Spelling suggestions: "subject:"binary interaction parameter"" "subject:"abinary interaction parameter""
1 |
Determining equation of state binary interaction parameters using K- and L-pointsMushrif, Samir Hemant 01 November 2004
The knowledge of the phase behaviour of heavy oils and bitumen is important in order to understand the phenomenon of coke formation. Computation of their phase behaviour, using an equation of state, faces problems due to their complex composition. Hence n-alkane binaries of polyaromatic hydrocarbons are used to approximate the phase behaviour of heavy oils and bitumen. Appropriate values of binary interaction parameters are required for an equation of state to predict the correct phase behaviour of these model binary fluids.
This thesis deals with fitting of the binary interaction parameter for the Peng-Robinson equation of state using landmarks in the binary phase space such as K- and L-points. A K- or an L-point is a point in the phase space where two phases become critical in the presence of another phase in equilibrium. An algorithm to calculate K- and L-points using an equation of state was developed. The variation of calculated K- and L-points with respect to the binary interaction parameter was studied and the results were compared with the experimental data in the literature. The interaction parameter was then fitted using the best match of experimental results with the computed ones. The binary interaction parameter fitted using a K- or an L-point was then used to predict the P-T projection of the binary system in phase space. Also, the qualitative effect of the binary interaction parameter on the P-T projection was studied.
A numerical and thermodynamic study of the algorithm was done. Numerical issues like the initial guesses, convergence criterion and numerical techniques were studied and the thermodynamic constraints in the generalization of the algorithm are discussed. It was observed that the binary interaction parameter not only affects the location of K- and L-points in the phase space but also affects the calculation procedure of K- and L-points.
Along with the propane binaries of polyaromatic hydrocarbons, K- and L-points were also calculated for systems like methane binaries of higher n-alkanes and the ethane + ethanol binary. In the case of the ethane + ethanol system, K- and L-points, matching the experimental results were calculated with different values of the binary interaction parameter. But the Peng-Robinson equation of state was unable to predict the correct type of phase behaviour using any value of the binary interaction parameter.
The Peng-Robinson equation of state was able to predict the correct type of phase behaviour with the binary interaction parameter, fitted using K- and/or L-points for methane + n-alkane systems. The systems studied were the methane binaries of n-pentane, n-hexane and n-heptane.
For the propane binaries of polyaromatic hydrocarbons, no value of the binary interaction parameter was able to predict the K-point with a good accuracy. The binary interaction parameter which gave the best possible results for a K-point failed to predict the correct type of phase behaviour. The binary interaction parameter fitted using the P-T projection enabled the Peng-Robinson equation of state to give a qualitative match for the high pressure complex phase behaviour of these systems. Solid phase equilibria were not taken into consideration.
|
2 |
Determining equation of state binary interaction parameters using K- and L-pointsMushrif, Samir Hemant 01 November 2004 (has links)
The knowledge of the phase behaviour of heavy oils and bitumen is important in order to understand the phenomenon of coke formation. Computation of their phase behaviour, using an equation of state, faces problems due to their complex composition. Hence n-alkane binaries of polyaromatic hydrocarbons are used to approximate the phase behaviour of heavy oils and bitumen. Appropriate values of binary interaction parameters are required for an equation of state to predict the correct phase behaviour of these model binary fluids.
This thesis deals with fitting of the binary interaction parameter for the Peng-Robinson equation of state using landmarks in the binary phase space such as K- and L-points. A K- or an L-point is a point in the phase space where two phases become critical in the presence of another phase in equilibrium. An algorithm to calculate K- and L-points using an equation of state was developed. The variation of calculated K- and L-points with respect to the binary interaction parameter was studied and the results were compared with the experimental data in the literature. The interaction parameter was then fitted using the best match of experimental results with the computed ones. The binary interaction parameter fitted using a K- or an L-point was then used to predict the P-T projection of the binary system in phase space. Also, the qualitative effect of the binary interaction parameter on the P-T projection was studied.
