• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 42
  • 15
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Challenges of and opportunities for protecting European soil biodiversity

Zeiss, Romy, Eisenhauer, Nico, Orgiazzi, Alberto, Rillig, Matthias, Buscot, Francois, Jones, Arwyn, Lehmann, Anika, Reitz, Thomas, Smith, Linnea, Guerra, Carlos A. 13 May 2024 (has links)
Soil biodiversity and related ecosystem functions are neglected in most biodiversity assessments and nature conservation actions. We examined how society, and particularly policy makers, have addressed these factors worldwide with a focus on Europe and explored the role of soils in nature conservation in Germany as an example. We reviewed past and current global and European policies, compared soil ecosystem functioning inand outside protected areas, and examined the role of soils in nature conservation management via text analyses. Protection and conservation of soil biodiversity and soil ecosystem functioning have been insufficient. Soil-related policies are unenforceable and lack soil biodiversity conservation goals, focusing instead on other environmental objectives.We found no evidence of positive effects of current nature conservation measures in multiple soil ecosystem functions in Europe. In German conservation management, soils are considered only from a limited perspective (e.g., as physicochemical part of the environment and as habitat for aboveground organisms). By exploring policy, evidence, and management as it relates to soil ecosystems, we suggest an integrative perspective to move nature conservation toward targeting soil ecosystems directly (e.g., by setting baselines, monitoring soil threats, and establishing a soil indicator system).
32

Environmental and behavioral factors associated with the infestation of vineyards by larvae of grape root borer

Rijal, Jhalendra P. 03 April 2014 (has links)
Grape root borer, Vitacea polistiformis (Harris), is an oligophagous pest of grapevines in the eastern USA. Neonates must burrow into the soil to find grape roots. In Virginia, larvae feed on roots for ~2 years, then pupate just beneath the soil surface. Emerging adults leave an empty pupal exuviae at the soil surface around the vine base. There was no relationship between weekly captures in pheromone traps and pupal exuviae counts, indicating that exuviae sampling is most appropriate to assess infestations. Exuviae sampling in Virginia vineyards revealed infestations that ranged from light to very heavy. Eighteen biotic and abiotic variables were measured and used in analyses that assessed their relative contributions to differences in exuviae density. Water holding capacity and clay/sand ratio were most strongly associated with pupal exuviae density; these variables were used to develop a model for predicting the extent of infestation of individual vineyards. The spatial distribution of pupal exuviae was characterized using non-spatial and geospatial techniques. Although the non-spatial method (Taylor's Power Law) indicated that exuviae showed an aggregated distribution in all blocks, spatial methods (variograms, SADIE) revealed aggregated distributions only in blocks with ≥ 0.5 pupal exuviae per vine. Independent pupal exuviae samples for population assessment in vineyards can be achieved using sampling points separated by >8.8 m. Combined results from geospatial analyses and the temporal distribution of pupal exuviae within years enabled the development of a practical and quantitative sampling protocol. Bioassays used to measure the behavioral response of larvae to host stimuli revealed that neonates were attracted to grape root volatiles. In soil column bioassays, larvae moved vertically and horizontally over distances of up to 120 cm and apparently perceived the presence of grape roots from a distance of 5 cm in soil. Results are discussed in relation to their potential implications for monitoring and managing grape root borer. / Ph. D.
33

Ectomycorrhizal communities associated with a Pinus radiata plantation in the North Island, New Zealand

