• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 42
  • 15
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The hidden life of plants : fine root dynamics in northern ecosystems

Blume-Werry, Gesche January 2016 (has links)
Fine roots constitute a large part of the primary production in northern (arctic and boreal) ecosystems, and are key players in ecosystem fluxes of water, nutrients and carbon. Data on root dynamics are generally rare, especially so in northern ecosystems. However, those ecosystems undergo the most rapid climatic changes on the planet and a profound understanding of form, function and dynamics of roots in such ecosystems is essential. This thesis aimed to advance our knowledge about fine root dynamics in northern ecosystems, with a focus on fine root phenology in natural plant communities and how climate change might alter it. Factors considered included thickness and duration of snow cover, thawing of permafrost, as well as natural gradients in temperature. Experiments and observational studies were located around Abisko (68°21' N, 18°45' E), and in a boreal forest close to Vindeln (64°14'N, 19°46'E), northern Sweden. Root responses included root growth, total root length, and root litter input, always involving seasonal changes therein, measured with minirhizotrons. Root biomass was also determined with destructive soil sampling. Additionally, aboveground response parameters, such as phenology and growth, and environmental parameters, such as air and soil temperatures, were assessed. This thesis reveals that aboveground patterns or responses cannot be directly translated belowground and urges a decoupling of above- and belowground phenology in terrestrial biosphere models. Specifically, root growth occurred outside of the photosynthetically active period of tundra plants. Moreover, patterns observed in arctic and boreal ecosystems diverged from those of temperate systems, and models including root parameters may thus need specific parameterization for northern ecosystems. In addition, this thesis showed that plant communities differ in root properties, and that changes in plant community compositions can thus induce changes in root dynamics and functioning. This underlines the importance of a thorough understanding of root dynamics in different plant community types in order to understand and predict how changes in plant communities in response to climate change will translate into root dynamics. Overall, this thesis describes root dynamics in response to a variety of factors, because a deeper knowledge about root dynamics will enable a better understanding of ecosystem processes, as well as improve model prediction of how northern ecosystems will respond to climate change.
22

The soil food web of temperate deciduous forests: litter and root resources as driving factors, and soil fauna effects on ecosystem processes

Grubert, Diana 04 April 2016 (has links)
No description available.
23

The hidden life of plants : fine root dynamics in northern ecosystems

Blume-Werry, Gesche January 2016 (has links)
Fine roots constitute a large part of the primary production in northern (arctic and boreal) ecosystems, and are key players in ecosystem fluxes of water, nutrients and carbon. Data on root dynamics are generally rare, especially so in northern ecosystems. However, those ecosystems undergo the most rapid climatic changes on the planet and a profound understanding of form, function and dynamics of roots in such ecosystems is essential. This thesis aimed to advance our knowledge about fine root dynamics in northern ecosystems, with a focus on fine root phenology in natural plant communities and how climate change might alter it. Factors considered included thickness and duration of snow cover, thawing of permafrost, as well as natural gradients in temperature. Experiments and observational studies were located around Abisko (68°21' N, 18°45' E), and in a boreal forest close to Vindeln (64°14'N, 19°46'E), northern Sweden. Root responses included root growth, total root length, and root litter input, always involving seasonal changes therein, measured with minirhizotrons. Root biomass was also determined with destructive soil sampling. Additionally, aboveground response parameters, such as phenology and growth, and environmental parameters, such as air and soil temperatures, were assessed. This thesis reveals that aboveground patterns or responses cannot be directly translated belowground and urges a decoupling of above- and belowground phenology in terrestrial biosphere models. Specifically, root growth occurred outside of the photosynthetically active period of tundra plants. Moreover, patterns observed in arctic and boreal ecosystems diverged from those of temperate systems, and models including root parameters may thus need specific parameterization for northern ecosystems. In addition, this thesis showed that plant communities differ in root properties, and that changes in plant community compositions can thus induce changes in root dynamics and functioning. This underlines the importance of a thorough understanding of root dynamics in different plant community types in order to understand and predict how changes in plant communities in response to climate change will translate into root dynamics. Overall, this thesis describes root dynamics in response to a variety of factors, because a deeper knowledge about root dynamics will enable a better understanding of ecosystem processes, as well as improve model prediction of how northern ecosystems will respond to climate change.
24

