Spelling suggestions: "subject:"bifurcation dde hopf"" "subject:"bifurcation dde kopf""
11 |
Équations différentielles à retard et leur application en hématopoïèse, avec étude du cas de la neutropénie cycliqueBernard, Samuel January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
12 |
Modèle épidémiologique compartimental à délai pour le virus de la dengueBérubé, François 12 1900 (has links)
La dengue est une infection virale qui touche de 100 à 400 millions d'individus chaque année. Selon l'OMS, « la dengue sévère est l’une des principales maladies graves et causes de décès dans certains pays d’Asie et d’Amérique latine ». Il est justifiable de modéliser la propagation de cette maladie dans une population à l'aide de modèles mathématiques compartimentaux. Les travaux de Forshey et al. sur la fièvre dengue semblent indiquer la possibilité qu'une infection à la dengue ne donne pas une immunité à long terme contre les différents sérotypes du virus, et qu'une réinfection homotypique à la dengue serait commune. Nous étudions un modèle SIRS de la dengue qui prend en compte cette perte d'immunité via un système d'équations différentielles à délai. Nous caractérisons les états stationnaires et leur stabilité en termes des différents paramètres considérés, notamment les taux de reproduction de base associés à chacun des sérotypes de la dengue. Nous étudions les bifurcations du système en ses principaux paramètres, notamment les bifurcations de Hopf émergeant de la présence d'un délai dans le système d'équations différentielles. Des simulations numériques du modèle sont présentées afin de représenter les différents régimes du modèle à l'étude. / Dengue is a viral infection affecting from 100 to 400 million people each year. According to the WHO, "severe dengue is a leading cause of serious illness and death in some Asian and Latin American countries". This justifies the modelling of this illness's propagation in a population using mathematical compartmental models. Results of Forshey et al. on dengue fever seem to indicate the possibility that a dengue infection does not yield a long term immunity against the different dengue serotypes, and that an homotypical reinfection could be common. We study a SIRS model for the dengue virus that takes into account this loss of immunity via a system of delay differential equations. We characterize the stationary states and their stability in terms of the different parameters considered, in particular the basic reproduction ratios associated to each dengue serotype. We study the system's bifurcations in its main parameters, especially the Hopf bifurcations arising from the presence of a delay in the system of differential equations. Numerical simulations of the model are presented to represent the model's different regimes.
|
13 |
Système dynamique stochastique de certains modèles proies-prédateurs et applications. / Stochastic dynamics of some predator-prey systems and applicationsSlimani, Safia 10 December 2018 (has links)
Ce travail est consacré à l’étude de la dynamique d’un système proie-prédateur de type Leslie-Gower défini par un système d’équations différentielles ordinaires (EDO) ou d’équations différentielles stochastiques (EDS), ou par des systèmes couplés d’EDO ou d’EDS. L’objectif principal est de faire l’analyse mathématique et la simulation numérique des modèles construits. Cette thèse est divisée en deux parties : La première partie est consacrée à un système proie-prédateur où les proies utilisent un refuge, le modèle est donné par un système d’équations différentielles ordinaires ou d’équations différentielles stochastiques. Le but de cette partie est d’étudier l’impact du refuge ainsi que la perturbation stochastique sur le comportement des solutions du système. Dans la deuxième partie, nous considérons un système proie-prédateur couplé en réseau. Il s’agit d’étudier comment des couplages plus ou moins forts entre plusieurs systèmes affectent l’existence et la position des points d’équilibre, et la stabilité de ces systèmes. / This work is devoted to the study of the dynamics of a predator-prey system of Leslie-Gower type defined by a system of ordinary differential equations (EDO) or stochastic differential equations (EDS), or by coupled systems of EDO or EDS. The main objective is to do mathematical analysis and numerical simulation of the models built. This thesis is divided into two parts : The first part is dedicated to a predator-prey system where the prey uses a refuge, the model is given by a system of ordinary differential equations or stochastic differential equations. The purpose of this part is to study the impact of the refuge as well as the stochastic perturbation on the behavior of the solutions of the system. In the second part, we consider a networked predator-prey system. We show that symmetric couplings speed up the convergence to a stationary distribution.