Walbert, Katrin January 2008 (has links)
Aboveground and belowground ectomycorrhizal (ECM) communities associated with different age classes of the exotic plantation species Pinus radiata were investigated over the course of two years in the North Island of New Zealand. ECM species were identified with a combined approach of morphological and molecular (restriction fragment length polymorphism (RFLP) and DNA sequencing) analysis. ECM species richness and diversity of a nursery in Rotorua, and stands of different ages (1, 2, 8, 15 and 26 yrs of age at time of final assessment) in Kaingaroa Forest, were assessed above- and belowground; furthermore, the correlation between the above- and belowground ECM communities was assessed. It was found that the overall and stand specific species richness and diversity of ECM fungi associated with the exotic host tree in New Zealand were low compared to similar forests in the Northern Hemisphere but similar to other exotic plantations in the Southern Hemisphere. Over the course of this study, 18 ECM species were observed aboveground and 19 ECM species belowground. With the aid of molecular analysis the identities of Laccaria proxima and Inocybe sindonia were clarified. In the aboveground study, five species were found associated with P. radiata that were previously not reported with this host in New Zealand (Inocybe sindonia, Lactarius rufus, Lycoperdon gunii, Rhizopogon pseudoroseolus and Wilcoxina mikolae). Belowground, the species Psudotomentella sp., P. tristis, R. luteorubescens, Tomentella sp., Wilcoxina mikolae were found as new associates of P. radiata in New Zealand, additionally nine ECM types were found that could not be identified with molecular analysis. There was little correlation between the species fruiting and the species colonising root tips. Only seven species were found in common between the above- and belowground communities, furthermore the dominant species aboveground were not observed in the belowground ECM communities. The influence of host age on the above- and belowground ECM communities of different age classes of P. radiata plantations was investigated. The aboveground species richness increased from the nursery to the oldest age group investigated (26 yrs), while diversity increased to the 15 yr old age group and decreased slightly to the oldest stand. A clear sequence of ECM species changes was observed to be related to stand age with a growing complexity over the chronosequence. The belowground ECM communities showed a different picture and richness and diversity initially decreased from the nursery to the outplanting but increased thereafter. Belowground no change in ECM composition that was directly related to the age of the host was observed, but two distinct groups of ECM species were found – a 'young' and a 'plantation forest' group, with the respective discriminating species being Rhizopogon rubescens and Type unknown Basidiomycete/Amanita muscaria. Another aspect of the study was the fate of the nursery ECM species in the outplanting and the arrival of non-nursery species. The ECM communities of seedlings in the nursery were investigated in 2006 and these seedlings were followed up over eight assessments in the field for one year, furthermore data from the 1-, 2 and 8 yr old plantation stands was analysed. It was found that the nursery species do survive the first year of outplanting and are dominant in the first year. The first non-nursery species occurred six months after outplanting but was only in minor abundance. Nursery ECM were dominant for two years after the seedlings were planted, and were completely replaced after seven years. Rhizopogon rubescens was found to be the most persistent and dominant species in the outplanting, facilitating the successful establishment of the seedlings in the plantation forest.
34

Fine root traits, belowground interactions and competition effects on the rhizosphere of <i>Fagus sylvatica</i> and <i>Fraxinus excelsior</i> saplings

Beyer, Friderike 05 December 2012 (has links)
No description available.
35

Eco-Hydrology of a Seasonally Dry Tropical Forest : Tree Growth, Belowground Water Dynamics and Drought-Vulnerability

