Spelling suggestions: "subject:"automatisk"" "subject:"automatiskt""
151 |
Model-Based Testing of Dosing System : An Introductory Review on Model-Based Automatic Test Case Generation with Matlab Simulink Proof-of-concept / Modellbaserad Testning av doseringssystem : En översiktlig genomgång av modellbaserad automatisk testfallgenerering med Matlab Simulink proof-of-conceptSetyawan, Albertus Adrian January 2021 (has links)
A modern truck contains a large number of functionalities implemented in its electronics system. Thus, testing all of these functions employs a considerable effort. The execution of tests against the system has been automated for a long time. Unfortunately, most of the test is still designed manually these days. This manual test design is sometimes not comprehensive enough to cover all possible scenarios within a complex system. At the moment, there is also a growing trend in the development process based on the model. Furthermore, model-based software can handle events and signal behaviour more robustly[1]. This thesis investigates the technique in model-based testing. The study evaluates the requirement modelling and automated abstract test generation of model-based testing over the existing testing method. A cause-effect graph is utilized for the modelling in Matlab Simulink tool with DesignVerifier feature. The case study is the truck dosing system in Scania. The results are the following. The temporal and static requirements modelling are capable of being modelled using the cause-effect graph in Matlab Simulink. Compared to the traditional method, the MBT method can achieve higher requirement coverage and more rigorous test with optimized test case generation. The MBT method also has a rapid test case generation time suitable for quick design iteration. However, the total test development time (including test case generation time) of using MBT is 12.5% higher than the manual method. Using a model-based platform like Matlab Simulink is recommended to assist the manual testing, not to replace the test flow entirely with the current research state. / En modern truck innehåller ett stort antal funktioner implementerade i dess elektroniksystem. Att testa alla dessa funktioner kräver därför en avsevärd ansträngning. Utförandet av tester mot systemet har varit automatiserat under lång tid. Tyvärr är det mesta av testet fortfarande utformat manuellt nu för tiden. Denna manuella testdesign är ibland inte tillräckligt omfattande för att täcka alla möjliga scenarier inom ett komplext system. För tillfället finns det också en växande trend i utvecklingsprocessen utifrån modellen. Dessutom kan modellbaserad programvara hantera händelser och signalbeteende mer robust[1]. Detta examensarbete undersöker tekniken i modellbaserad testning. Studien utvärderar kravmodellering och automatiserad abstrakt testgenerering av modellbaserad testning över den befintliga testmetoden. En cause-effect graph används för modelleringen i Matlab Simulink-verktyget med Design Verifier-funktionen. Fallstudien är lastbilens doseringssystem i Scania. Resultaten är följande. Den tidsmässiga och statiska kravmodelleringen kan modelleras med hjälp av cause-effect graph i Matlab Simulink. Jämfört med den traditionella metoden kan MBT-metoden uppnå högre kravtäckning och mer rigorösa test med optimerad testfallsgenerering. MBT-metoden har också en snabb genereringstid för testfall som är lämplig för snabb designiteration. Den totala testutvecklingstiden (inklusive genereringstid för testfall) för att använda MBT är 12,5% högre än den manuella metoden. Att använda en modellbaserad plattform som Matlab Simulink rekommenderas för att underlätta den manuella testningen, inte för att ersätta testflödet helt med det aktuella forskningsläget.