|
14 |
Étude des conditions d'extinction d'un système prédateur-proie généralisé avec récolte contrôléeCourtois, Julien 09 1900 (has links)
Dans ce mémoire, nous étudions un système prédateur-proie de Gause généralisé avec une récolte de proie contrôlée et une fonction de réponse de Holling de type III généralisée. Nous introduisons une fonction de récolte contrôlée sur les proies tenant compte du nombre de proies et dépendant d'un seuil de récolte. Ceci permet de rendre le système réaliste, d'optimiser la récolte, et de prévenir la possibilité d'extinction des espèces que le système avec récolte constante pouvait avoir pour toutes valeurs de paramètres. Ce type de fonction de récolte implique a priori la manipulation d'un système discontinu: nous étudions donc des techniques de lissage de ces discontinuités par régularisation. Nous faisons d'abord un retour sur les systèmes sans et avec récolte de proie constante en traçant les diagrammes de bifurcations exacts et les portraits de phase de ces systèmes. Ensuite, nous étudions le système discontinu et les méthodes de régularisation afin de choisir la plus optimale. Finalement, nous assemblons le tout avec l'étude du système avec récolte de proie régularisé, en passant par l'étude complète du système avec approvisionnement de proie, et donnons les différents effets sur les portraits de phase selon les conditions initiales. / In this master thesis, we study a generalized Gause predator-prey system with controlled prey harvest and a generalized Holling response function of type III. We introduce a controlled prey harvesting function taking into account the number of preys with a harvesting threshold. This makes the system realistic, it optimizes the harvesting, and it prevents the possibility of species' extinction which exists in the system with constant harvest for all parameters. This type of harvesting function a priori implies handling a discontinuous system : therefore we study smoothing techniques of such discontinuities by regularization. We first return on systems without and with constant harvest by drawing the exact bifurcation diagrams and phase portraits of those systems. Then, we study the discontinuous system and the regularization methods in order to choose the optimal one. Finally, we put together everything by studying the regularized prey harvesting system through a complete study of the prey stocking system, and we highlight the different effects on the phase portraits under the initial conditions.
|
15 |
Jeux évolutionnaires avec des interactions non uniformes et délais / Evolutionary Games with non-uniform interactions and delaysBen Khalifa, Nesrine 16 December 2016 (has links)
La théorie des jeux évolutionnaires est un outil qui permet d’étudier l’évolution des stratégies dans une population composée d’un grand nombre d’agents qui interagissent d’une façon continue et aléatoire. Dans cette théorie, il y a deux concepts essentiels qui sont la stratégie évolutivement stable (ESS), et la dynamique de réplication. Une stratégie évolutivement stable est une stratégie, qui, si adoptée par toute la population,ne peut pas être envahie par une autre stratégie ”mutante” utilisée par une petite fraction de la population. Ce concept statique est un raffinement de l’équilibre de Nash, et il ne peut pas renseigner, par exemple, sur la durée du temps nécessaire pour que l’ESS élimine la stratégie mutante. La dynamique de réplication, originalement proposée par Hawk-Dove, est un modèle dynamique qui permet de prédire l’évolution de la fraction de chaque stratégie dans la population en fonction du temps, en réponse aux gains des stratégies et l’état de la population.Dans cette thèse, nous proposons dans une première partie une extension de la dynamique de réplication classique en y introduisant des délais hétérogènes et aléatoires.En effet, la plupart des phénomènes qui se produisent prennent un temps incertain avant d’avoir des résultats. Nous étudions l’effet de la distribution des délais sur la stabilité de l’ESS dans la dynamique de réplication et nous considérons les distributions uniforme, exponentielle, et Gamma (ou Erlang). Dans les cas des distributions uniforme et Gamma, nous trouvons la valeur critique de la moyenne à laquelle la stabilité de l’équilibre est perdue et des oscillations permanentes apparaissent. Dans le cas de la distribution exponentielle, nous montrons que la stabilité de l’équilibre ne peut être perdue,et ce pour toute valeur de la moyenne de la distribution. Par ailleurs, nous montrons que la distribution exponentielle peut affecter la stabilité de l’ESS quand une seule stratégie subit un délai aléatoire issu de cette distribution. Nous étudions également le cas où les délais sont discrets et nous trouvons une condition suffisante et indépendante des valeurs des délais pour la stabilité de l’équilibre. Dans tous les cas, nous montrons que les délais aléatoires sont moins risqués que les délais constants pour la stabilité de l’équilibre, vu que la valeur moyenne critique des délais aléatoires est toujours supérieure de celle