A numerical and thermodynamic study of the algorithm was done. Numerical issues like the initial guesses, convergence criterion and numerical techniques were studied and the thermodynamic constraints in the generalization of the algorithm are discussed. It was observed that the binary interaction parameter not only affects the location of K- and L-points in the phase space but also affects the calculation procedure of K- and L-points.
Along with the propane binaries of polyaromatic hydrocarbons, K- and L-points were also calculated for systems like methane binaries of higher n-alkanes and the ethane + ethanol binary. In the case of the ethane + ethanol system, K- and L-points, matching the experimental results were calculated with different values of the binary interaction parameter. But the Peng-Robinson equation of state was unable to predict the correct type of phase behaviour using any value of the binary interaction parameter.
The Peng-Robinson equation of state was able to predict the correct type of phase behaviour with the binary interaction parameter, fitted using K- and/or L-points for methane + n-alkane systems. The systems studied were the methane binaries of n-pentane, n-hexane and n-heptane.
For the propane binaries of polyaromatic hydrocarbons, no value of the binary interaction parameter was able to predict the K-point with a good accuracy. The binary interaction parameter which gave the best possible results for a K-point failed to predict the correct type of phase behaviour. The binary interaction parameter fitted using the P-T projection enabled the Peng-Robinson equation of state to give a qualitative match for the high pressure complex phase behaviour of these systems. Solid phase equilibria were not taken into consideration.
|
3 |
Prédiction du comportement de phases et des enthalpies de mélange de gaz naturels atypiques contenant de l'argon, du monoxyde de carbone et de l'hélium / Prediction of phase behaviour and enthalpies of mixing of atypical natural gases containing argon, carbon monoxide and heliumPlée, Vincent 17 December 2014 (has links)
Le développement du modèle prédictif E-PPR78, basé sur une méthode de contribution de groupe, a été entrepris depuis plus de dix ans pour prédire le comportement de systèmes multiconstituants. Ce modèle repose sur l'équation d'état de Peng-Robinson dans sa version de 1978 et les règles de mélanges de Van der Waals. Il utilise un seul paramètre d'interaction binaire, kij, qui dépend de la température. Afin de permettre au modèle E-PPR78 de prédire le comportement du gaz naturel, trois nouveaux groupes sont ajoutés : le monoxyde de carbone, l'hélium et l'argon. Pour cela, il a été nécessaire de former une base de données expérimentales la plus large possible contenant les mesures d'équilibres de phase et d'enthalpies de mélange pour les systèmes binaires constitués par ces trois groupes ainsi que ceux définis dans les études précédentes et présents dans le gaz naturel. Après une description de la classification des diagrammes de phase de Van Konynenburg et Scott, le modèle E-PPR78 est présenté. La troisième partie est consacrée à l'ajout des trois nouveaux groupes au sein du modèle. Les résultats sont obtenus avec une précision satisfaisante. Il apparaît clairement que le modèle E PPR78 est capable de prédire le comportement du gaz naturel dans des conditions de températures et de pressions particulièrement larges / The development of the predictive E-PPR78 model, based on a contribution group method, has been undertaken since ten years to predict accurately the behaviour of multi-component systems. This model lies on the Peng-Robinson equation of state with classical Van der Waals mixing rules. It uses a unique binary interaction parameter, kij, which is temperature dependant. To enable the E-PPR78 model to predict the behavior of natural gases, three new groups are added: carbon monoxide, helium and argon. It was necessary to build an experimental database, as exhaustive as possible, containing phase equilibrium and enthalpies of mixing data for binary systems formed by these groups and those defined in previous studies and present in natural gases. After a description of the classification scheme of Van Konynenburg and Scott, the E-PPR78 model is described. The third part is about the addition of the three new groups to the model. It clearly appears that the E-PPR78 model is able to predict the fluid-phase behavior of natural gases over wide ranges of temperatures and pressures