Tarak, Rutuja Chitra January 2016 (has links) (PDF)
Tropical forests are storehouses of more thanhalf of the world‘s biodiversity and play a key role in global carbon, water and energy cycles. However, as a consequence of rapid anthropogenic climate change, biodiversity and climate functions of these forests are under a threat. Climate is changing not only in mean state but its variability is increasing, with extreme events such as droughts, heat waves and storms also rising. Water is fundamental to plants‘ existence, and in the tropics, is a key determinant of plant species‘richness, composition, growth and survival. There is thus an increasing interest in understanding how changing rainfall may cause functional changes in forests or change their species composition. Therefore, the overarching goal of thisdissertation was to understand the impact of water variability on tropical forest tree growth and vulnerability to drought.Forest tree growth along spatial and temporal rainfall gradientsObservational studies that measure whole forest tree growth along spatial or temporal gradients of rainfall are the most common way of formulating forest growth response curves to water availability, when manipulative experiments are cost-prohibitive or impractical (fire or large mammal disturbance). In the tropics, since very few species show anatomically distinct tree rings, estimating tree growth from trunk diameter is the standard practice to obtain growth patterns across species. However, this method—of equating woody growth to diameter change--is susceptible to bias from water-induced stem flexing. In the absence of bias correction, temporal variability in growth is likely to be overestimated and incorrectly attributed to fluctuations in resource availability, especially in forests with high seasonal and inter-annual variability in water. This problem has been largely ignored in the absence of any corrective measure and due to under-appreciation of the magnitude of error. While diameter re-censuses in permanent sampling plots (PSPs) have been most commonly done at 3-5 year scale (using a graduate tape), increasingly they are done at seasonal and annual scales (using band dendrometers) to closely match variation in rainfall, the scales at which hydrostatic bias may be greater in magnitude relative to woody growth. Besides, along a spatial rainfall gradient, inter-annual variability in water may vary, causing systematic differences in the hydrostatic bias for forests along the gradient. Therefore, one broad objective of this thesis was to evaluate the problem of hydrostatic bias in whole forest growth-rainfall relationship at annual and supra-annual scales, for temporal as well as spatial rainfall gradients and propose and test a novel corrective solution.Further, it also examines if growth-diameter relationship vary along the spatial gradient, which it may arise due to differences in light environments and/or disturbance history and species composition. The missing link of Eco-hydrology Differential responses of tree species in terms of growth and survival to variation in water that they can access, the proximate cause is likely shaped through their life-history strategies, the ultimate cause. However, we neither know the depths at which the diverse tree species in a forest draw water from and its dynamics, nor variation in water at those depths vis-à-vis rainfall patterns—for lack of appropriate methods. This has been a key missing link in understanding how water shapes trees‘ life-history strategies, their demographic trade-offs and co-existence, and also our predictive ability to determine species-specific responses to changing rainfall patterns, especially droughts. Since droughts are highly stochastic events and trees‘ responses to their drought ―experiences‖ may be revealed at decadal scales, long-term evaluations are key. Therefore, the second broad objective of this thesis was to develop a framework to determine trees’ water uptake depths, variation in water availability at those depths and trees’ demographic responses over multiple decades. From this, to understand how belowground hydrology shapes drought-vulnerability, demographic trade-offs and coexistence of forest tree species. This thesis titled—Eco-Hydrology of a Seasonally Dry Tropical Forest: Tree Growth, Belowground Water Dynamics and Drought-Vulnerability—is organized as follows: Chapter 1 lays down an introduction to the thesis, followed by a description of the study site and datasets used in the thesis in Chapter 2. This thesis uses a variety of methods and multiple datasets, all of which are from the protected Seasonally Dry Tropical Forests of the Western Ghats in southern India in the Mudumalai and Bandipur National Parks. It is then followed by three data chapters: Chapter 3 describes the seasonal fluctuations in a five year long (1980-1985) tree diameter time series (using dendrometers) of a Seasonally Dry Tropical Forest in Bandipur National Park to illustrate the issue of hydrostatic stem-flexing. It investigates the possibility that band dendrometers may themselves underestimate stem shrinkage at diurnal or seasonal scale. It also evaluates if there could be a best season and time of the day for undertaking forest diameter censuses that can minimize hydrostatic bias. Chapter 4(published in Forest Ecology and Management)measures the hydrostatic bias in a sample of trees in a 50 ha PSP of a Seasonally Dry Tropical Forest in Mudumalai National Park, and proposes a novel way to correct this bias at the whole community level in the 20 year long 4-year interval growth time series. Chapter 5 (in review with Environmental Research Letters) investigates and presents two new confounding factors in growth-rainfall relationships along a spatial rainfall gradient: hydrostatic bias and size-dependency in growth rates. For this it evaluates forest tree growth estimates in seven 1-ha PSPs (~800 trees, 3-year annual time series 9using dendrometers) along a 1000 mm rainfall gradient spanning a mesic savanna-moist forest transition in Mudumalai National Park. Using the period for which seasonal diameter time series was available (2 yrs), it evaluates if the extent of seasonal fluctuations systematically vary along the gradient—most likely due to hydrostatic stem flexing. It also describes the presence of an anomalous size-diameter relationship in the mesic savanna from a large plots (50 ha PSP, diameter records using graduated tape). These observations are then used to draw insights for ―space for time‖ substitution modeling. Chapter 6 (in prep for Nature Plants) analyses belowground water environments of trees over two decades (1992-2012), a period that includes a prolonged and intense drought, in the 50 ha PSP of a Seasonally Dry Tropical Forest in Mudumalai. It uses a locally parametarised dynamic hydrological model in which site rainfall is also a forcing variable. It then develops a novel dynamic growth model and inversely estimates water uptake depths for adult trees of all common species (include ~9000 trees) in the PSP from their above-ground growth patterns over two decades vis-à-vis belowground water availability at multiple depths. It then examines if species‘ water uptake depth obtained thus is a predictor of their drought-driven mortality. Finally, this is used to evaluate the hydrological niche partitioning tree species operate under and how that drives their water uptake strategies, demographic trade-offs, and drought-vulnerability. Summarizes the thesis and suggests future directions
36