des délais constants. En outre, nous considérons comme paramètre de bifurcation la moyenne de la distribution des délais et nous étudions les propriétés de la solution périodique qui apparait à la bifurcation de Hopf, et ce en utilisant une méthode de perturbation non linéaire. En effet, à la bifurcation de Hopf, une oscillation périodique stable apparait dont l’amplitude est fonction de la moyenne de la distribution. Nous déterminons analytiquement l’amplitude de l’oscillation au voisinage de la bifurcation de Hopf en fonction du paramètre de bifurcation et de la matrice des jeux dans les cas des distributions de Dirac, uniforme, Gamma et discrète, et nous appuyons nos résultats avec des simulations numériques. Dans une deuxième partie, nous considérons une population hétérogène composée de plusieurs communautés qui interagissent d’une manière non-uniforme. Pour chaque communauté, nous définissons les matrices des jeux et les probabilités d’interaction avec les autres communautés. Dans ce contexte, nous définissons trois ESS avec différents niveaux de stabilité contre les mutations: un ESS fort, un ESS faible et un ESS intermédiaire. Nous définissons un ESS fort comme suit: si toute la population adopte l’ESS, alors l’ESS ne peut pas être envahi par une petite fraction de mutants composée d’agents de toutes les communautés. / In this dissertation, we study evolutionary game theory which is a mathematical tool used to model and predict the evolution of strategies in a population composed of a largenumber of players. In this theory, there are two basic concepts which are the evolutionarilystable strategy (ESS) and the replicator dynamics. The ESS is originally definedas follows [1]: if all the population adopts the ESS, then no alternative strategy used bya sufficiently small fraction of the population can invade the population.The ESS is astatic concept and a refinement of a Nash equilibrium. It does not allow us, for example,to estimate the time required for the ESS to overcome the mutant strategy, neither to predictthe asymptotic distribution of strategies in the population. The replicator dynamics,originally introduced in [2], is a model of evolution of strategies according to which the growth rate of a given strategy is proportional to how well this strategy performs relative to the average pay off in the population.In the first part of this work, we propose an extended version of the replicator dynamics which takes into account heterogeneous random delays. Indeed, in many situations,the presence of uncertain delays is ubiquitous. We first consider continuous delays and we study the effect of the distribution of delays on the asymptotic stability of the mixed equilibrium in the replicator dynamics. In the case of uniform and Gamma delay distributions,we find the critical mean delay at which a Hopf bifurcation is created and the stability of the mixed equilibrium is lost. When the distribution of delays is exponential, we prove that the stability of the equilibrium cannot be affected by the delays. However, when only one strategy is delayed according to the exponential distribution,the asymptotic stability of the ESS can be lost. In all the cases, we show that the critical mean delay value is higher than that of constant delays, and thus random delays are less threatening than constant delays. In addition, we consider discrete delays and one o four results is that, when the instantaneous term is dominant, that is when the probabilityof zero delay is sufficiently high, the stability of the ESS cannot be lost.Furthermore, by taking as a bifurcation parameter the mean delay distribution, we examine the properties of the bifurcating periodic solution created near the Hopf bifurcationusing a nonlinear perturbation method. Indeed, near the Hopf bifurcation, a stable periodic oscillation appears whose amplitude depends on the value of the bifurcation parameter. We give a closed-form expression of the amplitude of the periodic solution and we validate our results with numerical simulations.In the second part, we consider an heterogeneous population composed of several communities which interact in a nonuniform manner. Each community has its own set of strategies, payoffs, and interaction probabilities. Indeed, individuals of a population have many inherent differences that favor the appearance of groups or clusters. In this scenario, we define three ESS with different levels of stability against mutations: strong,weak, and intermediate ESS, and we examine their connection to each other. A strongESS is a strategy that, when adopted by all the population, cannot be invaded by a sufficientlysmall fraction of mutants composed of agents from all the communities. Incontrast, a weak ESS is a strategy wherein each community resists invasion by a sufficientlysmall fraction of mutants in that community (local mutants). In the intermediateESS, the population adopting the ESS cannot be invaded by a small fraction of mutantswhen we consider the total fitness of the population rather than the fitness of eachcommunity separately.