|
152 |
Modelling and Run-Time Control of Localization System for Resource-Constrained Devices / Modellering och Realtidsreglering av Lokaliseringssystem på Enheter med Begränsade ResurserMosskull, Albin January 2022 (has links)
As resource-constrained autonomous vehicles are used for more and more applications, their ability to achieve the lowest possible localization error without expending more power than needed is crucial. Despite this, the parameter settings of the localization systems, both for the platform and the application, are often set arbitrarily. In this thesis, we propose a model-based controller that adapts the parameters of the localization system during run-time by observing conditions in the environment. The test-bed used for experiments consists of maplab, a visual-inertial localization framework, that we execute on the Nvdia Jetson AGX platform. The results show that the linear velocity is the single most important environmental attribute to base the decision of when to update the parameters upon. We also found that while it was not possible to find a direct connection between certain parameters and environmental conditions, a connection could be found between sets of configuration parameters and conditions. Based on these conclusions, we compare model-based controller setups based on three different models: Finite Impulse Response (FIR), AutoRegressive eXogenous input (ARX) and Multi-Layer Perceptron (MLP). The FIR-based controller performed the best. This FIR-based controller is able to select configurations at the appropriate times to keep the error lower than it would be to randomly guess which set of configuration parameters is best. The proposed solution requires offline profiling before it can be implemented on new localization systems, but it can help to reduce the error and power consumption and thus enable more uses of resource-constrained devices. / Användningen av autonoma fordon med begränsade resurser ökar allt mer, vilket i sin tur ökar vikten av att dessa kan lokalisera med lägsta möjliga fel utan att förbruka mer effekt. Trots detta bestäms parametrarna för både hårdvara och i algoritmerna ofta godtyckligt för dessa lokaliseringssystem. I detta examensarbete presenterar vi en lösning till detta, i form av en modellbaserad regulator som anpassar parametrarna baserat på vad den detekterar i omgivningen. Vår testuppställning består av maplab, ett lokaliseringsramverk, som vi exekverar på Nvida Jetson AGX plattformen. Resultaten visar att den linjära hastigheten är den viktigaste miljövariabeln att detektera och använda för att anpassa parametrarna i lokaliseringssystemet. Resultaten visar även att det går att hitta kopplingar mellan konfigurationer och miljövariabler, även om det inte går att hitta mellan specifika konfigurationsparameterar och miljövariabler. Den regulator som presterar bäst visar sig vara en som är baserad på en Finite Impulse Response modell, med en optimeringshorisont på 5 sekunder. Denna presterar bättre än både AutoRegressive eXogenous input baserad regulator och en Multi-Layer Perceptron baserad regulator. Finite Impulse Response regulatorn åstadkommer ett fel som är lägre än slumpmässig gissning, på data den inte sett förut. Lösningen som uppvisas i detta projekt kräver optimering offline för att fungera, men om det utförs kan den reducera både lokaliseringsfelet och effektförbrukningen och genom det skapa nya användningsområden för resursbegränsade enheter.
|
153 |
Charcoal Kiln Detection from LiDAR-derived Digital Elevation Models Combining Morphometric Classification and Image Processing TechniquesZutautas, Vaidutis January 2017 (has links)
This paper describes a unique method for the semi-automatic detection of historic charcoal production sites in LiDAR-derived digital elevation models. Intensified iron production in the early 17th century has remarkably influenced ways of how the land in Sweden was managed. Today, the abundance of charcoal kilns embedded in the landscape survives as cultural heritage monuments that testify about the scale forest management for charcoal production has contributed to the uprising iron manufacturing industry. An arbitrary selected study area (54 km2) south west of Gävle city served as an ideal testing ground, which is known to consist of already registered as well as unsurveyed charcoal kiln sites. The proposed approach encompasses combined morphometric classification methods being subjected to analytical image processing, where an image that represents refined terrain morphology was segmented and further followed by Hough Circle transfer function applied in seeking to detect circular shapes that represent charcoal kilns. Sites that have been identified manually and using the proposed method were only verified within an additionally established smaller validation area (6 km2). The resulting outcome accuracy was measured by calculating harmonic mean of precision and recall (F1-Score). Along with indication of previously undiscovered site locations, the proposed method showed relatively high score in recognising already registered sites after post-processing filtering. In spite of required continual fine-tuning, the described method can considerably facilitate mapping and overall management of cultural resources.
|
154 |
Automating the monotonous workflow : Mobile application development and deployment / Automatisera det monotona arbetsflödet : Mobil applikationsutveckling och distributionVakilalroayayi, Ahmadreza January 2021 (has links)
To create, update, or deploy a mobile application, a collection of hand-operated works must be satisfied. In this project, regardless of the mobile application's code and its core functionalities, which can be an e-book, an application, or even a mobile game, we will study how to automate, visualize and simplify the following manual procedures: 1.Create a remote Git repository for the mobile application. 2.Constructing or altering the mobile application's configuration or graphical contents. 3.Push all changes to the remote Git repository. 4.Deploy or distribute the mobile application from its Git repository after each push. / För att skapa, uppdatera eller distribuera en mobilapplikation måste en samling handstyrda verk uppfyllas. I detta projekt, oavsett mobilapplikationens kod och dess kärnfunktioner, som kan vara en e-bok, en applikation eller till och med ett mobilspel, kommer vi att studera hur man automatiserar, visualiserar och förenklar följande manuella procedurer: 1. Skapa ett avlägset Git -arkiv för mobilapplikationen. 2.Konstruera eller ändra mobilapplikationens konfiguration eller grafiska innehåll. 3.Push alla ändringar i det externa Git -arkivet. 4. Distribuera mobilappen från sitt Git -arkiv efter varje ändring.
