Spelling suggestions: "subject:"binary mixture"" "subject:"abinary mixture""
1 |
A Numerical and Analytical Analysis of the Physics of Phase-Separation FrontsFoard, Eric Merlin January 2012 (has links)
My dissertation is an investigation into the basic Physics of phase separation fronts. Such phase-separation fronts occur in many practical applications, like the formation of immersion precipitation membranes, Temperature induced phase-separation of polymeric blends, or the formation of steel. Despite the fact that these phenomena are ubiquitous no generally acceptable theory of phase-separation front exists. I believe the reason lies in the complexity of many of these material systems where a large number of physical effects (like phase-separation, crystallization, hydrodynamics, etc) cooperate to generate these structures.
As a Physicist, I was driven to develop an understanding of these systems, and we choose to start our investigation with the simplest system that would incorporate a phase-separation front. So we initially limited our study to systems with a purely diffusive dynamics. The phase-separation front is induced by a control-parameter front that is a simple step function advancing with a prescribed velocity. We investigated these systems numerically using a lattice Boltzmann method and also investigated them analytically as much as possible. Starting from a one-dimensional front moving with a constant velocity we then extended the complexity of the systems by increasing the number of dimensions, examining a variable front velocity, and finally by including hydrodynamics.
|
2 |
Hydrodynamics of a Cold Model of a Dual Fluidized Bed Gasification PlantLim, Mook Tzeng January 2012 (has links)
Biomass energy is increasingly used to reduce the dependence on fossil fuels and reduce the impact of greenhouse gas emissions on global warming. Fluidized bed
gasification converts solid biomass into gaseous fuels that can be used for combustion or liquid fuels synthesis. The efficiency of biomass gasification is directly affected by the fluidized bed hydrodynamics. For example, the solids recirculation rate through the system is an important parameter that affects the heat and mass transfer rates. In this study, a cold model of a dual fluidized bed (DFB) biomass gasification plant was designed using scaling laws, and was constructed to investigate the hydrodynamics of
industrial DFBs. A DFB consists of a bubbling fluidized bed (BFB), where biomass is gasified to produce syngas, and a circulating fluidized bed (CFB) where the residues of
gasification are combusted. The investigation was divided into Phase I and II. In Phase I, an operational map was developed for the CFB to define operational boundaries for
steady state operation of the plant. An empirical model was developed to predict the solids mass flow rate out of the CFB riser, which is an empirical function of the exit
opening width, the CFB diameter, and a newly introduced aerodynamic factor. The correlation coefficient, R2 for the empirical function was 0.8327. The aerodynamic
factor accounts for the particle inertia and clustering effects at the exit of the CFB riser. Results from Phase I also showed that increasing the fluidizing velocities increased the solids circulation rate and affected the pressure drop over various points in the CFB plant
due to redistribution of solids with the system. A critical assessment was performed on published correlations found in the literature to determine how accurately they predicted
the hydrodynamics in the CFB riser. By comparing predicted and experimental results, the correlations were found to be inaccurate for the conditions and configuration of the
CFB tested in this study. For example, the solids velocity was not accurately predicted by published correlations due to unaccounted particle clustering effects. The main issue
with the published correlations was a lack of generality, so that the correlations only applied for predicting fluidizing behaviour in the equipment they were developed in. In Phase II, an operational map was developed for the DFB, which incorporated both the CFB and the BFB. Experiments with a binary mixture representing sand and char in an industrial gasifier showed a blocking effect in the connecting chute between the CFB and BFB by the material representing char, which was larger and less dense than the material representing sand. A computational fluid dynamics (CFD) based design tool for modelling the cold model CFB cyclone was developed and validated by comparing the predicted and experimental cyclone pressure drop. The correlation coefficient for the CFD pressure drop prediction was 0.7755. The design tool contained information about the grid resolution and the time step required for modelling the cyclone accurately.