|
16 |
Bifurcation de Hopf dans un modèle de signalement de NF-κBLe Sauteur-Robitaille, Justin 12 1900 (has links)
No description available.
|
17 |
Méthodologies de simulation des bruits automobiles induits par le frottement / Méthodologies de simulation des bruits automobiles induits par le frottementElmaian, Alex 27 May 2013 (has links)
Les bruits automobiles induits par le frottement sont à l’origine de nombreuses plaintes clients et occasionnent des coûts de garantie considérables pour les constructeurs automobiles. Les objectifs de la thèse consistent à comprendre la physique à l’origine de ces bruits et proposer des méthodologies de simulation afin de les éradiquer. Un système générique est tout d’abord étudié. Ce système discret met en jeu un contact entre deux masses et une loi de frottement de Coulomb présentant une discontinuité à vitesse relative nulle. Des calculs de valeurs propres complexes de ce système linéarisé autour de sa position d’équilibre glissant sont menés et montrent la présence d’instabilités par flottement voire par divergence. Les simulations temporelles montrent quant à elles que les non-linéarités de contact permettent de stabiliser les niveaux vibratoires en cas d’instabilité selon quatre régimes distincts. De plus, malgré ses trois degrés de liberté, ce système est capable de reproduire les mécanismes de stick-slip, sprag-slip et couplage modal ainsi que les bruits de crissement, grincement et craquement rencontrés sur les systèmes automobiles. Des études paramétriques sont également présentées et mettent en avant des bifurcations de Hopf ainsi que l’effet déstabilisant potentiellement induit par l’amortissement. Des méthodologies permettant de catégoriser les réponses en termes de bruit et de mécanisme sont par la suite proposées. Les occurrences et risques de ces derniers sont alors analysés et des tendances sont dégagées. Enfin, la relation entre les bruits et les mécanismes est établie. L’attention est ensuite portée sur un système automobile particulier. Afin d’étudier son comportement crissant, les analyses de stabilité et les simulations temporelles sont désormais menées sur des modèles éléments-finis. Les simulations temporelles permettent d’observer l’établissement de vibrations auto-entretenues et d’identifier, parmi tous les modes instables prédits lors des analyses de stabilité, celui qui est réellement à l’origine de l’instabilité. L’effet du coefficient de frottement sur les motifs de coalescence et les cycles limites est également investigué. Le risque de crissement est ensuite évalué pour des conditions d’utilisation variées du système. La méthodologie, basée sur des analyses de stabilité, permet de retrouver les principaux constats expérimentaux obtenus sur banc d’essai. Le rôle des géométries et des matériaux constituant le système est également discuté. Enfin, une solution permettant de réduire de façon significative le risque de crissement est proposée. / Automotive friction-induced noises are the source of many customer complaints and lead to hugewarranty costs for car manufacturers. The objectives of the thesis are to improve the understanding ofthe physics at the origin of these noises and to propose numerical methodologies to eradicate them.A generic system is first investigated. This discrete system includes a contact between two masses anda Coulomb friction law with a discontinuity at zero relative velocity. Calculations of complex eigenvaluesof the linearized system around its sliding equilibrium position are carried out and show the presence offlutter and even divergence instabilities. Time simulations show that contact non-linearities permit tostabilize the vibrational levels in case of instability according to four distinct behaviors. Furthermore,despite its three degrees of freedom, this system is able to reproduce the stick-slip, sprag-slip and modecouplingmechanisms as well as the squeal, squeak and creak noises encountered in automotive systems.Parametric studies are also presented and highlight Hopf bifurcations as well as the destabilizing effectpotentially induced by damping. Methodologies allowing the categorization of the responses in termsof noise and mechanism are then proposed. Occurrences