Performance of slash pine (Pinus elliottii Engelm.) containerized rooted cuttings and bare-root seedlings established on five planting dates in the flatlands of western Louisiana

Akgul, Alper 29 August 2005 (has links)
The forest product industry is keenly interested in extending the normal planting season, as well as in the comparative field performance of standard nursery bare-root seedlings and containerized rooted cuttings. The effect of seasonal planting dates on survival, above and belowground biomass allocation, water relations, gas exchange attributes and foliar carbon isotope composition (δ13C) of two stock types of slash pine (Pinus elliottii Engelm.) were examined. Slash pine bare-root seedlings (BRS) and containerized rooted cuttings (CRC) were hand planted in September, November, January, March and April in three consecutive planting seasons (2000-2001, 2001-2002 and 2002-2003) on three sites with silt loam topsoils in southwestern Louisiana. First-year mean survival of CRC across all planting dates and sites was consistently high at 96 to 98%, whereas BRS survival was significantly (P < 0.0001) lower at 59 to 81% and highly variable among study sites and dates through three planting seasons. Generally, there was a negative relationship between soil moisture at the time of planting and first-year survival of BRS planted September through March in 2001-2002 and 2002-2003 planting seasons, whereas the opposite was observed only for BRS planted in April 2002 and 2003. Survival of CRC was affected very little by the variation in soil moisture. Containerized rooted cuttings had higher early above and belowground biomass, and height and diameter than did BRS. However, three years after planting the size differences between stock types disappeared or became negligible. Early size differences among trees planted September through March also decreased after three years, although September trees were tallest. Growth of the April-planted trees was poor compared to trees planted in other months. Late-planted April trees had higher δ13C values, and higher water-use efficiency in the first growing season compared to earlier planted trees. Differences in δ13C values among the planting dates disappeared in the second growing season. Net photosynthesis rates did not differ considerably between stock types or among planting dates in the second and third growing seasons. This study indicates that it is possible to extend the planting season to as early as September and as late as March by using CRC.
25

Performance of slash pine (Pinus elliottii Engelm.) containerized rooted cuttings and bare-root seedlings established on five planting dates in the flatlands of western Louisiana

Akgul, Alper 29 August 2005 (has links)
The forest product industry is keenly interested in extending the normal planting season, as well as in the comparative field performance of standard nursery bare-root seedlings and containerized rooted cuttings. The effect of seasonal planting dates on survival, above and belowground biomass allocation, water relations, gas exchange attributes and foliar carbon isotope composition (&#948;13C) of two stock types of slash pine (Pinus elliottii Engelm.) were examined. Slash pine bare-root seedlings (BRS) and containerized rooted cuttings (CRC) were hand planted in September, November, January, March and April in three consecutive planting seasons (2000-2001, 2001-2002 and 2002-2003) on three sites with silt loam topsoils in southwestern Louisiana. First-year mean survival of CRC across all planting dates and sites was consistently high at 96 to 98%, whereas BRS survival was significantly (P < 0.0001) lower at 59 to 81% and highly variable among study sites and dates through three planting seasons. Generally, there was a negative relationship between soil moisture at the time of planting and first-year survival of BRS planted September through March in 2001-2002 and 2002-2003 planting seasons, whereas the opposite was observed only for BRS planted in April 2002 and 2003. Survival of CRC was affected very little by the variation in soil moisture. Containerized rooted cuttings had higher early above and belowground biomass, and height and diameter than did BRS. However, three years after planting the size differences between stock types disappeared or became negligible. Early size differences among trees planted September through March also decreased after three years, although September trees were tallest. Growth of the April-planted trees was poor compared to trees planted in other months. Late-planted April trees had higher &#948;13C values, and higher water-use efficiency in the first growing season compared to earlier planted trees. Differences in &#948;13C values among the planting dates disappeared in the second growing season. Net photosynthesis rates did not differ considerably between stock types or among planting dates in the second and third growing seasons. This study indicates that it is possible to extend the planting season to as early as September and as late as March by using CRC.
26