|
4 |
Développement du modèle E-PPR78 pour prédire les équilibres de phases et les grandeurs de mélange de systèmes complexes d’intérêt pétrolier sur de larges gammes de températures et de pressions / Development of the E-PPR78 model in order to predict the phase equilibria and the mixing properties of complex systems of petroleum interest over wide ranges of temperature and pressureQian, Junwei 12 December 2011 (has links)
Nous avons développé un modèle prédictif, utilisant le principe de contribution de groupes, pour prédire avec précision, le comportement des fluides pétroliers. Ce modèle baptisé PPR78 utilise l’équation d’état de Peng et Robinson et des règles de mélange de type Van der Waals avec un coefficient d’interaction binaire kij, dépendant de la température. De telles règles de mélange sont équivalentes à celles obtenues en combinant à compacité constante une fonction d’excès de type Van Laar et une équation d’état cubique.La première partie de cette étude a consisté à étendre le domaine d’application du modèle PPR78 aux systèmes contenant de l’eau, des alcènes et de l’hydrogène, en définissant six nouveaux groupes élémentaires. Une bonne précision du modèle est obtenue pour décrire les équilibres de phases de systèmes binaires impliquant ces constituants, notamment pour les systèmes présentant des diagrammes de phases de Type I et de Type II. Dans la deuxième partie l’ensemble des paramètres de groupes ont été réajustés, non seulement sur des données d’équilibres de phases mais également sur des données de grandeur de mélange. L’avantage de ce nouveau modèle E-PPR78 est qu’il permet de restituer les équilibres de phases avec une précision équivalente au modèle original et qu’il conduit à une très nette amélioration de la prédiction des enthalpies d’excès et des capacités calorifiques d’excès. / We have developed a predictive model, by means of a group contribution method, in order to predict with accuracy, the behavior of petroleum fluids. The model called PPR78 uses the Peng-Robinson equation of state and Van der Waals-type mixing rules with a temperature dependent binary interaction parameter kij. Such mixing rules are identical to those obtained by combining at constant packing fraction, a Van Laar-type excess function and a cubic equation of state.The first part of this study consisted in extending the application of the model PPR78 to systems containing water, alkenes and hydrogen, by defining six new elementary groups. The phase equilibria of binary systems involving these components are accurately described by the model, especially for the phase diagrams of Type I and Type II. In the second part, all the group parameters of the original model were re-fitted by using the phase equilibrium data, as well as the mixing property data. The advantage of this new model E-PPR78 is that it is capable to correlate the phase equilibria with an accuracy which is equivalent to the original model and it produces a very clear improvement in the prediction of excess enthalpies and excess heat capacities.
|
5 |
Développement du modèle PPR78 pour décrire, comprendre et prédire les diagrammes de phases hautes et basses pressions des systèmes binaires et des fluides pétroliers / Development of the PPR78 model in order to describe, understand and predict high and low pressure phase diagrams of binary systems and petroleum mixturesPrivat, Romain 27 November 2008 (has links)
Le développement d'un modèle thermodynamique prédictif PPR78, basé sur le concept de contributions de groupes, a été entrepris afin de pouvoir prédire avec précision, le comportement des fluides pétroliers. PPR78 utilise l’équation d’état de Peng et Robinson et les règles de mélange de Van der Waals avec un seul coefficient d’interactions binaires kij, dépendant de la température. Cette approche est rigoureusement équivalente à l’utilisation de règles de mélange à compacité constante avec un modèle d’énergie de Gibbs molaire d’excès, gE, de type Van Laar. Pour développer ce modèle, une étude approfondie des équilibres entre phases fluides des systèmes binaires a été réalisée en deux temps. Dans un premier, une étude phénoménologique permet d'éclairer sous un jour nouveau la classification proposée par Van Konynenburg et Scott qui décrit qualitativement les comportements