• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 7
  • 6
  • 1
  • Tagged with
  • 31
  • 21
  • 18
  • 15
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Vergleichende Untersuchung zu den Auswirkungen von lungenprotektiver Beatmung und atmungsentlastender Beatmung auf Herz-Kreislauf-Funktion, Nierenfunktion, Vigilanz und Serologie / Comparative study on the effects of lung-protective ventilation and breathable-relieving ventilation on cardiovascular function, renal function, vigilance and serology

Müller, Karin Teresa 01 February 2018 (has links)
No description available.
12

Variation des exspiratorischen Umschaltkriteriums während assistierter Beatmung bei chronisch obstruktiver Lungenerkrankung – Untersuchung der Patient-Ventilator-Interaktion am Lungenmodell / Adjustment of ventilator off-cycling during pressure support ventilation in chronic obstructive pulmonary disease – A lung model study

Zippel, Carsten Volker 11 November 2015 (has links)
Einleitung: Bei PSV beendet der Respirator die Druckunterstützung, wenn der Inspirationsfluss auf einen prozentualen Anteil des Spitzenflusses, welcher als Umschaltkriterium be-zeichnet wird, absinkt. Bei obstruktiver Lungenerkrankung ist der Abfall des Inspirationsflusses verlangsamt, wodurch verspätetes Umschalten in die Exspiration begünstigt wird. Der verwendete Beatmungszugang, das etwaige Vorliegen von Leckage bei nicht-invasiver Beatmung, die Höhe der Druckunterstützung und die Atemfrequenz sind potentielle Faktoren, welche das Umschalten in die Exspiration beeinflussen können. Die synchrone Unterstützung der Patienteninspirationsbemühung ist entscheidend für den Erfolg der assistierten Beatmungstherapie. Methode: In einer Lungenmodellstudie wurde obstruktive Lungenmechanik simuliert und der Einfluss der Variation des Umschaltkriteriums auf die Patient-Respirator-Interaktion untersucht. Die Beatmungszugänge Endotrachealtubus, Nasen-Mund-Maske und Beatmungshelm wurden nacheinander in den Versuchsaufbau eingebracht. Bei nicht-invasiver Beatmung wurde mit und ohne Leckage gemessen. Bei Vorliegen von Leckage wurde zusätzlich in einem nicht-invasiven Beatmungsmodus beatmet. Die Höhe der Druckunterstützung (5 cmH2O, 15 cmH2O) und die Atemfrequenz (15/min, 30/min) wurden verändert. Die Patient-Respirator-Interaktion wurde bei Verwendung der Umschaltkriterien 10 %, 20 %, 30 %, 40 %, 50 %, 60 % und 70 % des Spitzenflusses analysiert. Aus aufgezeichneten Flusskurven wurden Parameter, welche die Synchronisation zwischen Patient und Respirator beschreiben (nicht-unterstützte Atemzüge, Doppeltrigger, inspiratorische und exspiratorische Triggerlatenz) sowie das Tidalvolumen bestimmt. Aus aufgezeichneten Druckkurven wurden der intrinsische PEEP und Druck-Zeit-Produkte bestimmt, welche in den verschiedenen Phasen des Atemzyklus die durch den Respirator geleistete Entlastung (PTPPEEP, PTPINSP) oder Belastung (PTPEXSP) der Atemmuskulatur beschreiben. Ergebnisse: Bei konventionell eingestelltem Umschaltkriterium (20 % - 30 %) wurde stets verspätetes Umschalten beobachtet. Die Erhöhung des Umschaltkriteriums resultierte in einer Reduktion der exspiratorischen Triggerlatenz, PTPEXSP und des intrinsischen PEEP. In der Folge wurden nicht-unterstützte Inspirationsbemühungen, die inspiratorischen Triggerlatenz sowie der zur Auslösung der Druckunterstützung erforderliche Kraftaufwand (PTPPEEP) reduziert. Bei übermäßiger Erhöhung des Umschaltkriteriums beendete der Respirator die Druckunterstützung vor dem Ende der simulierten Inspirationsbemühung. Vorzeitiges Umschalten ging mit einer Abnahme des Tidalvolumens und der effektive Druckunter-stützung (PTPINSP), sowie der Auslösung von Doppeltrigger, einher. Vorzeitiges Umschalten trat bei niedriger Atemfrequenz bei Verwendung der Umschaltkriterien 50 % bzw. 60 % bis 70 % auf. Bei Beatmung via Endotrachealtubus und Nasen-Mund-Maske wurden vergleichbare Ergebnisse beobachtet. Bei Beatmung via Beatmungshelm war die Interaktion zwischen Patient und Respirator wesentlich beeinträchtigt, wodurch vorzeitiges Umschalten begünstigt wurde. Bei Messungen mit Leckage war die exspiratorische Triggerlatenz verlängert. Bei Verwendung des NIV-Beatmungsmodus konnte die exspiratorische Triggerlatenz teilweise minimiert werden. Bei hoher Druckunterstützung war die exspiratorische Triggerlatenz, bei Beatmung via Endotrachealtubus und Nasen-Mund-Maske, verlängert. Konklusion: Die Variation des Umschaltkriteriums stellt eine effektive Möglichkeit dar, die Patient-Respirator-Interaktion zu optimieren. Bei obstruktiver Lungenerkrankung sollte das Umschaltkriterium, über das konventionell eingestellte Umschaltkriterium hinaus, erhöht werden. Das Umschaltkriterium ist maßvoll zu erhöhen, um eine vorzeitige Unterbrechung der Druckunterstützung zu verhindern. Das Risiko verfrühten Umschaltens ist bei Beatmung via Beatmungshelm, sowie bei niedriger Atemfrequenz, erhöht. Des Weiteren müssen das etwaige Vorliegen von Leckage, der bei nicht-invasiver Beatmung verwendete Beatmungsmodus, die Höhe der Druckunterstützung sowie die Atemfrequenz bei der Wahl des Umschaltkriteriums berücksichtigt werden.
13