and risks of these noises and mechanismsare thus analyzed and trends are highlighted. The relationship between noises and mechanisms is alsoestablished.A specific automotive system is then considered. In order to study its squeal behavior, stabilityanalysis and time simulations are now carried out on finite element models. Time simulations allowto observe the establishment of self-excited vibrations and to identify, among all the unstable modespredicted by the stability analysis, the one which is actually the source of the instability. The effectof friction on the coalescence patterns and limit cycles is also investigated. The risk of squeal is thenevaluated in different operating conditions. The methodology, based on stability analysis, leads toresults in good agreement with the experimental observations. The role of geometries and materialsconstituting the system is also discussed. Finally, a solution with significantly low risk of squeal isproposed.
|
18 |
Applications de la théorie du Contrôle Optimal aux problématiques du diabète et de la propagation de la rumeur sur les réseaux sociaux / Applications of the Optimal Control theory to problems of diabetes and the spread of rumor on social networksCésar, Ténissia 15 November 2018 (has links)
L'objectif de cette thèse est principalement d'appliquer la théorie du contrôle optimal à des problématiques que soulèvent la maladie du diabète et celle de la propagation de la rumeur sur les réseaux sociaux.Pour la première application, à savoir la maladie du diabète, nous développons deux études. Dans une première étude, à un modèle qui examine les diabétiques avec et sans complications, nous associons un problème de contrôle optimal. Nous montrons qu'il n'existe pas de comportement cyclique entre le groupe des diabétiques avec complications et celui des diabétiques sans complications, et que le point d'équilibre associé au problème existe et est un point selle. Dans une seconde étude, nous modifions un modèle de glucose-insuline à temps différé par l'ajout d'actions extérieures avec retard. Puis, pour minimiser la glycémie d'un diabétique, nous les contrôlons séparément puis simultanément, afin d'en donner une caractérisation à l'aide du principe du maximum de Pontryagin.Pour la deuxième application, la problématique de la propagation de la rumeur sur les réseaux sociaux, nous proposons aussi deux approches. Premièrement, nous mettons en place des stratégies optimales, par l'ajout d'actions extérieures sur un modèle d'e-rumeur de type SIR que nous contrôlons séparément puis simultanément, pour minimiser la propagation d'une fausse information. Et, dans une deuxième approche, nous construisons un nouveau modèle d'e-rumeur pour lequel nous étudions les points d'équilibres admissibles en mettant en évidence leurs conditions de stabilité, ainsi que les critères de persistance du modèle. / The aim of this thesis is mainly to apply optimal control theory to problems raised by diabetes disease and the spread of rumors on social networks.For the first application, namely diabetes disease, we develop two studies. In a first one, from a model that examines diabetics with and without complications, we associate an optimal control problem. We show that there is no cyclical behavior between the group of diabetics with complications and the one without complications, and that the associated equilibrium point exists and is a saddle point. In a second study, we modify a model of delayed glucose-insulin by adding external actions with delay. Then, in order to minimize the glycemia of a diabetic, we control them separately and simultaneously in order to give a characterization of the optimal actions with the Pontryagin maximum principle.For the second application, the issue of spreading rumors on social networks, we also give two approaches. First, we introduce some optimal strategies, by adding external actions on a e-rumor model of SIR type that we control separately and simultaneously to minimize the spread of fake news. Then, in a second approach, we build a new e-rumor model for which we study the admissible equilibrium points by highlighting their stability conditions, as well as the criteria of persistence of the model.