|
3 |
Estudo para o desenvolvimento de um injetor jato-Y para misturas de combustíveis de aviação e biocombustíveis / Study for the development of a jet-Y nozzle to mixtures of aviation fuels and biofuelsRamos, Luth Silva [UNESP] 26 January 2017 (has links)
Submitted by LUTH SILVA RAMOS null (lutherair@yahoo.com.br) on 2017-03-29T19:49:44Z
No. of bitstreams: 1
Dissertação Luth Ramos 2017 Final.pdf: 2110056 bytes, checksum: 5f14af4841d2cf0a501f307108e2e0b2 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-03-30T18:14:10Z (GMT) No. of bitstreams: 1
ramos_ls_me_guara.pdf: 2110056 bytes, checksum: 5f14af4841d2cf0a501f307108e2e0b2 (MD5) / Made available in DSpace on 2017-03-30T18:14:10Z (GMT). No. of bitstreams: 1
ramos_ls_me_guara.pdf: 2110056 bytes, checksum: 5f14af4841d2cf0a501f307108e2e0b2 (MD5)
Previous issue date: 2017-01-26 / A escassez de combustíveis de origem fóssil tem preocupado setores energéticos e industriais. Outra preocupação eminente são as taxas de emissões de poluentes na atmosfera, causado pelo processo de combustão. Estes processos são responsáveis por grande parte de toda energia primária produzida no mundo. Sendo assim, os bicombustíveis tem sido uma alternativa que atende ambas as preocupações. Neste cenário, a atomização também assume uma importante função dentro da combustão de líquidos. O atomizador tem por objetivo desintegrar o combustível líquido em pequenas gotículas, misturando-se com o oxidante na proporção correta e nas condições adequadas, para produzir um processo de combustão eficiente e estável, reduzindo significativamente as formações de fuligens. O objetivo deste trabalho é realizar um estudo teórico de um atomizador do tipo jato-Y, para atomizar misturas de combustíveis com diferentes proporções de QAV-1 + farnesano, QAV-1 + etanol e farnesano + etanol, analisando experimentalmente as propriedades físico-químicas das misturas de combustíveis e teoricamente as características e a qualidade do spray gerado, fazendo uso da equação de Wigg para calcular o MMD (diâmetro médio de gotas). Através das propriedades físico-químicas das misturas de combustíveis é possível analisar possíveis alternativas de combustíveis que podem apresentar características “drop-in” e substitua parcialmente ou definitivamente o QAV-1 (querosene de aviação) atualmente consumido. Qualitativamente o spray gerado possui o MMD entre 30 e 40 µm, podendo variar de acordo com a temperatura de trabalho. Sendo assim o atomizador torna-se favorável para um processo de combustão eficiente. / The scarcity of fossil fuels has worried the energetic and industrials sectors. Concern also exists about emissions and their impact on the environment, which are a byproduct of the petroleum combustion processes. These processes account for much of the primary energy produced in the world. However, biofuels have been an alternative that meets both concerns. In this scenario, the atomization also assumes an important function in the combustion of liquids. The atomizer has goal to disintegrate the liquid fuel in small droplets to have the mixture of fuel/oxidant in the suitable ratio, to produce an efficient and stable combustion process, significantly reducing the formation of soot. The objective of this work is perform a theoretical study of one nozzle of the type Y-jet, to atomize binary mix of fuels with different ratio of jet-A1 + farnesane, jet-A1 + ethanol and farnesane + ethanol, experimentally analyzing the physicochemical properties of the mixtures of fuels and theoretically the characteristics and quality of the formed spray, using the Wigg’s equation to calculate the MMD (Mass Median Diameter). Through of the physicochemical properties of the mixtures of fuels, it’s possible to analyze possible alternatives of fuel that may have “drop-in” characteristics and partially or definitively to replace the currently consumed jet-A1 fuel. Qualitatively the formed spray has the MMD between 30 e 40 µm, however can be varied according with the temperature of work. Furthermore, the nozzle is favorable to an efficient combustion process.
|
4 |
Effect of Pt and Ag metals to the degradation of trichloroethylene, ethylene, ethane, and toluene by gas phase photocatalysisDjongkah, Cissillia Young, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2006 (has links)
The photocatalytic oxidation of trichloroethylene (TCE), ethylene. ethane and toluene on TiO2, Pt/TiO2 and Ag/TiO2 were investigated in a dedicated reactor set-up operated at room temperature and ambient pressure condition. The gas phase experiments were carried out for both single and binary mixtures of these chemicals to identify the role of Pt and Ag metallisation in the photocatalytic oxidation of different contaminants. In a single contaminant system, the presence of Pt enhanced the oxidation of ethylene, ethane and toluene but detrimental to the oxidation of TCE. In the oxidation of ethylene, Pt enhanced the oxidation by acting as catalyst and as electron sink. However, in ethane oxidation, the enhancement was solely associated to the ability of Pt to act as electron sink. The detrimental effect observed in TCE oxidation was attributed to Pt and Cl interaction, which formed a persistent inorganic chlorine species decreasing the overall Pt/TiO2 photocatalyst performance. Interestingly, Ag did not show any significant effect to the oxidation of any single system degradation. In binary system degradation, where TCE and another organic compound either ethylene, ethane or toluene were degraded simultaneously, Pt always caused a detrimental effect due to its strong interaction with Cl. However, the presence of Ag and Cl gives a more synergetic effect. Ag was found to provide sites to temporarily trap chlorine radicals as AgCl. Under illumination, electrons transferred from Cl to Ag forming chlorine radicals that could react with the surface contaminant enhancing its breakdown and mineralization.
|
5 |
Infiltration rate and hydraulic conductivity of sand-silt soils in the Piedmont physiographic regionPettyjohn, William Randall 12 January 2015 (has links)
In this study, a two phase investigation of the hydraulic conductivity parameters of silty soils was performed. In the first phase, double-ring infiltrometer tests were used to measure infiltration rates in-situ at two sites in the Piedmont physiographic province of Georgia. The efficacy of predicting saturated hydraulic conductivity for Piedmont soils via published soil surveys from the National Resource Conservation Service and pedotransfer functions was then investigated. Work focused on the development of a consistent test methodology for soils (sandy, to silts and clays) in the Piedmont, and the final test method utilized being the constant head test, using a double-ring infiltrometer with Mariotte tubes to maintain the head.