Periodic Variable Mechanical Ventilation and Dynamics of Recruitment and De-recruitment in Experimental Acute Respiratory Distress Syndrome

Huhle, Robert 09 December 2019 (has links)
Background Controlled mechanical ventilation with randomly variable tidal volume patterns has been shown to improve gas exchange and respiratory system mechanics compared to conventional ventilation in numerous experimental models of acute respiratory distress syndrome (ARDS). Multiple mechanisms have been proposed to explain this phenomenon called stochastic resonance. The recruitment of collapsed lung regions has been proposed as the dominant mechanism, but the role of respiratory system recruitment and de-recruitment dynamics during variable ventilation and the influence of periodic instead of random variation has not been elucidated. Objectives The primary objective of this thesis was to investigate the effects of periodic tidal volume patterns during variable ventilation on functional parameters with a special focus on gas exchange, respiratory system mechanics and cardiovascular interactions. Further aims were to elucidate the relationship between recruitment and de-recruitment dynamics and recruitment effects of random variable ventilation as well as the impact of an excessive increase in pattern period during variable ventilation on respiratory system mechanics. Finally, the relationship between recruitment effects during variable ventilation and the recruitment and de-recruitment dynamics as well as the ability of random variable ventilation to prevent de-recruitment are to be clarified. Methods Recruitment and de-recruitment dynamics were investigated based on the analysis of the time course of dynamic respiratory system elastance in a double-hit model of ARDS in pigs, a model of lung inflammation in rats, and in silico. The effects of periodic variable ventilation were studied for a wide range of pattern periods using a non-linear computational model of respiratory system mechanics, and in two experimental studies: Partial pressure of oxygen in arterial blood (PaO2) was the primary outcome of the longitudinal study during six hours of therapy in a double-hit model of ARDS in pigs. A cross-over study in a hydrochloric acid-induced model of ARDS in rats was performed to investigate the effects of periodic variable ventilation on baroreflex and respiratory sinus arrhythmia in context of the improvement of the primary end-point PaO2. In both studies, tidal volume patterns were chosen to have main periods overlapping with the dynamics of cardiovascular and respiratory sub-systems. Results and Discussion Periodic variable ventilation, but not random variable ventilation, improved PaO2 compared to conventional ventilation in the double hit model of ARDS. In both experimental studies, variable ventilation independent of pattern period improved respiratory system elastance. The study in silico indicated that periodic patterns have no additional positive effect on respiratory system mechanics compared to random patterns, but will attenuate recruitment for an excessive increase in pattern period. Baroreflex and respiratory sinus arrhythmia were affected by periodic tidal volume patterns in the acid-induced ARDS model; however, pattern period was associated with a decrease in PaO2. Recruitment and de-recruitment dynamics in the experimental model were similar to values derived by analysis of dynamic computed tomography according to literature. In the computational study, re-cruitment during random variable ventilation was maximised for specific values of recruitment and de-recruitment dynamics. Recruitment dynamics were lower during random variable ventilation compared to conventional recruitment manoeuvres, however in the range of de-recruitment dynamics of the respective model. Consequently, random variable ventilation with a coefficient of variation of 30 % was sufficient to prevent an increase of respiratory system elastance during ventilation in the study on acute lung inflammation in rats. Conclusion The asymmetry between recruitment and de-recruitment dynamics, which could be quantified by the analysis of the time course of dynamic elastance, was associated with recruitment during random variable ventilation in numerical simulations. Periodic variable ventilation improved arterial oxygenation to a clinically relevant extent without concomitant improvement of lung recruitment compared to random variable ventilation in a double-hit model of ARDS. Cardiovascular-respiratory interactions and asymmetry of recruitment and de-recruitment dynamics were not associated with this improvement. / Hintergrund In zahlreichen experimentellen Modellen des Akuten Atemnotsyndroms (ARDS) konnte gezeigt werden, dass die kontrollierte maschinelle Beatmung mit zufällig variablen Tidalvolumen pro