Impact de Heterodera glycines sur la réaction de défense du soya (Glycine max) et influence sur la gestion de Aphis glycines dans un contexte climatique actuel et futur

Maheux, Lydia 09 1900 (has links)
No description available.
37

Vnímání heterogenity půd rostlinami v polopřirozených podmínkách / Plant perception of soil heterogeneity in the field

Hrouda, Adam January 2021 (has links)
Nutrients are usually patchily distributed in natural soils. Plants are often able to respond to nutrient heterogeneity in artificial conditions by active plastic changes of root system morphology. The occurrence or magnitude of a foraging response can be altered by the presence of competition. However, it is unclear to what extent root foraging takes place in the field. I conducted a field experiment in order to determine the effect of an artificial nutrient patch on fine belowground biomass of (a) an established community and (b) model plants. The study array consisted of a grid of 30×30 cm plots with model plants located in the centre. Half of the plots contained the artificial patch located 5.5 cm from the model plant. Fertilizer patch treatment did not increase mean plot fine underground biomass. Instead, fine underground biomass was higher in places of greater soil moisture estimated from mean plot EIVs. Neither total model plant root biomass nor proportion of roots in the enriched quarter increased in the fertilizer treatment. Competition was probably higher in fertilized than in control plots judging by a 2-fold increase in death rate of model plants. However, greater proportion of model plants flowered in the treatment plots. Possible causes include a plastic response to the patch as well...
38

Shade trees in cacao agroforestry systems: influence on roots and net primary production

Abou Rajab, Yasmin Joana Monna 10 December 2015 (has links)
No description available.
39

The role of different modes of interactions among neighbouring plants in driving population dynamics

Lin, Yue 18 February 2013 (has links) (PDF)
The general aim of my dissertation was to investigate the role of plant interactions in driving population dynamics. Both theoretical and empirical approaches were employed. All my studies were conducted on the basis of metabolic scaling theory (MST), because the complex, spatially and temporally varying structures and dynamics of ecological systems are considered to be largely consequences of biological metabolism. However, MST did not consider the important role of plant interactions and was found to be invalid in some environmental conditions. Integrating the effects of plant interactions and environmental conditions into MST may be essential for reconciling MST with observed variations in nature. Such integration will improve the development of theory, and will help us to understand the relationship between individual level process and system level dynamics. As a first step, I derived a general ontogenetic growth model for plants which is based on energy conservation and physiological processes of individual plant. Taking the mechanistic growth model as basis, I developed three individual-based models (IBMs) to investigate different topics related to plant population dynamics: 1. I investigated the role of different modes of competition in altering the prediction of MST on plant self-thinning trajectories. A spatially-explicit individual-based zone-of-influence (ZOI) model was developed to investigate the hypothesis that MST may be compatible with the observed variation in plant self-thinning trajectories if different modes of competition and different resource availabilities are considered. The simulation results supported my hypothesis that (i) symmetric competition (e.g. belowground competition) will lead to significantly shallower self-thinning trajectories than asymmetric competition as predicted by MST; and (ii) individual-level metabolic processes can predict population-level patterns when surviving plants are barely affected by local competition, which is more likely to be in the case of asymmetric competition. 2. Recent studies implied that not only plant interactions but also the plastic biomass allocation to roots or shoots of plants may affect mass-density relationship. To investigate the relative roles of competition and plastic biomass allocation in altering the mass-density relationship of plant population, a two-layer ZOI model was used which considers allometric biomass allocation to shoots or roots and represents both above- and belowground competition simultaneously via independent ZOIs. In addition, I also performed greenhouse experiment to evaluate the model predictions. Both theoretical model and experiment demonstrated that: plants are able to adjust their biomass allocation in response to environmental factors, and such adaptive behaviours of individual plants, however, can alter the relative importance of above- or belowground competition, thereby affecting plant mass-density relationships at the population level. Invalid predictions of MST are likely to occur where competition occurs belowground (symmetric) rather than aboveground (asymmetric). 3. I introduced the new concept of modes of facilitation, i.e. symmetric versus asymmetric facilitation, and developed an individual-based model to explore how the interplay between different modes of competition and facilitation changes spatial pattern formation in plant populations. The study shows that facilitation by itself can play an important role in promoting plant aggregation independent of other ecological factors (e.g. seed dispersal, recruitment, and environmental heterogeneity). In the last part of my study, I went from population level to community level and explored the possibility of combining MST and unified neutral theory of biodiversity (UNT). The analysis of extensive data confirms that most plant populations examined are nearly neutral in the sense of demographic trade-offs, which can mostly be explained by a simple allometric scaling rule based on MST. This demographic equivalence regarding birth-death trade-offs between different species and functional groups is consistent with the assumptions of neutral theory but allows functional differences between species. My initial study reconciles the debate about whether niche or neutral mechanisms structure natural communities: the real question should be when and why one of these factors dominates. A synthesis of existing theories will strengthen future ecology in theory and application. All the studies presented in my dissertation showed that the approaches of individual-based and pattern-oriented modelling are promising to achieve the synthesis.
40