|
155 |
Exploring the Feasibility of Exercise Detection on the Exxentric kBox Platform / Undersökning av möjligheten att detektera övningar på Exxentric kBox-platformenMehr, Mahyar January 2023 (has links)
Flywheel training is an increasingly popular training method that aids in the recovery process and promotes strength development while reducing the risk of re-injury. Additionally, automatic exercise classification offers athletes the convenience of effortlessly monitoring and tracking their training progress, enabling them to maintain consistency and achieve their fitness goals effectively. This thesis aims to investigate the feasibility and accuracy of developing a machine-learning model for classifying exercises performed on Exxentric kBox machines. The objective is to assess the model’s accuracy and determine whether the features provided by the Exxentric app are sufficient for constructing a robust classifier. To lay a strong foundation for the investigation, the research begins with a comprehensive literature review of exercise recognition studies. An exploratory data analysis is then conducted to gain valuable insights into the characteristics of the exercise data. The data preparation phase involves various techniques such as cleaning, feature engineering, scaling, sampling, and encoding to optimize the data for modeling. Moreover, signal processing techniques are employed to extract relevant features from the exercise data. A testing protocol is established, consisting of two sets of ten exercises. Each exercise is performed with a randomized number of repetitions, ranging from 5 to 12 repetitions. Data collection is carried out with the participation of ten individuals using the Exxentric App on their smartphones. Different types of classifiers are trained using data from the Exxentric database and tested on the collected data on-site, employing the generated features. Additionally, a CNN classifier is explored, utilizing only angular velocity as input. Comparative analysis is performed on the evaluation metrics of the models. In conclusion, while achieving accurate classification for all ten exercises was not fully realized, the CNN model relying on angular velocity as input exhibited promising results. Notably, squats were predicted correctly 95% of the time, which is the most prominent observation. The model also demonstrated significant accuracy in correctly identifying bent-over rows (72%), deadlifts (72.2%), standing calf raises (70.6%), and biceps curls (67%). Further research is warranted to improve the effectiveness and accuracy of exercise classification models. This includes exploring alternative input methods and refining feature engineering techniques to advance the field. / Svänghjulsträning är en alltmer populär träningsmetod som underlättar återhämtningsprocessen och främjar styrkeutveckling samtidigt som den minskar risken för nya skador. Dessutom erbjuder automatisk träningsklassificering idrottare bekvämligheten att enkelt övervaka och spåra sina träningsframsteg, vilket gör det möjligt för dem att upprätthålla konsekvens och effektivt uppnå sina träningsmål. Denna avhandling syftar till att undersöka genomförbarheten och noggrannheten hos att utveckla en maskininlärningsmodell för att klassificera övningar som utförs på Exxentric kBox-maskiner. Målet är att bedöma modellens noggrannhet och avgöra om funktionerna som tillhandahålls av Exxentric-appen är tillräckliga för att konstruera en robust klassificerare. För att lägga en stark grund för undersökningen inleds forskningen med en omfattande litteraturgenomgång av studier om igenkänning av övningar. Därefter genomförs en explorativ dataanalys för att få värdefulla insikter om egenskaperna hos övningsdatan. Dataförberedelsen innefattar olika tekniker såsom rengöring, funktionsteknik, skalning, provtagning och kodning för att optimera datan för modellering. Dessutom används signalbehandlingstekniker för att extrahera relevanta egenskaper från övningsdatan. En testprotokoll etableras, bestående av två uppsättningar med tio övningar. Varje övning utförs med ett slumpmässigt antal repetitioner, från 5 till 12 repetitioner. Insamlingen av data utförs med deltagande av tio individer som använder Exxentric-appen på sina smartphones. Olika typer av klassificerare tränas med hjälp av data från Exxentricdatabasen och testas på den insamlade datan på plats genom att använda de genererade egenskaperna. Dessutom undersöks en CNN-klassificerare som enbart använder vinkelhastighet som indata. En jämförande analys utförs på utvärderingsmåtten för modellerna. Slutsatsen är att även om det inte var möjligt att uppnå en korrekt klassificering för alla tio övningar, uppvisade CNN-modellen, med enbart vinkelhastighet som indata, lovande resultat. Noterbart är att knäböjningar korrekt förutsades 95% av tiden, vilket är den mest framträdande observationen. Modellen visade även betydande noggrannhet vid korrekt identifiering av stående rodd (72%), marklyft (72,2%), stående vadpress (70,6%) och bicepscurls (67%). Ytterligare forskning motiveras för att förbättra effektiviteten och noggrannheten hos modeller för klassificering av övningar. Detta inkluderar att utforska alternativa metoder för indata och att förbättra teknikerna för funktionsteknik för att vidareutveckla området.