Atemzug den Gasaustausch und die Atemmechanik im Vergleich zur konventionellen maschinellen Beatmung deutlich verbessert. Es wurden mehrere Mechanismen zur Erklärung dieses Phänomens, der Stochastischen Resonanz, vorgeschlagen. Die Wiedereröffnung kollabierter Lungenareale (Rekrutierung) ist dabei als dominanter Mechanismus der variablen Beatmung identifiziert wurden. Die Rolle der Dynamik von Rekrutierung und Derekrutierung sowie der Einfluss von Periodizität an Stelle von Zufälligkeit in der Sequenz der Tidalvolumina während Zufälliger Variabler Maschineller Beatmung (ZVB) wurde bisher lediglich in numerischen Simulationen evaluiert. Fragestellung Hauptziel dieser Arbeit war es, die Auswirkungen der Periodischen Variablen Maschinellen Beatmung (PVB) auf Gasaustausch, Mechanik des Respiratorischen Systems sowie Kardiovaskulärer Wechselwirkungen zu untersuchen. Ferner sollten mögliche Mechanismen der PVB identifiziert werden. Der Zusammenhang zwischen der Rekrutierungsdynamik und den Rekrutierungseffekten der ZVB sowie den Auswirkungen einer übermäßigen Erhöhung der Periodendauer während der PVB auf die Mechanik des Respiratorischen System war ebenfalls zu untersuchen. Ferner war der Zusammenhang zwischen den Rekrutierungseffekten bei der ZVB und der Dynamik der Rekrutierung / Derekrutierung des Respiratorischen Systems zu untersuchen. Material und Methoden In einem nichtlinearen numerischen Modell der Atemmechanik wurden die Auswirkungen der PVB für einen breiten Bereich von Periodendauern untersucht. Die Dynamik der Rekrutierung und Derekrutierung der Lunge wurde basierend auf der Analyse des Zeitverlaufs der dynamischen Elastance des Respiratorischen Systems in einem Doppelhit-Modell des ARDS im Schwein, einem Modell der Lungenentzündung in der Ratte sowie in silico untersucht. Die Effekte der PVB auf Gasaustausch und Atemmechanik wurden in zwei experimentelle Studien in verschiedenen Modellen des experimentellen ARDS untersucht: Der Partialdruck von Sauerstoff im arteriellen Blut (PaO2 ) war die primäre Zielgröße in der Längsschnittuntersuchung während der sechsstündigen Therapie des experimentellen ARDS am Hausschwein, welches induziert wurde durch wiederholte Auswaschung von Surfaktant mit anschließender beatmungsinduzierter Lungenschädigung. In einer Cross-over-Studie an einem salzsäureinduzierten Modell des ARDS in Ratten wurden die Auswirkungen der PVB auf Baroreflex- und respiratorische Sinusarrhythmie im Zusammenhang mit dem primären Endpunkt PaO2 untersucht. Ergebnisse und Diskussion PVB jedoch nicht die ZVB, verbesserte den PaO2 im Vergleich zur konventionellen maschinellen Beatmung im Doppelhit-Modell des ARDS während sechstündiger Therapie. In beiden Studien verbesserte die PVB unabhängig von der Periodendauer die Elastance des Respiratorischen Systems. Die Simulationen am Computermodell bestätigten, dass periodische Muster keinen zusätzlichen positiven Effekt auf die Mechanik des Atmungssystems im Vergleich zu zufälligen Mustern haben, aber die Rekrutierung während Variabler Maschineller Beatmung für eine übermäßige Erhöhung der Periodendauer abschwächen können. Baroreflex und Respiratorische Sinusarrhythmie wurden durch periodische Sequenz aufeinander folgender Tidalvolumina im säure-induzierten ARDS-Modell beeinflusst, jedoch war die Musterperiode mit einem Rückgang des PaO2 assoziiert. Die im experimentellen Modell bestimmte Dynamik der Rekrutierung und Derekrutierung bestätigte aus der Literatur bekannte Werte, die durch die Analyse der dynamischen Computertomographie gewonnen wurden. In der numerischen Modell-Studie zeigte sich, dass die Rekrutierung während der ZVB für bestimmte Verhältnisse zwischen Rekrutierungs- und Derekrutierungsdynamik (Asymmetrie) maximiert werden. Die Dynamik der Rekrutierung war bei der ZVB im Vergleich zu herkömmlichen Rekrutierungsmanövern geringer, jedoch innerhalb des Wertebereichs der Dynamik der Rekrutierung des jeweiligen Modells. Folglich konnte durch ZVB mit einem Variationskoeffizienten von 30 % die Derekru- tierung der Lunge in einem Modell der akuten Lungenentzündung verhindert werden. Schlussfolgerung Die Asymmetrie zwischen der Dynamik der Rekrutierung und Derekrutierung der Lunge, die durch die Analyse des Zeitverlaufs der dynamischen Elastance quantifiziert werden konnte, war mit der Rekrutierung während der Zufälligen Variablen Beatmung in numerischen Simulationen assoziiert. Die Periodisch Variable Beatmung verbesserte die arterielle Oxygenierung in einem klinisch relevanten Umfang ohne gleichzeitige Verbesserung der Lungenrekrutierung im Vergleich zur Zufälligen Variablen Beatmung in einem Doppelhit-Modell des ARDS am Schwein. Weder Kardiovaskulär-respiratorische Wechselwirkungen noch die Asymmetrien der Rekrutierungs- und Derekruitierungsdynamik standen mit dieser Verbesserung im Zusammenhang.
14