The role of different modes of interactions among neighbouring plants in driving population dynamics

Lin, Yue 22 January 2013 (has links)
The general aim of my dissertation was to investigate the role of plant interactions in driving population dynamics. Both theoretical and empirical approaches were employed. All my studies were conducted on the basis of metabolic scaling theory (MST), because the complex, spatially and temporally varying structures and dynamics of ecological systems are considered to be largely consequences of biological metabolism. However, MST did not consider the important role of plant interactions and was found to be invalid in some environmental conditions. Integrating the effects of plant interactions and environmental conditions into MST may be essential for reconciling MST with observed variations in nature. Such integration will improve the development of theory, and will help us to understand the relationship between individual level process and system level dynamics. As a first step, I derived a general ontogenetic growth model for plants which is based on energy conservation and physiological processes of individual plant. Taking the mechanistic growth model as basis, I developed three individual-based models (IBMs) to investigate different topics related to plant population dynamics: 1. I investigated the role of different modes of competition in altering the prediction of MST on plant self-thinning trajectories. A spatially-explicit individual-based zone-of-influence (ZOI) model was developed to investigate the hypothesis that MST may be compatible with the observed variation in plant self-thinning trajectories if different modes of competition and different resource availabilities are considered. The simulation results supported my hypothesis that (i) symmetric competition (e.g. belowground competition) will lead to significantly shallower self-thinning trajectories than asymmetric competition as predicted by MST; and (ii) individual-level metabolic processes can predict population-level patterns when surviving plants are barely affected by local competition, which is more likely to be in the case of asymmetric competition. 2. Recent studies implied that not only plant interactions but also the plastic biomass allocation to roots or shoots of plants may affect mass-density relationship. To investigate the relative roles of competition and plastic biomass allocation in altering the mass-density relationship of plant population, a two-layer ZOI model was used which considers allometric biomass allocation to shoots or roots and represents both above- and belowground competition simultaneously via independent ZOIs. In addition, I also performed greenhouse experiment to evaluate the model predictions. Both theoretical model and experiment demonstrated that: plants are able to adjust their biomass allocation in response to environmental factors, and such adaptive behaviours of individual plants, however, can alter the relative importance of above- or belowground competition, thereby affecting plant mass-density relationships at the population level. Invalid predictions of MST are likely to occur where competition occurs belowground (symmetric) rather than aboveground (asymmetric). 3. I introduced the new concept of modes of facilitation, i.e. symmetric versus asymmetric facilitation, and developed an individual-based model to explore how the interplay between different modes of competition and facilitation changes spatial pattern formation in plant populations. The study shows that facilitation by itself can play an important role in promoting plant aggregation independent of other ecological factors (e.g. seed dispersal, recruitment, and environmental heterogeneity). In the last part of my study, I went from population level to community level and explored the possibility of combining MST and unified neutral theory of biodiversity (UNT). The analysis of extensive data confirms that most plant populations examined are nearly neutral in the sense of demographic trade-offs, which can mostly be explained by a simple allometric scaling rule based on MST. This demographic equivalence regarding birth-death trade-offs between different species and functional groups is consistent with the assumptions of neutral theory but allows functional differences between species. My initial study reconciles the debate about whether niche or neutral mechanisms structure natural communities: the real question should be when and why one of these factors dominates. A synthesis of existing theories will strengthen future ecology in theory and application. All the studies presented in my dissertation showed that the approaches of individual-based and pattern-oriented modelling are promising to achieve the synthesis.

Page generated in 0.0457 seconds