|
156 |
Meta-Pseudo Labelled Multi-View 3D Shape Recognition / Meta-pseudomärking med Bilder från Flera Kameravinklar för 3D ObjektigenkänningUçkun, Fehmi Ayberk January 2023 (has links)
The field of computer vision has long pursued the challenge of understanding the three-dimensional world. This endeavour is further fuelled by the increasing demand for technologies that rely on accurate perception of the 3D environment such as autonomous driving and augmented reality. However, the labelled data scarcity in the 3D domain continues to be a hindrance to extensive research and development. Semi-Supervised Learning is a valuable tool to overcome data scarcity yet most of the state-of-art methods are primarily developed and tested for two-dimensional vision problems. To address this challenge, there is a need to explore innovative approaches that can bridge the gap between 2D and 3D domains. In this work, we propose a technique that both leverages the existing abundance of two-dimensional data and makes the state-of-art semi-supervised learning methods directly applicable to 3D tasks. Multi-View Meta Pseudo Labelling (MV-MPL) combines one of the best-performing architectures in 3D shape recognition, Multi-View Convolutional Neural Networks, together with the state-of-art semi-supervised method, Meta Pseudo Labelling. To evaluate the performance of MV-MPL, comprehensive experiments are conducted on widely used shape recognition benchmarks ModelNet40, ShapeNetCore-v1, and ShapeNetCore-v2, as well as, Objaverse-LVIS. The results demonstrate that MV-MPL achieves competitive accuracy compared to fully supervised models, even when only \(10%\) of the labels are available. Furthermore, the study reveals that the object descriptors extracted from the MV-MPL model exhibit strong performance on shape retrieval tasks, indicating the effectiveness of the approach beyond classification objectives. Further analysis includes the evaluation of MV-MPL under more restrained scenarios, the enhancements to the view aggregation and pseudo-labelling processes; and the exploration of the potential of employing multi-views as augmentations for semi-supervised learning. / Forskningsområdet för datorseende har länge strävat efter utmaningen att förstå den tredimensionella världen. Denna strävan drivs ytterligare av den ökande efterfrågan på teknologier som är beroende av en korrekt uppfattning av den tredimensionella miljön, såsom autonom körning och förstärkt verklighet. Dock fortsätter bristen på märkt data inom det tredimensionella området att vara ett hinder för omfattande forskning och utveckling. Halv-vägledd lärning (semi-supervised learning) framträder som ett värdefullt verktyg för att övervinna bristen på data, ändå är de flesta av de mest avancerade semisupervised-metoderna primärt utvecklade och testade för tvådimensionella problem inom datorseende. För att möta denna utmaning krävs det att utforska innovativa tillvägagångssätt som kan överbrygga klyftan mellan 2D- och 3D-domänerna. I detta arbete föreslår vi en teknik som både utnyttjar den befintliga överflöd av tvådimensionella data och gör det möjligt att direkt tillämpa de mest avancerade semisupervised-lärandemetoderna på 3D-uppgifter. Multi-View Meta Pseudo Labelling (MV-MPL) kombinerar en av de bästa arkitekturerna för 3D-formigenkänning, Multi-View Convolutional Neural Networks, tillsammans med den mest avancerade semisupervised-metoden, Meta Pseudo Labelling. För att utvärdera prestandan hos MV-MPL genomförs omfattande experiment på väl använda uvärderingar för formigenkänning., ModelNet40, ShapeNetCore-v1 och ShapeNetCore-v2. Resultaten visar att MV-MPL uppnår konkurrenskraftig noggrannhet jämfört med helt vägledda modeller, även när endast \(10%\) av etiketterna är tillgängliga. Dessutom visar studien att objektbeskrivningarna som extraherats från MV-MPL-modellen uppvisar en stark prestanda i formåterhämtningsuppgifter, vilket indikerar effektiviteten hos tillvägagångssättet bortom klassificeringsmål. Vidare analys inkluderar utvärderingen av MV-MPL under mer begränsade scenarier, förbättringar av vyaggregerings- och pseudomärkningsprocesserna samt utforskning av potentialen att använda bilder från flera vinklar som en metod att få mer data för halv-vägledd lärande.
|
Page generated in 0.0592 seconds