Einfluss eines Beatmungshelmes auf die Leistung zweier verschiedener Intensivbeatmungsgeräte im Vergleich zu einer Gesichtsmaske und zur invasiven Beatmung - Eine experimentelle Lungenmodelluntersuchung / Influence of a helmet for noninvasive ventilation on the mechanical properties and performance of a respiratory system compared to a facemask and invasive ventilation - a lung model study

Fischer, Sven 10 October 2012 (has links)
No description available.
15

Einsatz der LMA-ProSeal(TM) auf der postoperativen Intensivstation unter besonderer Berücksichtigung hämodynamischer und respiratorischer Parameter. / Use of the LMA-ProSeal on the postoperative intensive care unit.

Goetze, Benjamin 11 February 2010 (has links)
No description available.
16

Die Praxis der Analgosedierung kritisch kranker, beatmungspflichtiger Patienten auf bundesdeutschen Intensivpflegestationen - Ergebnisse einer deutschlandweiten Umfrage

Parsch, Axel-Joachim, January 2008 (has links)
Ulm, Univ., Diss., 2008.
17

Ventilationsmechanik und Gasaustausch: Identifikation eines vereinigten Modells bei maschineller Beatmung

Winkler, Tilo 10 November 2021 (has links)
Die Analyse komplexer Zusammenhänge durch Modellierung und Simulation hat in der Medizin stark zugenommen. Bei der funktionellen Analyse des respiratorischen Systems bilden Ventilationsmechanik und Gasaustausch zwei wesentliche Schwerpunkte, die sich in komplexen Modellen vereinigen lassen. Die Identifikation der Parameter eines vereinigten Modells anhand von Messungen bei Patienten liefert differenzierte Informationen über deren Zustand. Die allgemeinen Rahmenbedingungen bei dieser wie bei jeder anderen Identifikation sind philosophischer Natur und werden in einem erkenntnistheoretischen Kapitel behandelt. Schwerpunkte der Identifikation des vereinigen Modells sind: Ventilationsmechanik, anatomischer Totraum und Perfusionsverteilung.:Verzeichnis der Abkürzungen IX 1 Einleitung 1 2 Modellierung und Modelle – die Widerspiegelung der Realität 3 3 Modelle des respiratorischen Systems 11 3.1 Atmung und maschinelle Beatmung 11 3.2 Anatomie 12 3.3 Physiologie 14 3.4 Modelle der Ventilationsmechanik 18 3.5 Modelle für Gasaustausch, -mischung und -transport 21 3.6 Vereinigtes Modell der Ventilationsmechanik und des Gasaustauschs 22 3.7 Modelle und Entscheidungsunterstützungssysteme 23 3.8 Problemstellung und Motivation 25 4 Modellstruktur – Verteilungsmuster lungenphysiologischer Parameter 27 4.1 Grundlagen 27 4.2 Verteilungen lungenphysiologischer Parameter 28 4.3 Approximation – Struktur des vereinigten Modells 30 5 Messungen am Patienten 32 5.1 Vorbereitung 32 5.2 Protokoll 34 6 Ventilationsmechanik 36 6.1 Systemtheoretische Grundlagen der Identifikation 36 6.1.1 Systemtheoretische Ein-/Ausgangsbeschreibung 37 6.1.2 Selektion der Methoden zur Identifikation 38 6.2 Übertragungsfunktionen der Modelle 46 6.2.1 Zeitkontinuierliche Modelle 46 6.2.2 Zeitdiskrete Modelle 48 6.3 Rückrechnung der identifizierten Parameter in physikalische 50 6.4 Gütekriterium, Restriktion und Vergleichsmethode 51 6.5 Ergebnisse der Identifikation 53 6.5.1 Thoraxmechanik 53 6.5.2 Mechanik des respiratorischen Systems 57 6.6 Diskussion 68 7 Anatomischer Totraum 74 7.1 Grundlagen 74 7.2 Identifikation des Anstiegs der Phase III des Exspirogramms 75 7.3 Identifikation des seriellen Totraums 77 7.4 Diskussion 81 8 Perfusionsverteilung und Gasaustausch 84 8.1 Grundlagen 84 8.2 Blutgasmodelle 85 8.3 Modelle des stationären