/H and a roughly stellar O/H. Formation scenarios that support such a composition are those beyond the H2O and CO2 ice lines (~ 10ua), with further accretion of O-rich material via migration and ice lines crossing. The primordial/bulk accretion was either gas-dominated and late (after 5-7 Myr), or earlier and mixed (with gas and ice), with substantial core-enveloppe mixing. Although much remains to be done, this research work has demonstrated that high-resolution near-infrared transit spectroscopy is useful for exploring the atmospheric conditions of hot Jupiters and sub-Saturns, and more specifically, with the SPIRou instrument. The combination of low and high resolution data has shown to be a very powerful tool for such studies, and will be even more so with the revolutionary capabilities of JWST.

Page generated in 0.0479 seconds