|
19 |
Problème centre-foyer et applicationLaurin, Sophie 04 1900 (has links)
Dans ce mémoire, nous étudions le problème centre-foyer sur un système polynomial. Nous
développons ainsi deux mécanismes permettant de conclure qu’un point singulier
monodromique dans ce système non-linéaire polynomial est un centre. Le premier
mécanisme est la méthode de Darboux. Cette méthode utilise des courbes algébriques
invariantes dans la construction d’une intégrale première. La deuxième
méthode analyse la réversibilité algébrique ou analytique du système. Un système
possédant une singularité monodromique et étant algébriquement ou analytiquement
réversible à ce point sera nécessairement un centre. Comme application, dans le dernier chapitre, nous considérons le modèle de Gauss
généralisé avec récolte de proies. / In this thesis, we study the center-focus problem in a polynomial system. We describe two mechanisms to conclude that a monodromic
singular point in this polynomial system is a center. The first one is the method of Darboux. In this method, one uses invariant algebraic curves to build a first integral. The second method is the algebraic (and analytic) reversibility. A monodromic singularity, which is algebraically or analytically reversible at the
singular point, is necessarily a center.
As an application, in the last chapter, we consider the generalized Gause model
with prey harvesting and a generalized Holling response function of type III.
|
20 |
Sur un modèle d'érythropoïèse comportant un taux de mortalité dynamiquePaquin-Lefebvre, Frédéric 01 1900 (has links)
Ce mémoire concerne la modélisation mathématique de l’érythropoïèse, à savoir le processus de production des érythrocytes (ou globules rouges) et sa régulation par l’érythropoïétine, une hormone de contrôle. Nous proposons une extension d’un modèle d’érythropoïèse tenant compte du vieillissement des cellules matures. D’abord, nous considérons un modèle structuré en maturité avec condition limite mouvante, dont la dynamique est capturée par des équations d’advection. Biologiquement, la condition limite mouvante signifie que la durée de vie maximale varie afin qu’il y ait toujours un flux constant de cellules éliminées. Par la suite, des hypothèses sur la biologie sont introduites pour simplifier ce modèle et le ramener à un système de trois équations différentielles à retard pour la population totale, la concentration d’hormones ainsi que la durée de vie maximale. Un système alternatif composé de deux équations avec deux retards constants est obtenu en supposant que la durée de vie maximale soit fixe. Enfin, un nouveau modèle est introduit, lequel comporte un taux de mortalité augmentant exponentiellement en fonction du niveau de maturité des érythrocytes. Une analyse de stabilité linéaire permet de détecter des bifurcations de Hopf simple et double émergeant des variations du gain dans la boucle de feedback et de paramètres associés à la fonction de survie. Des simulations numériques suggèrent aussi une perte de stabilité causée par des interactions entre deux modes linéaires et l’existence d’un tore de dimension deux dans l’espace de phase autour de la solution stationnaire. / This thesis addresses erythropoiesis mathematical modeling, which is the process of erythrocytes production and its regulation by erythropeitin. We propose an erythropoiesis model extension which includes aging of mature cells. First, we consider an age-structured model with moving boundary condition, whose dynamics are represented by advection equations. Biologically, the moving boundary condition means that the maximal lifespan varies to account for a constant degraded cells flux. Then, hypotheses are introduced to simplify and transform the model into a system of three delay differential equations for the total population, the hormone concentration and the maximal lifespan. An alternative model composed of two equations with two constant delays is obtained by supposing that the maximal lifespan is constant. Finally, a new model is introduced, which includes an exponential death rate depending on erythrocytes maturity level. A linear stability analysis allows to detect simple and double Hopf bifurcations emerging from variations of the gain in the feedback loop and from parameters associated to the survival function. Numerical simulations also suggest a loss of stability caused by interactions between two linear modes and the existence of a two dimensional torus in the phase space close to the stationary solution.
|
Page generated in 0.1005 seconds