Gasaustauschs 87 8.4 Modell des an die Ventilationsmechanik gekoppelten Gasaustauschs 92 8.5 Diskussion 96 9 Zusammenfassung 99 A Anhang 102 A-1 Fachglossar 102 A-2 Indirekte Messung der Pleuradruckänderung mit ösophagealem Ballon 105 A-3 Grundlagen der multiplen Inertgaseliminationstechnik (MIGET) 106 A-4 Anmerkungen zum Abtasttheorem 108 A-5 Bestimmung der Flow-Sensor-Kennlinie mit einer Kalibrierspritze 109 A-6 Rückrechnung der identifizierten in physikalische Parameter 110 A-7 Dokumentation zum Einfluß der Filterperiodendauer TF auf die Standardabweichung des Identifikationsfehlers 113 Literaturverzeichnis 115 / The analysis for complex relationships using modeling and simulation in medicine has substantially increased. Ventilation mechanics and gas exchange are the key elements of the functional analysis of the respiratory system and can be united in a complex model. The parameter identification of the unified model based on patient measurements provides detailed information about the patient's status. The general framework of this and other identifications is philosophical and discussed in an epistemological chapter. The key topics of the identification of the unified model are ventilation mechanics, anatomical dead space, and perfusion distribution.:Verzeichnis der Abkürzungen IX 1 Einleitung 1 2 Modellierung und Modelle – die Widerspiegelung der Realität 3 3 Modelle des respiratorischen Systems 11 3.1 Atmung und maschinelle Beatmung 11 3.2 Anatomie 12 3.3 Physiologie 14 3.4 Modelle der Ventilationsmechanik 18 3.5 Modelle für Gasaustausch, -mischung und -transport 21 3.6 Vereinigtes Modell der Ventilationsmechanik und des Gasaustauschs 22 3.7 Modelle und Entscheidungsunterstützungssysteme 23 3.8 Problemstellung und Motivation 25 4 Modellstruktur – Verteilungsmuster lungenphysiologischer Parameter 27 4.1 Grundlagen 27 4.2 Verteilungen lungenphysiologischer Parameter 28 4.3 Approximation – Struktur des vereinigten Modells 30 5 Messungen am Patienten 32 5.1 Vorbereitung 32 5.2 Protokoll 34 6 Ventilationsmechanik 36 6.1 Systemtheoretische Grundlagen der Identifikation 36 6.1.1 Systemtheoretische Ein-/Ausgangsbeschreibung 37 6.1.2 Selektion der Methoden zur Identifikation 38 6.2 Übertragungsfunktionen der Modelle 46 6.2.1 Zeitkontinuierliche Modelle 46 6.2.2 Zeitdiskrete Modelle 48 6.3 Rückrechnung der identifizierten Parameter in physikalische 50 6.4 Gütekriterium, Restriktion und Vergleichsmethode 51 6.5 Ergebnisse der Identifikation 53 6.5.1 Thoraxmechanik 53 6.5.2 Mechanik des respiratorischen Systems 57 6.6 Diskussion 68 7 Anatomischer Totraum 74 7.1 Grundlagen 74 7.2 Identifikation des Anstiegs der Phase III des Exspirogramms 75 7.3 Identifikation des seriellen Totraums 77 7.4 Diskussion 81 8 Perfusionsverteilung und Gasaustausch 84 8.1 Grundlagen 84 8.2 Blutgasmodelle 85 8.3 Modelle des stationären Gasaustauschs 87 8.4 Modell des an die Ventilationsmechanik gekoppelten Gasaustauschs 92 8.5 Diskussion 96 9 Zusammenfassung 99 A Anhang 102 A-1 Fachglossar 102 A-2 Indirekte Messung der Pleuradruckänderung mit ösophagealem Ballon 105 A-3 Grundlagen der multiplen Inertgaseliminationstechnik (MIGET) 106 A-4 Anmerkungen zum Abtasttheorem 108 A-5 Bestimmung der Flow-Sensor-Kennlinie mit einer Kalibrierspritze 109 A-6 Rückrechnung der identifizierten in physikalische Parameter 110 A-7 Dokumentation zum Einfluß der Filterperiodendauer TF auf die Standardabweichung des Identifikationsfehlers 113 Literaturverzeichnis 115
18