In the second phase of the investigation, laboratory based measurements of the saturated hydraulic conductivity of binary mixtures of fine sand and nonplastic silt were performed to investigate the effects of particle mixtures on hydraulic conductivity. The materials used were ASTM 100/200 sand and Sil-Co-Sil 40 non-plastic silt, chosen based on the ratio of the mean particle diameters. Significant effort was invested in the development and comparison of methodologies to produce uniform specimens of the binary mixtures for hydraulic conductivity testing, with the final being modified dry tubing. Two fixed densities were used to investigate the effects of particle packing on the hydraulic conductivity of binary mixtures, with critical fines contents chosen to ensure the finer particles primarily filled the pore volume of the coarse particles. Incremental fines contents, by mass, up to this theoretical fines content were tested. The measured saturated hydraulic conductivity was evaluated in terms of fines content, global and intergranular void ratio, and confining stress. Models for predicting extreme void ratios and saturated hydraulic conductivity of binary mixtures were also investigated.
|
6 |
Importance of protein-protein interactions on protein crystallisationChirag Mehta Unknown Date (has links)
There is a strong link between solubility, and thus crystallisation, and the molecular interactions of proteins in dilute salt solutions. Such molecular interactions are governed by the weak interaction forces (electrostatic, hydration and hydrophobic). Such forces can be quantitatively estimated in terms of a second virial self-coefficient (B22) and a second virial cross-coefficient (B23) for a single and a binary protein system, respectively. Previous studies confirmed the relation between a value of the second virial coefficient and a type of interaction (attractive or repulsive). The aim of this thesis is to correlate the second virial coefficient with the solubility and nucleation for single and binary protein systems. Model proteins used in this work are lysozyme and ovalbumin from egg-white, and α-amylase from Bacillus Licheniformis (BLA). The measurements are performed for sodium chloride and ammonium sulphate solutions in an acidic pH at 20 oC. Interaction chromatography is used in this work to estimate the B22 and B23 values for the model proteins in salt solutions. From the measured values of B22 and B23, the type of interaction is generalised as a function of the salt type, salt concentration, pH and protein type. For the single protein systems, in ammonium sulphate solutions (0.1 - 2.4 M) at pH 4.0 and 7.0, repulsion or no interactions are observed below 0.8 M and, as the salt concentrations are increased attractive self-interactions are observed for the model proteins. However, for the sodium chloride solutions (0.1 - 2.0 M) at pH 4.0 and 7.0, the interaction patterns vary with the salt concentration, the pH and the type of protein studied. A common feature of the self-interaction for all the model proteins is the attractive interactions close to the isoelectric point. For the binary protein systems, three distinct regions are observed in the ammonium sulphate solutions (0.1 - 1.6 M) at pH in the range 4.0 - 7.0. Attractive or no cross-interactions are observed at low salt concentrations (< 0.5 M). At the intermediate salt concentrations (0.5 - 1.0 M), the cross-interactions are constant and near zero. This is followed by a sharp increase in the attractive interactions above 1.0 M ammonium sulphate concentrations. However, for sodium chloride solutions (0.1 - 1.6 M) at pH 4.0 - 7.0, two distinct regions are observed. Attraction or no interactions are observed at low salt concentrations (< 0.5 M) and above 0.5 M concentrations of sodium chloride, negligible cross-interactions are observed between model proteins. For the single protein system, an overall increase in the solubility of three model proteins is observed with an increase in the concentrations of ammonium sulphate and also for sodium chloride solutions except for BLA, where a salting-in behaviour is observed. Linear regression is used on the solubility data to determine the parameters of the Cohn equation (β and Ks) where the values of β vary with solution pH, protein type and salt type. The values of Ks vary with protein type and salt type. However, it is insensitive to the solution pH for lysozyme in ammonium sulphate, ovalbumin in sodium chloride and BLA in ammonium sulphate solutions. For the binary protein system, the presence of ovalbumin had a measurable effect on lysozyme solubility at pH < 5.0 in both salts. In low concentration sodium chloride solutions (< 0.3 M), a decrease in the solubility of lysozyme was observed with the presence of ovalbumin at acidic pH < 5.0. However, in ammonium sulphate solutions, the lysozyme solubility increases with the addition of ovalbumin in the salt concentration range 1.6 - 2.0 M and at pH < 4.0. The primary nucleation threshold values are also determined for lysozyme in sodium chloride and ammonium sulphate solutions. In sodium chloride solutions (0.2 - 1.0 M), the critical supersaturation values increase as the solution pH is raised from 4.0 to 7.0; however in ammonium sulphate solutions (1.0 - 2.0 M), the reverse effect is observed. The critical supersaturation required to nucleate lysozyme in ammonium sulphate solutions is approximately three times higher than in sodium chloride solutions. For the single protein systems, the measured values of solubility and B22 were correlated using published models (RSL and HDW). For each protein-salt combination, a reasonable single correlation between solubility and B22 is possible as the salt concentrations and pH are varied. There are separate correlations for sodium chloride and ammonium sulphate solutions. Based on the correlation curve of solubility and B22, it is proposed that the acidic pH range (4.0 - 5.0) is better for crystallising and precipitating globular proteins from these salt solutions. If the values of solubility and B22 are converted into a non-dimensional quantity, the data derived from the different protein-salt systems collapse onto a single curve for the same salt type. The B22 values are also correlated with the critical supersaturation (ln(c*/S)) for the primary nucleation of lysozyme in salt solutions. The values of the critical supersaturation increase as the values of the second virial coefficient become negative or reduce. The ideal critical supersaturation required to create nuclei of lysozyme in salt solutions is between 0.1 and 1.4. For the binary protein systems, B23 values were related to the slope of the lysozyme and ovalbumin plot at same salt concentration and solution pH. Further work is required for binary protein systems to generalise such correlations as a function of the salt concentration and pH. The correlations derived in this thesis are useful generally to predict the solubility and primary nucleation of globular protein in salt solutions. This work reinforces the importance of the second virial coefficient in predicting the crystallisation of protein in salt solutions.