Mycorrhizal responses to defoliation of woody hosts

Saravesi, K. (Karita) 16 June 2008 (has links)
Abstract Mycorrhizal fungi are important contributors to the functioning of boreal forests, since they act in the bilateral carbon and nutrient transport between above- and belowground parts of the ecosystem. In ectomycorrhizal (ECM) symbiosis of woody host plants, both fungal and plant partners depend on resources provided by the other. A single tree may simultaneously host several ECM fungal partners, which greatly enhance the host's nutrient uptake. At the same time nearly 20% of host primary production is allocated to mycorrhizal fungi. Although fungi depend on host-derived carbon, it is poorly understood how reduced carbon availability, e.g., due to herbivory, affects the ECM fungal symbionts. In this thesis I studied the impact of simulated insect defoliation or mammal browsing on mycorrhizal fungi of boreal woody hosts. Quantitative and qualitative changes in biomass partitioning in different fungal compartments were detected. None of the experiments showed that defoliation or shoot clipping treatments reduced the intensity of ECM colonisation, while treatments often shifted fungal composition towards less biomass producing ECM morphotypes. Above- and belowground diversity in ECM symbionts tended to decrease due to shoot or foliar damage. In addition, in some cases defoliation also reduced fungal biomass in fine roots and decreased ECM sexual reproduction by reducing the number of sporocarps produced. Defoliation induced a similar response pattern in the host and in ECM fungi with a stronger response to increasing severity of treatment (e.g. degree of removed foliage or repeated years of defoliation). This was also confirmed when relating the effects of host and ECM fungal symbionts to defoliation using present and previously published data. The present results suggest that belowground adaptation of boreal trees to the changing environment is mediated by changes in fungal community or biomass partitioning. The lack of response in the intensity of ECM colonisation further emphasises the importance of the symbiosis to boreal trees.
27

Grazing, disturbance and plant soil interactions in northern grasslands

Sørensen, L. I. (Louise Ilum) 03 June 2009 (has links)
Abstract Plants and soil organisms are closely linked. Plants are the sole source of carbon in the soil and soil organisms are responsible for recycling of nutrients, making them available for plant growth. To understand the function of a system, it is important to understand the interactions between the soil and plants. These interactions have mainly been studied in temperate areas, with few studies in the arctic and subarctic. The aim of this thesis was to investigate the effect of ecological disturbances in sub- and low-arctic grasslands on soil organisms and plant-soil feedback relationships. The effect of removal of vegetation, replanting of a local plant species, and different components of grazing (trampling, defoliation and return of nutrients) on soil decomposer organisms were studied. Whether short term effects of defoliation depended on plant species community was also studied, as well as whether defoliation in the field could create changes in the soil system systems that affect the growth of seedlings. Experiments were conducted under both controlled greenhouse conditions and in field sites. The results showed that physical disturbance (removal of vegetation and trampling) reduced the abundance and diversity of soil biota. Defoliation increased soil decomposer abundance in the short term. Plant species composition did not affect soil biota and only in a few cases did it changes their responses to defoliation. In the long-term, effects of fertilization and defoliation on the soil biota were context-dependent. However, defoliation did create changes in the soil that reduced the growth of seedlings planted into the soil. Furthermore, plant species community and spatial heterogeneity (revealed by blocking) had important effects on the soil communities.
28

Species identity and the functioning of ecosystems: the role of detritivore traits and trophic interactions in connecting of multiple ecosystem responses