Ventilator-assoziierte Pneumonien auf Intensivstationen des Universitätsklinikums Leipzig: Epidemiologie, Risikofaktoren, Prävention und Diagnostik

Kleine, Fabian 01 April 2019 (has links)
Diese Arbeit befasst sich mit der Analyse Ventilator-assoziierter Pneumonien (VAP) auf drei Intensivstationen des Universitätsklinikums Leipzig. Die vorliegende Dissertation beschäftigt sich mit epidemiologischen Kennzahlen, Risikofaktoren, Präventionsmaßnahmen sowie der Diagnostik nach CDC Kriterien. Dabei wird besonders die Bedeutung der VAP auf den untersuchten Intensivstationen dargestellt. Aus den untersuchten Variablen werden Präventionsmaßnahmen abgeleitet und ein Maßnahmen-Bündel vorgeschlagen. Die Diagnostik nach CDC Kriterien wird genauer analysiert und bewertet.:Abkürzungsverzeichnis 1 Einführung 1.1 Einleitung 1.2 Theoretischer Hintergrund 1.2.1 Definition 1.2.2 Epidemiologie der Ventilator-assoziierten Pneumonie 1.2.3 Ventilator-assoziierte Pneumonien in verschiedenen Alterskategorien 1.2.4 Bedeutung einer Ventilator-assoziierten Pneumonie 1.2.5 Prävention einer Ventilator-assoziierten Pneumonie 1.2.6 Schwierigkeiten bei der Diagnostik einer Ventilator-assoziierten Pneumonie 2 Aufgabenstellung und Ziele 3 Materialien und Methoden 3.1 Ethikvotum 3.2 Einschlusskriterien 3.3 Patientenauswahl und Selektion der untersuchten Variablen 3.3.1 Allgemeine Faktoren 3.3.2 Beatmungsassoziierte Faktoren 3.3.3 Pflegerische und medizinische Maßnahmen 3.3.4 Weitere Maßnahmen 3.4 Statistische Analyse 4 Ergebnisse 4.1 Vergleich der Patienten mit und ohne Ventilator-assoziierte Pneumonie 4.1.1 Allgemeine Faktoren 4.1.2 Beatmungsassoziierte Faktoren 4.1.3 Pflegerische und medizinische Maßnahmen 4.1.4 Weitere Maßnahmen 4.1.5 Univariate Risikoanalyse 4.1.6 Multivariate Risikoanalyse 4.1.7 Patienten mit early-onset und late-onset VAP 4.2 Vergleich der Patienten mit und ohne Ventilator-assoziierte Pneumonie hinsichtlich der Alterskategorien „Jung“, „Mittel-Alt“, „Alt“ und „Sehr Alt“ 4.2.1 Allgemeine Faktoren 4.2.2 Beatmungsassoziierte Faktoren 4.2.3 Pflegerische und medizinische Maßnahmen 4.2.4 Weitere Maßnahmen 4.2.5 Univariate Risikoanalyse 4.2.6 Multivariate Risikoanalyse 5 Diskussion 5.1 Vergleich der Patienten mit und ohne Ventilator-assoziierte Pneumonie 5.1.2 Allgemeine Faktoren 5.1.2 Beatmungsassoziierte Faktoren 5.1.3 Pflegerische und medizinische Maßnahmen 5.1.4 Weitere Maßnahmen 5.1.5 Early- und late-onset VAP 5.1.6 Zwischenfazit 5.2 Vergleich der Patienten mit und ohne Ventilator-assoziierte Pneumonie hinsichtlich der Alterskategorien „Jung“, „Mittel-Alt“, „Alt“ und „Sehr Alt“ 5.2.1 Allgemeine Faktoren 5.2.2 Beatmungsassoziierte Faktoren 5.2.3 Pflegerische und medizinische Maßnahmen 5.2.4 Weitere Maßnahmen 5.2.5 Zwischenfazit 5.3 Limitationen 6 Zusammenfassung der Arbeit 7 Literatur-, Tabellen- und Abbildungsverzeichnis 7.1 Literaturverzeichnis 7.2 Tabellenverzeichnis 7.3 Abbildungsverzeichnis 8 Anhang 9 Selbstständigkeitserklärung und Danksagung 9.1 Erklärung über die eigenständige Abfassung der Arbeit 9.2 Lebenslauf 9.3 Danksagung
19