|
7 |
Estudos de híbridos de ABS e mistura binária de argilas montmorilonita organofílicas / Study of hybrids of ABS and a binary mixture of montmorillonite organoclayGalvan, Danieli 20 August 2018 (has links)
Orientadores: Júlio Roberto Bartoli, Marcos Akira D'Ávila / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-20T09:53:53Z (GMT). No. of bitstreams: 1
Galvan_Danieli_M.pdf: 5419216 bytes, checksum: 3bbb69d4a9a4e73278d7ed9781b01c43 (MD5)
Previous issue date: 2012 / Resumo: O presente trabalho estudou a preparação e caracterização de híbridos de polímero-argila, tendo a poli(acrilonitrila-butadieno-estireno) (ABS) como matriz polimérica e duas argilas montmorilonitas organofílicas (MMTO) distintas e sua mistura binária 1:1 como fases dispersas. O objetivo foi avaliar os efeitos das variáveis: tipo de argila e processo nas propriedades físicas dos híbridos de ABS/MMTO. A seleção das argilas MMTO comerciais (Cloisite 30B e Cloisite 20A) baseou-se nas possíveis afinidades químicas de cada uma delas com as distintas fases do terpolímero ABS. Na preparação dos híbridos através do processo de intercalação no estado fundido, em extrusora com rosca-dupla co-rotacional, foi investigado o efeito do torque da rosca (ou tempo de residência na extrusora), na dispersão das argilas na matriz ABS. Os compostos obtidos foram caracterizados através de análises de difração de raios-X, termogravimetria, ensaios de tração uniaxial e resistência ao impacto, flamabilidade e análises reológicas do fundido em regime permanente e oscilatório em altas e baixas taxas de cisalhamento. A difração de raios-X indicou que os híbridos obtidos apresentavam estruturas intercaladas, que proporcionaram aumento nos módulos de elasticidade por tração e por cisalhamento (armazenamento e perda). As análises reológicas dos híbridos ABS mostram o surgimento de um caráter pseudo-sólido, em especial para os híbridos contendo a MMTO com maior afinidade química (Cloisite 30B) à fase SAN do terpolímero. Este comportamento indicaria uma provável dispersão em escala nanométrica da Cloisite 30B nos híbridos ABS, seja como único componente na fase dispersa ou na sua mistura binária com a Cloisite 20A. Este resultado caracterizaria os materiais obtidos como nanocompósitos. Melhorias significativas nas propriedades mecânicas de tração também foram verificadas nos híbridos a base de Cloisite 30B. Já os ensaios de rigidez ao impacto e as análises de estabilidade térmica não apresentaram resultados satisfatórios. Entretanto a adição de MMTO eliminou o gotejamento de material incandescente apresentado pelo ABS durante a queima (norma UL 94 HB). A utilização de um menor torque na rosca, ou seja, maior tempo de residência dos híbridos na extrusora, parece favorecer a dispersão/intercalação das argilas na matriz de ABS. Entretanto, o efeito deste fator foi confundido com variações na concentração nominal de argila / Abstract: This work studied the preparation and characterization of hybrids of polymer-clay, where the polymeric matrix was the poly(acrylonitrile-butadiene-styrene) (ABS) and two different organically modified montmorillonite (OMMT) and their mixture (1:1) were used as dispersed phase. The aim was evaluate the effect of kind of clay and process parameters on physical properties of ABS/OMMT hybrids. Two grades of commercial OMMT organoclay (Cloisite 20A and Cloisite 30B) were investigated, with distinct chemical affinities according to terpolymer phases, and a binary mixture of these clays. The hybrids were prepared by melt intercalation process, on a co-rotating twin-screw extruder, the effect of screw torque (or residence time on extruder) on clay dispersion in the polymeric matrix was investigated. The hybrids were characterized by analysis of X-ray diffraction, thermogravimetry, mechanical properties (uniaxial tensile and impact strength), flammability, and rheological analysis in steady and oscillatory states, at high and low shear rates. The X-ray diffractions indicated that the ABS hybrids present an intercalated structure, which improved the tensile elastic modulus and shear modulus (storage and loss). The rheological analysis of ABS hybrids shows the emergence of a pseudo-solid character, especially to the hybrids containing the OMMT with higher chemical affinity (Cloisite 30B) to SAN phase of the terpolymer. This behavior would indicate a probable nanometric scale dispersion of the Cloisite 30B on the hybrids of ABS, even in the single form or in a binary mixture, likely characterizing them as nanocomposites. Significant improvements in the tensile mechanical properties were also verified on the hybrids based on Cloisite 30B. Nevertheless the impact strength and thermal stability analysis did not show satisfactory results. The flammability test (UL 94 HB standard) of ABS hybrids showed a non-dripping effect of incandescent material during burning. The use of a lower screw torque, higher residence time of the hybrids on extruder, seems to favor clay dispersion/intercalation on the ABS matrix, however, the effect of this factor was confounded with some variations in the organoclay nominal content / Mestrado / Ciencia e Tecnologia de Materiais / Mestre em Engenharia Química
|
8 |