de ces systèmes. Dans un second temps, quelques principes généraux de calcul des diagrammes d’équilibre de phases isothermes, isobares et globaux sont exposés. L’étude de la stabilité thermodynamique globale occupe une place essentielle au sein de ces calculs. Une fois ces étapes préliminaires franchies, l’extension du modèle aux groupes CO2, N2, H2S et sulfhydryle est réalisée. Une bonne précision du modèle est obtenue pour décrire les systèmes binaires impliquant ces quatre groupes. Enfin, le comportement des fluides pétroliers est souvent prédit avec une précision de l'ordre de l'erreur expérimentale par PPR78 / A predictive thermodynamic model, based on the group contribution concept, and called PPR78, has been developed in order to be able to predict, with high accuracy, the behaviour of petroleum fluids. PPR78 uses the Peng-Robinson equation of state with Van der Waals mixing rules and a temperature dependent binary interaction parameter kij. This method is the equivalent to the constant packing fraction mixing rules with a Van Laar excess Gibbs energy model (gE). To develop the model, an in-depth study on binary systems fluid phase equilibria, was carried out. It was divided into two parts. Firstly, a phenomenological study made a reappraisal of the Van Konynenburg and Scott classification possible. Secondly, some general rules for the calculation of isothermal, isobaric and global phase equilibrium diagrams were demonstrated. It is important to note that the study of the global thermodynamic stability is essential in the calculations. Once these preliminary steps were realized, the extension of the model to the CO2, N2, H2S and sulfhydryl groups was performed. The fluid phase behaviour of binary systems involving these four groups was accurately calculated by the PPR78 model. Finally, the properties of petroleum fluids were predicted by PPR78 with an accuracy close to the experimental uncertainty
|
6 |
Développement d'une méthode de contributions de groupes pour le calcul du coefficient d'interaction binaire de l'équation d'état de Peng-Robinson et mesures d'équilibres liquide-vapeur de systèmes contenant du CO2 / Agroup contribution method to calculate the binary interaction parmeter of the Peng-Robinson equation of state and vapor-liquid equilibria measurements for systems containing CO2Vitu, Stéphane 06 November 2007 (has links)
Nous avons développé une méthode de contributions de groupes permettant d'estimer, en fonction de la température, le coefficient d'interaction binaire (kij) de l'équation d'état de Peng Robinson. Notre approche rend cette équation d'état prédictive. Douze groupes sont définis et il est possible d'estimer les kij pour n'importe quel mélange renfermant des alcanes, des aromatiques, des naphtènes et du CO2. Les diagrammes de phase et lieux des points critiques des systèmes binaires sont bien prédits par le modèle baptisé PPR78 (Predictive 1978, Peng Robinson equation of state). Ce modèle permet également de traiter efficacement les mélanges multiconstituants comme les pétroles bruts et les gaz naturels. A l'aide d'une cellule haute pression, des mesures d'équilibres liquide - vapeur ont été réalisées pour la première fois sur deux systèmes binaires : CO2 méthylcyclopentane et CO2 isopropylcyclohexane. Des mesures ont également été faites sur un mélange renfermant du CO2 et cinq hydrocarbures / A group contribution method allowing the estimation of the temperature dependent binary interaction parameter (kij) for the Peng Robinson equation of state is proposed. Doing so, a new predictive thermodynamic model is born. Twelve groups are defined and it is now possible to estimate the kij for any mixture containing alkanes, aromatics, naphthenes and CO2, whatever the temperature. The model, called PPR78 (Predictive 1978, Peng Robinson equation of state), gives a good description of the phase diagrams and critical locus of binary systems. This predictive model can be successfully employed for the simulation of many mixtures such as natural gases and petroleum fluids. Using a high pressure visual cell, vapor liquid equilibria measurements were made for two binary systems: CO2 methylcyclopentane and CO2 isopropylcyclohexane. For these two systems, no literature data were available. Finally, we measured bubble and dew points on a five component hydrocarbon mixture in the presence of CO2
|
Page generated in 0.1216 seconds