• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 72
  • 24
  • 9
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 237
  • 69
  • 41
  • 37
  • 32
  • 31
  • 29
  • 28
  • 19
  • 18
  • 18
  • 18
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Redução de derivados de acetofenonas e resolução de feniletanóis por biocatálise e imobilização de fungos marinhos / Reduction of acetophenones derivatives and resolution phenylethanol by biocatalysis and immobilization of marine fungi

Rocha, Lenilson Coutinho da 10 October 2012 (has links)
Este trabalho envolveu reações de biocatálise com objetivo de obter compostos enantiomericamente puros. Assim foram realizadas reações de redução de derivados de acetofenonas, resolução enzimática de alcoóis e azido-alcoóis e imobilização de células fúngicas em suportes sólidos para aplicação em biocatálise. Foi realizada a redução enantiosseletiva da 1-(4-metoxifenil)etanona (1) através da triagem com nove fungos marinhos (Aspergillus sydowii CBMAI 935, A. sydowii CBMAI 934, A. sclerotiorum CBMAI 849, Bionectria sp. CBMAI 936, Beauveria felina CBMAI 738, Cladosporium cladosporioides CBMAI 857, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, P. miczynskii CBMAI 930). Os fungos A. sydowii CBMAI 935 e Bionectria sp. CBMAI 936 catalisaram a biorredução estereosseletiva da 1-(4-metoxifenil)etanona (1) para o correspondente (R)-1-(4-metoxifenil)etanol (1a) com excelentes excessos enantioméricos (>99%). Os fungos B. felina CBMAI 738 e P. citrinum CBMAI 1186 catalisaram a biorredução estereosseletiva da cetona 1 para o correspondente S-álcool 1a com 69% de excesso enantiomérico. Os fungos marinhos (A. sclerotiorum CBMAI 849, A. sydowii CBMAI 934, B. felina CBMAI 738, M. racemosus CBMAI 847, P. citrinum CBMAI 1186, P. miczynskii CBMAI 931, P. miczynskii CBMAI 830, P. oxalicum CBMAI 1185, Trichoderma sp. CBMAI 932) foram utilizados na bioconversão assimétrica das iodoacetofenonas 2-4 para os correspondentes iodofeniletanois 2a-4a. Todos os fungos marinhos produziram exclusivamente (S)-o-iodofeniletanol (2a) e (S)-m-iodofeniletanol (3a) com diferentes valores de excessos enantioméricos (62-99%). Os fungos B. felina CBMAI 738, P. miczynskii CBMAI 830, P. oxalicum CBMAI 1185 e Trichoderma sp. CBMAI 932 produziram o correspondente (R)-p-iodofeniletanol (4a) com excessos enantioméricos de 32-99%. A bioconversão da p-iodoacetofenona (4) com células microbianas do P. oxalicum CBMAI 1185 mostrou uma competição entre a reação de redução e oxidação. Também foram realizadas as reduções das ceto-azidas 13-16 com fungos marinhos fornecendo bons resultados de seletividade (28-99% ee). As células microbianas dos fungos A. sclerotiorum CBMAI 849 e P. citrinum CBMAI 1186 foram imobilizadas em suportes de sílica gel, xerogel de sílica e quitosana. As células do P. citrinum CBMAI 1186 imobilizadas em quitosana catalisaram a redução da 1-(4-metoxifenil)-etanona (1) para o correspondente (S)-1-(4-metoxifenil)-etanol (1a) com excelente excesso enantiomérico (>99%). O fungo P. citrinum CBMAI 1186 imobilizado em quitosana também catalisou a biorredução de 2-cloro-1-feniletanona (7) para o 2-cloro-1-feniletanol (7a), mas neste caso, sem seletividade. Neste trabalho também foram realizadas as resoluções quimio-enzimáticas dos (±)-o-iodofeniletanol (2a), (±)-m-iodofeniletanol (3a), (±)-p-iodofeniletanol (4a), (±)-2-azido-1-feniletanol (13a), (±)-2-azido-1-(4-metoxifenil)etanol (14a), (±)-2-azido-1-(4-bromofenil)etanol (15a), (±)-2-azido-1-(4-nitrofenil)etanol (16a) e (±)-2-azido-1-(4-clorofenil)etanol (17a) com a lipase CALB. Os (S)-m-iodofeniletanol (3a) e (S)-p-iodofeniletanol (4a) foram obtidos com excelentes excessos enantioméricos (>99%) e posteriormente foram utilizados na síntese de compostos bifenílcos quirais por reação de acoplamento Suzuki fornecendo bons rendimentos (63-65%). A resolução quimio-enzimática dos azido-alcoóis 13a-17a foram realizadas com lipase Candida atarctica e os (R)-2-azido-1-feniletanol (13a), (R)-2-azido-1-(4-metoxifenil)etanol (14a), (R)-2-azido-1-(4-bromofenil)etanol (15a), (R)-2-azido-1-(4-nitrofenil)etanol (16a) obtidos foram utilizados na síntese dos triazóis quirais (R)-2-(1H-benzo[d][1,2,3]triazol-1-il)-1-feniletanol (13), (R)-2-(1H-benzo[d][1,2,3]triazol-1-il)-1-(4-metoxifenil)etanol (14), (R)-2-(1H-benzo[d][1,2,3]triazol-1-il)-1-(4-bromofenil)etanol (15) e (R)-2-(1H-benzo[d][1,2,3]triazol-1-il)-1-(4-nitrofenil)etanol (16) e (R)-2-(1H-benzo[d][1,2,3]triazol-1-il)-1-(4-clorofenil)etanol (17), obtidos com ótimos rendimentos (79-85%). / This work involved reactions of biocatalysis in order to obtain enantiomerically pure compounds. Thus reactions were performed reduction of acetophenones derivatives, enzymatic resolution of azido-alcohols, secondary alcohols and immobilization of fungal cells on solid supports for use in biocatalysis. We performed the enantioselective reduction of 1-(4-methoxyphenyl)ethanone (1) by screening with nine marine fungi (Aspergillus sydowii CBMAI 935, A. sydowii CBMAI 934, A. sclerotiorum CBMAI 849, Bionectria sp. CBMAI 936, Beauveria felina CBMAI 738, Cladosporium cladosporioides CBMAI 857, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, P. miczynskii CBMAI 930). The fungi A. sydowii CBMAI 935 and Bionectria sp. 936 CBMAI catalyzed stereoselective bioreduction of 1-(4-methoxyphenyl)ethanone (1) to the corresponding (R)-1-(4-methoxyphenyl)ethanol (1a) with excellent enantiomeric excess (>99%). Fungi B. felina CBMAI 738 and P. citrinum 1186 CBMAI catalyzed stereoselective bioreduction of ketone 1 to the corresponding S-alcohol 1a with 69% enantiomeric excess. The marine fungi (A. sclerotiorum CBMAI 849, A. sydowii CBMAI 934, B. felina CBMAI 738, M. racemosus CBMAI 847, P. citrinum CBMAI 1186, P. miczynskii CBMAI 931, P. miczynskii CBMAI 830, P. oxalicum CBMAI 1185, Trichoderma sp. CBMAI 932) were used in the bioconversion of asymmetric iodoacetophenones 2-4 to the corresponding iodophenylethanols 2a-4a. All marine fungi produced exclusively (S)-o-iodophenylethanol (2a) and (S)-m-iodophenyletanol (3a) with different values of enantiomeric excess (62-99%). Fungi B. felina CBMAI 738, P. miczynskii CBMAI 830, P. oxalicum CBMAI 1185 and Trichoderma sp. CBMAI 932 produced the corresponding (R)-p-iodophenylethanol (4a) with enantiomeric excess of 32-99%. The bioconversion of p-iodoacetophenone (4) with microbial cells of P. oxalicum CBMAI 1185 showed a competition between oxidation and reduction reaction. Were also performed reductions of azido-ketones 13-16 with marine fungi providing good results of selectivity (28-99% ee). Microbial cells of fungi A. sclerotiorum CBMAI 849 and P. citrinum CBMAI 1186 were immobilized on supports of silica gel, silica xerogel and chitosan. Whole cells of P. citrinum 1186 CBMAI immobilized on chitosan catalyzed the reduction of 1-(4-methoxyphenyl)ethanone (1) to the corresponding (S)-1-(4-methoxyphenyl)ethanol (1a) with excellent enantiomeric excess (>99%). The fungus P. citrinum 1186 CBMAI immobilized on chitosan also catalyzed the bioreduction of 2-chloro-1-phenylethanone (7) to 2-chloro-1-phenylethanol (7a), but in this case without selectivity. In this work were also performed chemo-enzymatic resolutions of (±)-o-iodophenylethanol (2a), (±)-m-iodophenylethanol (3a), (±)-p-iodophenylethanol (4a), (±)-2-azido-1-phenylethanol (13a), (±)-2-azido-1-(4-methoxyphenyl)ethanol (14a), (±)-2-azido-1-(4-bromophenyl)ethanol (15a), (±)-2-azido-1-(4-nitrophenyl)ethanol (16a) and (±)-2-azido-1-(4-chlorophenyl)ethanol (17a) with the lipase Candida atarctica. The (S)-m-iodophenylethanol (3a) and (S)-p-iodophenylethanol (4a) were obtained with excellent enantiomeric excess (>99%) and were subsequently used in the synthesis of chiral biphenyl compounds by the Suzuki reaction with good yields (63-65%). Chemoenzymatic resolution of azido-alcohols 13a-17a were carried out using lipase CALB and (R)-2-azido-1-phenylethanol (13a), (R)-2-azido-1-(4-methoxyphenyl)ethanol (14a), (R)-2-azido-1-(4-bromophenyl)ethanol (15a), (R)-2-azido-1-(4-nitrophenyl)ethanol (16a) obtained were used in the synthesis of chiral triazoles (R)-2-(1H-benzo[d][1,2,3]triazol-1-yl)-1-phenylethanol (13), (R)-2-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(4-methoxyphenyl)ethanol (14) (R)-2-(1H-benzo [d][1,2,3]triazol-1-yl)-1-(4-bromophenyl)ethanol (15) and (R)-2-(1H-benzo[d][1,2,3]triazol-1-yl)-1-(4-nitrophenyl)ethanol (16) and (R)-2-(1H-benzo[d] [1,2,3]triazol-1-yl)-1-(4-chlorophenyl)ethanol (17) obtained in good yields (79-85%).
42