Estudo de híbridos de montmorilonitas organicamente modificadas e ABS compatibilizados com copolímeros SEBS ou SBS / Study of hybrids of organically modified montmorillonites and ABS compatibilized with copolymers SEBS or SBSMazzucco, Mateus De Lorenzi Cancelier, 1981- 20 August 2018 (has links)
Orientadores: Julio Roberto Bartoli, Humberto Gracher Riella / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-20T23:19:45Z (GMT). No. of bitstreams: 1
Mazzucco_MateusDeLorenziCancelier_M.pdf: 25131087 bytes, checksum: 9d983cb4726735834e67d038fd3a6235 (MD5)
Previous issue date: 2012 / Resumo: Este trabalho apresenta um estudo sobre a relação entre estrutura e propriedades de híbridos de montmorilonitas organicamente modificadas (MMTO) e terpolímero de acrilonitrila-butadieno-estireno (ABS), compatibilizados com o copolímero de estirenoetileno- butadieno-estireno (SEBS) ou de estireno-butadieno-estireno (SBS) preparados via intercalação no estado fundido em extrusora de rosca-dupla. Quatro formulações de híbridos foram propostas segundo um planejamento fatorial de experimentos 22 para estudar o efeito dos fatores compatibilizante (SEBS e SBS) e composição da MMTO (Cloisite 30B e mistura Cloisite 30B+Cloisite 20A (1:1)). A mistura binária de argilas foi proposta para verificar a viabilidade em balancear o caráter hidrofílico e hidrofóbico dos surfactantes destes dois tipos de argilas. As etapas de processamento foram: 1) Preparação de quatro concentrados na proporção mássica de 49,5: 40: 10: 0,5 de ABS/argila/compatibilizante/antioxidante em misturador interno; 2) Diluição para 4% em massa de MMTO; 3) extrusão do composto; 4) Granulação em moinho e moldagem por injeção dos corpos de prova. O efeito destes fatores e suas interações foram avaliados através de análises de difração de raios-X (DRX), microscopia eletrônica de varredura (MEV), microscopia eletrônica de transmissão (MET), termogravimetria (TGA), calorimetria diferencial de varredura (DSC), ensaios de tração uniaxial, resistência ao impacto, flamabilidade e análises reológicas do fundido em regime permanente e oscilatório em altas e baixas taxas de cisalhamento. As análises de DRX e de MET indicaram que os híbridos apresentaram estruturas intercaladas (ABS/20A30B/SEBS) e parcialmente esfoliadas (ABS/30B/SBS), essencialmente na fase SAN dos híbridos. As análises por MEV mostraram morfologias distintas da superfície de fratura na tração para os híbridos com SBS e SEBS sendo o SEBS caracterizado por uma fratura dúctil. As análises reológicas dos híbridos mostraram o surgimento de um caráter pseudo-sólido, com aumento significativo nos módulos de armazenamento e na viscosidade complexa, em especial para os híbridos com SBS. Este comportamento revela uma provável dispersão em escala nanométrica das argilas nos híbridos ABS, seja na forma simples ou mistura binária de MMTO. A resistência ao impacto, de todos os híbridos, foi significativamente reduzida devido às micro ou nano partículas de argila que podem atuar como defeitos aumentando aconcentração das tensões localizadas. Melhorias significativas nas propriedades mecânicas de tração quanto ao módulo de elasticidade foram verificadas nos híbridos com SBS em relação ao ABS de referência, por sua vez os híbridos com SEBS mostraram um expressivo comportamento dúctil. No ensaio de flamabilidade na horizontal (norma UL 94 HB) verificou-se uma supressão do gotejamento de material incandescente durante a queima dos híbridos contendo SBS, gotejamento observado nos híbridos com SEBS e no ABS de referência, este comportamento favorável é provavelmente devido à viscosidade do híbrido fundido SBS ser o dobro do SEBS. O estudo da cinética de degradação termo-oxidativa dos híbridos mostrou que a energia de ativação dos híbridos compatibilizados com SEBS é significativamente maior do que os híbridos com SBS, provavelmente devido à hidrogenação do butadieno no SEBS que melhora a sua estabilidade térmica. O grau de dispersão obtido pelas argilas permite designar estes híbridos como nanocompósitos de ABS / Abstract: The present work, shows a study about the relationship between structure and properties of hybrids of organically modified montmorillonites (MMTO) and terpolymer of acrylonitrile-butadiene-styrene (ABS), compatibilized with styrene-ethylene-butadienestyrene (SEBS) or styrene-butadiene-styrene (SBS) prepared by melt blending process. Four formulations of hybrids were proposed in a 22 factorial design of experiments to study the effect of factors compatibilizer (SEBS and SBS) and composition of OMMT (Cloisite 30B and Cloisite 30B + Cloisite 20A mixture (1:1)). The binary mixture of clay was proposed to verify the feasibility of balancing the hydrophobic and hydrophilic character of surfactants these two types of clays. The processing steps were: 1) Preparation of four masterbatches in mass ratio of 49,5: 40: 10:0,5 of ABS/clay/compatibilizer/antioxidant in an internal mixer; 2) Dilution to 4% by weight of OMMT; 3) Extrusion of the compound; 4) Granulation in mill and injection molding of test specimens. The effect of these factors and their interactions were evaluated through analysis of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetry (TGA), differential scanning calorimetry (DSC), uniaxial tensile tests, impact strength, flammability and rheological analysis at high and low shear rates. The analyses of XRD and TEM showed that hybrids had structures intercaled (ABS/20A30B/SEBS) and partially exfoliated (ABS/30B/SBS) essentially in the SAN phase of the hybrids. The analyses by SEM showed different morphologies of the fracture surface in tensile for hybrids with SBS and SEBS, being the SEBS characterized by a ductile fracture. The analyses rheological of hybrids showed the appearance of a pseudo-solid behavior, with a significant increase in storage modulus and complex viscosity, in particular for hybrids with SBS. This behavior reveals a probable dispersion in nano scale of clays in hybrids ABS, either as single or binary mixture of MMTO. The impact strength of all hybrids were significantly reduced due to micro or nano clay particles that can act as defects increasing the concentration of localized stresses. The mechanical properties showed positive results of tensile as so elastic modulus observed in hybrids with SBS in relation to pristine ABS, while hybrids with SEBS showed a significant ductile behavior. In horizontal flammability test (UL 94 HB) verified a suppression of dripping of incandescent material during the burning of hybrids containing SBS, drip observed in hybrids with SEBS and pristine ABS reference, this behavior is probably due to the viscosity of hybrid melted SBS be the double of SEBS. The study of the kinetics of thermo-oxidative degradation of hybrids showed that the activation energy of the hybrid compatibilized with SEBS is significantly greater than the hybrids with SBS, probably due to hydrogenation of the butadiene on SEBS which improves their thermal stability. The degree of dispersion obtained by clays allows to designate these hybrids how nanocomposites ABS / Mestrado / Ciencia e Tecnologia de Materiais / Mestre em Engenharia Química
|
9 |
Hydrodynamic and gasification behavior of coal and biomass fluidized beds and their mixturesEstejab, Bahareh 29 March 2016 (has links)
In this study, efforts ensued to increase our knowledge of fluidization and gasification behavior of Geldart A particles using CFD. An extensive Eulerian-Eulerian numerical study was executed and simulations were compared and validated with experiments conducted at Utah State University. In order to improve numerical predictions using an Eulerian-Eulerian model, drag models were assessed to determine if they were suitable for fine particles classified as Geldart A. The results proved that if static regions of mass in fluidized beds are neglected, most drag models work well with Geldart A particles. The most reliable drag model for both single and binary mixtures was proved to be the Gidaspow-blend model. In order to capture the overshoot of pressure in homogeneous fluidization regions, a new modeling technique was proposed that modified the definition of the critical velocity in the Ergun correlation. The new modeling technique showed promising results for predicting fluidization behavior of fine particles. The fluidization behavior of three different mixtures of coal and poplar wood were studied. Although results indicated good mixing characteristics for all mixtures, there was a tendency for better mixing with higher percentages of poplar wood.
In this study, efforts continued to model co-gasification of coal and biomass. Comparing the coal gasification of large (Geldart B) and fine (Geldart A) particles showed that using finer particles had a pronounced effect on gas yields where CO mass fraction increased, although H2 and CH4 mass fraction slightly decreased. The gas yields of coal gasification with fine particles were also compared using three different gasification agents. Modeling the co-gasification of coal-switchgrass of both fine particles of Geldart A and larger particles of Geldart B showed that there is not a synergetic effect in terms of gas yields of H2 and CH4. The gas yields of CO, however, showed a significant increase during co-gasification. The effects of gasification temperature on gas yields were also investigated. / Ph. D.
|
10 |
Structure and Dynamics of Macromolecular Solvation in Aqueous Binary Mixtures : From Polymers to ProteinsGhosh, Rikhia January 2015 (has links) (PDF)
The thesis presents detailed results of theoretical analyses based on extensive computer simulation studies with an aim to explore, quantify whenever possible, and understand structure and dynamics of polymers and proteins in several complex solvents. In order to make the Thesis coherent, we also study certain aspects of binary mixtures. Based on the phenomena studied, the thesis has been divided into four major parts:
I. Dynamics of biological water: Distance dependent variation of dielectric constants in aqueous protein solutions
II. Temperature dependent study of structural transformations in aqueous binary mixtures
III. Conformation and dynamics of polymers in solution: Role of aqueous binary mixtures
IV. Conformational change and unfolding dynamics of proteins: Role of sol-vent environment The above mentioned four parts have further been divided into thirteen chapters. In the following we provide a brief chapter-wise outline of the thesis.