Hines, Jes, Eisenhauer, Nico 05 April 2023 (has links)
Ecosystems world-wide experience changes in species composition in response to natural and anthropogenic changes in environmental conditions. Research to date has greatly improved our understanding of how species affect focal ecosystem functions. However, because measurements of multiple ecosystem functions have not been consistently justified for any given trophic group, it is unclear whether interpretations of research syntheses adequately reflect the contributions of consumers to ecosystems. Using model communities assembled in experimental microcosms, we examined the relationship between four numerically dominant detritivore species and six ecosystem functions that underpin fundamental aspects of carbon and nitrogen cycling aboveand below-ground. We tested whether ecosystem responses to changes in detritivore identity depended upon species trait dissimilarity, food web compartment (aboveground, belowground, mixed) or number of responses considered (one to six). We found little influence of detritivore species identity on brown (i.e. soil-based) processes. Only one of four detritivore species uniquely influenced decomposition, and detritivore species did not vary in their influence on soil nitrogen pools (NO3 − and NH4 +), or root biomass. However, changes in detritivore identity influenced multiple aboveground ecosystem functions. That is, by serving as prey, ecosystem engineers and occasionally also as herbivores as well as detritivores, these species altered the strength of aboveground predator–herbivore interactions and plant–shoot biomass. Yet, dissimilarity of detritivore functional traits was not associated with dissimilarity of ecosystem functioning. These results serve as an important reminder that consumers influence ecosystem processes via multiple energy channels and that food web interactions set important context for consumer-mediated effects on multiple ecosystem functions. Given that species are being lost, gained and redistributed at unprecedented rates, we can anticipate that changes in species identity will have additional ecosystem consequences beyond those predicted by species’ primary functional role.
29

A phylogenetic perspective on fine root ecology: assessing the role of root evolution on fine root functional traits and ecological interactions in woody angiosperms.

Valverde-Barrantes, Oscar Jesus 06 December 2013 (has links)
No description available.
30

Biotic Interaction of Invasive, Early-Succession Trees and Their Effects on Community Diversity: a Multi-Scale Study Using the Exotic Invasive Ailanthus altissima and the Native Robinia pseudoacacia in the Mid-Appalachian Forest of Eastern United States

Bao, Zhe 28 April 2015 (has links)
Invasive plants can displace native species, deteriorate native forest, and change plant communities and ecosystem functions. Native plant populations are fundamentally impacted by invasive species because of the interactions between invasive species and native plants. This study focuses on understanding the extent, mechanisms and consequences of interaction between a non-indigenous invader Ailanthus altissima and its functionally similar native species Robinia pseudoacacia in the Mid-Appalachian region, from an individual scale to a regional scale. These two subject species are common and coexist in early-successional eastern deciduous forest. The interactions between these two common species are important to community structure and canopy tree regeneration. To address the type and extent of interactions of these two species, a greenhouse experiment utilizing various species proportions, nutrient levels and seed sources was performed. In addition, a common-garden experiment with various species densities and proportions over three consecutive growing seasons was performed in a more natural condition than that of the greenhouse experiment. We found at the seedling stage, the dominant interaction was competition, and R. pseudoacacia was the winner both above- and belowground. The allelopathic compounds of A. altissima may have inhibited nodulation of R. pseudoacacia. Ailanthus altissima seedlings from its native region had slightly stronger competitive abilities compared with the seedlings from its invaded range. In the common garden experiment, R. pseudoacacia plants grew quicker than A. altissima, but A. altissima inhibited the growth of R. pseudoacacia by interspecific competition. The negative impact of A. altissima on R. pseudoacacia became larger as time progressed. To assess the community-level consequences of the two species, we conducted a forest mapping and a complete target-tree-based forest survey, and analyzed regional-scale data from the Forest Inventory Analysis Data Base. The two target species were significantly associated with themselves and with each other. Community species composition and diversity were significantly different across sites. A negative impact of both species on the understory community diversity and tree regeneration at the neighborhood scale was detected; while at a regional level, tree diversity in the FIA plots with either A. altissima or R. pseudoacacia was higher than the reference plots. / Ph. D.

Page generated in 0.3165 seconds