Pulmonale und hämodynamische Veränderungen nach 24 Stunden individualisierter maschineller Beatmung bei experimentellem Lungenversagen durch Säureaspiration beim Schwein

Buchloh, Dorina Christin 25 November 2022 (has links)
Die Durchführung einer maschinellen Beatmungstherapie im Rahmen eines akuten Lungenversagens birgt die Gefahr potenzieller Nebenwirkungen und Komplikationen. Oberste Priorität ist, die Lunge durch die maschinelle Beatmung nicht zusätzlich zu schädigen und einen beatmungs-induzierten/-assoziierten Lungenschaden (VILI/VALI) zu vermeiden. Forschungsergebnisse konnten zeigen, dass Beatmungsstrategien mit niedrigem positivem endexspiratorischem Druck (PEEP) sowie hohen Tidalvolumina (VT) zu einer vermehrten Überdehnung der Alveolen sowie vermehrtem zyklischen Öffnen und Kollabieren instabiler Alveolarregionen führt, wodurch Scherkräfte entstehen, welche die Lunge schädigen. Dies kann den Verlauf der Erkrankung maßgeblich beeinflussen und zudem zu einer erhöhten Letalität führen. Uneinigkeit besteht weiterhin bezüglich der Wahl des für den individuellen Patienten adäquaten PEEP. So ermöglicht die Verwendung der ARDSnet-Tabelle zwar eine unkomplizierte bettseitige Auswahl des PEEP anhand der erforderlichen inspiratorischen Sauerstoffkonzentration, berücksichtigt jedoch nicht die individuellen atemmechanischen Gegebenheiten. Verfahren zur bettseitigen Ermittlung individueller krankheitsspezifischer und atemmechanischer Charakteristika sind deutlich aufwendiger und bedürfen eines hohen Maßes an praktischer Erfahrung. In der hier vorliegenden Studie wurde ein tierexperimenteller Langzeitversuch (24 h) mit Auslösung eines akuten Lungenversagens (ARDS) durch ein Salzsäure-Aspirationsmodell am Schwein durchgeführt. Es erfolgte der randomisierte Vergleich dreier Beatmungsstrategien: ARDS-low-PEEP-Tabelle (ARDSnet-Gruppe), Open Lung Concept (OLC-Gruppe) sowie Elektroimpedanztomographie (EIT-Gruppe), zur Findung der optimalen Beatmungsstrategie im Rahmen eines akuten Lungenversagens. Die Versuchsreihe wurde durch die Tierschutzbehörde der Landesdirektion Leipzig nach §8 des Tierschutzgesetztes (Aktenzeichen TVV 35/11) genehmigt und in der Veterinärmedizinischen Fakultät der Universität Leipzig durchgeführt.:Inhaltsverzeichnis Abkürzungs- und Akronymverzeichnis 1 Einführung in die Thematik 1.1 Einleitung 1.2 Das akute Lungenversagen - Acute Respiratory Distress Syndrome (ARDS) - Definition und Pathophysiologie 1.3 Salzsäure-Aspiration als ARDS-Modell 1.4 Dynamische Parameter der Atemmechanik und deren Bedeutung im ARD 1.4.1 Bedeutung der Compliance und ihre Messung 1.4.2 Driving Pressure (∆p) 1.5 Maschinelle Beatmung 1.6 Verglichene Beatmungsstrategien 1.6.1 ARDSnetwork Protokoll (ARDSnet-Gruppe) 1.6.2 Open Lung Concept (OLC-Gruppe) 1.6.3 Elektroimpedanztomographie (EIT-Gruppe) 1.7 Quantitative Auswertung der Computertomographie (CT) - Tidale Rekrutierung 2 Zielstellung 3 Publikationsmanuskript 4 Zusammenfassung der Arbeit 5 Ergänzendes Material 6 Literaturverzeichnis 7 Darstellung des eigenen Beitrags 8 Selbstständigkeitserklärung 9 Teilnahmebescheinigung der Vorlesung: „Gute wissenschaftliche Praxis“ an der medizinischen Fakultät der Universität Leipzig 10 Curriculum Vitae - Lebenslauf 11 Publikationen 12 Danksagung
20