Part I consists of two chapters, where we focus on the study of dynamics of biological water and distance dependent variation of static and dynamic proper-ties (including dielectric constant) of water near different proteins. To start with, chapter 1 provides an introduction to the structure and dynamics of biological water. Here we discuss different experimental studies; including dielectric relaxation, NMR and salvation dynamics those explore the bimolecular hydration dynamics in great detail. We also discuss the wide range of computer simulation and theoretical studies that have been carried out to understand the dynamical behaviour of biological water.
In chapter 2, we present our molecular dynamics simulation study to ex-plore the distance dependent static and dynamic behaviour of biological water near four different protein surfaces. Proteins are known to have large permanent dipole moments that can influence structure and dynamics of even distant water molecules. Therefore, distance dependence of polarization punctuation can provide important insight into the nature of biological water. We explore these aspects by studying aqueous solutions of four different proteins of different char-acteristics and varying sizes. We find that the calculated dielectric constants of the systems show a noticeable increment in all the cases compared to that of neat water. Total dipole moment auto time correlation function of water is found to be sensitive to the nature of the protein. We also define and calculate the effective dielectric constant of successive layers and find that the layer adjacent to protein always has significantly lower value (∼ 50). However, progressive layers exhibit successive increment of dielectric constant, finally reaching a value close to that of bulk 4–5 layers away. Theoretical analysis providing simple method for calculation of shellwise local dielectric constant and implication of these findings are elaborately discussed in this chapter.
Part II deals with the temperature dependent study of aqueous DMSO and ethanol solutions and consists of three chapters. Chapter 3 provides a general introduction to the non-ideality (deviation from Raoult’s law) encountered in different binary mixtures. We discuss different theoretical models for treatment of binary mixtures. Finally we provide a systematic study about the non-ideality observed in aqueous binary mixtures. Here we discuss the anomalies observed in such systems and carry out a brief survey on the existing ideas of structural transformations associated with the solvation of a foreign molecule in water.
In chapter 4, we discuss the results of temperature dependent study of struc-tural and dynamic properties of aqueous dimethyl sulfoxide (DMSO) mixture. It is now well-known that aqueous DMSO mixture exhibits signature of perco-lation driven structural aggregation at a mole fraction range xDMSO ≈ 0.15. We study the structural and dynamical change in this binary mixture below and above the percolation threshold along with decreasing temperature. Significant change in the molecular structure of DMSO as well as that of water is observed above the percolation threshold at a lower temperature, particularly at 200K. The structural arrangement of the DMSO molecules is found to be progressively more ordered with increasing DMSO concentration and decreasing temperature. On the other hand, water structure is found to be significantly deviated from tetrahedral arrangement in presence of DMSO clusters even at low temperature. The dynamics of water is also found to be considerably affected with increase of concentration and lowering of temperature.
Similar phenomenon is observed for another amphiphilic molecule, ethanol, and has been discussed in chapter 5. Aqueous ethanol mixture is a widely studied solvent, both experimentally and using computer simulations. All the studies indicate several distinct salvation regimes. In recent molecular dynamics simulation studies, the reason for formation of micro-aggregates of ethanol is again attributed to percolation driven structural transformation. We carry out a temperature dependent study of water-ethanol binary mixture, particularly at low ethanol concentration to understand the molecular origin of such structural transformation. We find that the structural arrangement of ethanol as well as water molecules is similarly affected as that of DMSO with lowering of temperature. However, dynamics of water molecules in aqueous ethanol solution is found to be marginally affected, unlike the case of aqueous DMSO solution. We discuss the microscopic reason for such behaviour in a detailed manner.
In Part III, we discuss the dynamics of linear polymer chains in different aqueous binary mixtures. Here we have three chapters. In chapter 6, we carry out a brief survey of the existing theories of polymers in solution. We discuss the quality of solvents depending on the preferred interactions between the polymer and the solvent or the polymer with its own. We also discuss the celebrated Flory-Huggins theory. We derive the expression of free energy of the Flory-Huggins theory in terms of the volume fraction of monomer and solvent molecules.
In chapter 7, we discuss the results of our study of polymer dynamics in aqueous DMSO solution. We find that at a mole fraction 0.05 of DMSO (xDMSO ≈ 0.05) in aqueous solution, a linear polymer chain of intermediate length (n=30) adopts collapsed conformation as the most stable conformational state. The same chain exhibits an intermittent oscillation between the collapsed and the extended coiled conformations in neat water. Even when the mole fraction of DMSO in the bulk is 0.05, the concentration of the same in the first hydration layer around the polymer is found to be as large as 17 %. Formation of such hydrophobic environment around the hydrocarbon chain may be viewed as the reason for the collapsed conformation gaining additional stability. We find a second anomalous behaviour to emerge near xDMSO ≈ 0.15 that is attributed to the percolation driven structural aggregation of DMSO that lowers the relative concentration of the DMSO molecules in the hydration layer.