Characterization of mass transport in the upper human airways

Bauer, Katrin 22 February 2012 (has links) (PDF)
Mechanical ventilation can be a life saving treatment. However, due to the inhomogeneous and anisotropic behavior of the lung tissue, ventilation can also lead to overdistensions of lung regions whereas other areas remain even collapsed. A first step is a more comprehensive understanding of the flow mechanics under normal breathing conditions in a healthy lung as well as for a diseased, collapsed lung. This is the aim of this work. Therefore, a realistic model of the upper human airways has been generated at which experimental and numerical investigations could be carried out. Experimentally, the flow was analyzed by means of Particle Image Velocimetry (PIV) measurements which revealed new details about the flow patterns occurring during different ventilation frequencies. Numerical results were in good agreement with the experimental results and could provide new details about the three-dimensional flow structure and emerging secondary flow within the upper airways. The study of reopening of collapsed airways has shown that larger frequencies lead to airway reopening without overdistension of already open parts. Higher frequencies also lead to homogenization of mass flow distribution within the human lung. / Künstliche Beatmung ist meist eine lebensrettende Maßnahme. Aufgrund der räumlich anisotropen und inhomogenen Eigenschaften der Lunge kann die Beatmung jedoch auch zu einer Schädigung der Lunge führen. Daraus ergibt sich die Forderung einer „Protektiven Beatmung“. Ein erster Schritt dahingehend ist ein verbessertes Verständnis der Atmung und Beatmung am Beispiel der gesunden sowie kranken, teilweise kollabierten Lunge. Dies ist das Ziel der Arbeit. Hierfür wurde ein realistisches Modell der oberen Atemwege (Tracheobronchialbaum) angefertigt. An diesem Modell können sowohl experimentelle als auch numerische Untersuchungen durchgeführt werden. Experimentell wurde die Strömung mittels Particle Image Velocimetry (PIV) untersucht, wobei neue Details bezüglich der auftretenden Strömungsmuster für unterschiedliche Frequenzen gefunden wurden. Numerische Strömungsberechnungen stimmen gut mit den experimentellen Ergebnissen überein. Dreidimensionale Strömungsstrukturen sowie die Entwicklung von Sekundärwirbeln in der Lunge konnten erklärt werden. Eine Studie am kranken, teilweise kollabierten Lungenmodell zeigte, dass mit steigender Frequenz kollabierte Bereiche wiedereröffnet werden können. Höhere Frequenzen führen weiterhin zu einer Homogenisierung der Massenstromverteilung in der Lunge.

Page generated in 0.0381 seconds