In chapter 8, we carry out similar study of linear polymer chain in water– ethanol binary mixture. In this case also, we find a sudden collapse of the poly-merat xEtOH ≈ 0.05. Since ethanol molecules are known to form micro-aggregates in this concentration range, stability of collapsed state of polymer at this con-centration is anticipated to be correlated to this phenomenon. In fact, a purely hydrophobic polymer chain, in its collapsed form is anticipated to assist in the formation of spanning cluster comprised of hydrophobic ethyl groups at this concentration range thereby facilitating the percolation transition. We discuss these prospects in this chapter.
Part IV deals with the solvent sensitivity to the conformational change and unfolding dynamics of protein. Part IV consists of five chapters. In chapter 9, we develop an understanding of protein folding and unfolding dynamics by discussing the fundamental theories developed in the last few decades. We also discuss the major role of solvents in stabilizing or destabilizing the native, ordered state.
In chapter 10, we present a detailed study of unfolding of a small protein, chicken villin headpiece (HP36) in water-ethanol binary mixture, using molecular dynamics simulations. The prime objective of this work is to explore the sensitivity of protein dynamics towards increasing concentration of the cosolvent and unravel essential features of intermediates formed in the unfolding path-way. In water–ethanol binary mixtures, HP36 is found to unfold partially, under ambient conditions, that otherwise requires temperature as high as ∼ 600K to denature in pure aqueous solvent. The study unravels certain interesting aspects about the pathway of unfolding, guided by the formation of unique intermediates. Unfolding is initiated by the separation of hydrophoic core comprising three phenylalanine residues (Phe7, Phe11, Phe18). This separation initiates the melting of the helix2 of the protein. However, with an increase of cosolvent concentration different partially unfolded intermediates are found to be formed. We attribute the emergence of such partially unfolded states to the preferential solvation of hydrophobic residues by the ethyl groups of ethanol. We explore and subsequently quantify the detailed dynamics of unfolding in water-ethanol that appear to be more complex and sensitive to solvent composition.
With an aim to develop a general understanding of the role of water–ethanol binary mixture in facilitating anomalous conformational dynamics of proteins, we carry out combined theoretical and experimental studies to explore detailed structural change of a larger protein, Myoglobin with increasing ethanol concentration. These studies are described in chapter 11. In agreement with our pre-vious observations, we identify in this case two well-defined structural regimes, one at xEtOH ≈ 0.05 and the other at xEtOH ≈ 0.25, characterized by formation of distinct partially folded conformations and separated by a unique partially unfolded intermediate state at xEtOH ≈ 0.15. We also find non-monotonic com-position dependence of (i) radius of gyration (ii) long range contact order (iii) residue specific solvent accessible surface area of tryptophan (iv) circular dichro-ism spectra and UV-absorption peaks. Multiple structural transformations, well-known in water-ethanol binary mixture, appear to have considerably stronger effects on the conformation and dynamics of protein Myoglobin.
In chapter 12, we explore the free energy surface of unfolding pathway through umbrella sampling, for the small globular alpha-helical protein chicken-villin headpiece (HP36) in three different solvent conditions (water, xDMSO ≈ 0.15 and xDMSO ≈ 0.3). Recently established as a facilitator of helix melting, DMSO is found to be a good denaturant for HP36 and at a mole fraction of xDMSO ≈ 0.3, complete melting of the protein is ensured. The unfolding proceeds through initial separation or melting of the same aggregated hydrophobic core that com-prises three phenylalanine residues (Phe7, Phe11 and Phe18) accompanied by simultaneous melting of the helix2. Unfolding is found to be a multistage process involving crossing of three consecutive minima and two barriers at the initial stage. At a molecular level, Phe18 is observed to reorient itself towards other hy-drophobic grooves to stabilize the intermediate states. We identify the configuration of intermediates in all the solvent conditions which are found to be unique for the corresponding minima with similar structural arrangement. Consider-able softening of the barriers is observed with increasing DMSO concentration. Higher concentration of DMSO tunes the unfolding pathway by destabilizing the third minimum and stabilizing the second one, indicating the development of solvent modified, less rugged pathway.
Chapter 13 provides a detailed microscopic mechanism of DMSO induced unfolding of HP36. We analyze the free energy contours of the protein HP36, obtained from molecular dynamics simulation in xDMSO ≈ 0.15 and xDMSO ≈ 0.3. The most probable intermediates obtained from the free energy contours are found to be similar to those obtained from umbrella sampling which again sup-ports the fact that the melting proceeds through formation of a series of unique intermediates. We characterize the preferential hydrophobic salvation of the hydrophobic core that drives the melting of secondary structure, by calculating time dependent radial distribution function and identifying the formation of strong orientation order between methyl groups of DMSO and phenyl alanine residues. Finally we employ Kramer’s rate equation to calculate the rate of bar-rier crossing that reveals significantly faster rate of unfolding with increasing DMSO concentration that is in agreement with simulation results.
Whenever possible, we have discussed the scope of future work at the end of each chapter.
|
Page generated in 0.0623 seconds