Synthesis of monoterpenoid derivatives and evaluation for biocatalytic transformations

Issa, Issa January 2016 (has links)
Monoterpenoid derivatives are some of the most effective asymmetric controllers used in organic synthesis. They are also precursors in target syntheses, especially in synthesis of natural products with useful biological properties. However, there are still significant opportunities to develop new structural synthetic modifications. This project target focuses on employing commercially available chiral pool cyclic ketones, such as R-(-)-carvone, (+)-isomenthone, and (-)-isopinocamphone to create new potential substrates for biocatalytic modifications, via terpenone enolate alkylations, aldol additions, and formation of alkylidenes. Evaluation of these substrates has been carried out using isolated enzymes as biocatalysts to reduce the double bond and/or carbonyl group, as well expansion of six membered rings by Baeyer-Villiger monooxygenase to generate lactone derivatives, consequently resulting in new high-value terpenone, terpenol and lactone derivatives. Bioreduction of R-(-)-carvone substituted (with Me or OH) at C6 and/or C3 via OYEs afforded with highly diastereoselectivity in most cases with varied yields; and there was no activity observed toward substrates with substituents bigger than Me. Biooxidation of dihydrocarvone substituted (Me) at C6 or C3 via cyclohexanone monooxygenase (CHMO_Phi1) was selective, and oxidised only one diastereomer. For instance, (2R,3R,6R)-methyldihydrocarvone was completely converted to lactone with high regio- and enantioselectivity, while for the (2S,3R,6R)-diastereomer no lactone was produced, and starting material was recovered. (+)-Isomenthone, R-(-)-carvone, (-)-isopinocamphone and their derivatives were treated with carbonyl reductase, and only (+)-isomenthone, R-(-)-carvone and anti (5S,6S)-hydroxycarvone showed reaction, with varied yields and selectivities. The bioreduction and oxidation of substrates were scaled up to 50-100 mg as part of chemo-enzymatic reactions. The simulation of substrates with PETNR enzyme was studied, and docking was modelled.
43

Biocatalytic imine reduction and reductive amination

France, Scott January 2018 (has links)
Chiral amine motifs are found in many bioactive compounds and therefore strategies for their direct asymmetric synthesis are of great interest. Alongside traditional chemical methods, biocatalysis serves as an important tool for the formation of these compounds that can confer the benefits of sustainable catalyst supply and mild reaction conditions. This thesis describes the application of imine reductase (IRED) biocatalysts for the asymmetric reduction of pre-formed imines and the reductive amination of carbonyl compounds to produce chiral amines. These enzymes are relatively recent additions to the toolbox of biocatalysts for chiral amine synthesis and therefore their scope and application is still very much being explored. The research carried out as part of this PhD is presented as a series of manuscripts that have either been published or are planned for submission to peer-reviewed journals. The choice of presenting this thesis in journal format was made because a considerable body of the candidate's PhD research has been published, with the rest planned for publication in the near future. Furthermore, the compiled review articles and research papers lend themselves to a clear thesis narrative and, combined, have taken considerable time and effort to prepare, equal to that of a traditional thesis format. The contents are organised as follows: Chapter 1: an introduction to biocatalysis and its impact on sustainable chemical manufacturing; Chapter 2: a review assessing the current state of the art in imine reductase biocatalysts; Chapter 3: a perspective on the design and implementation of biocatalytic cascades; Chapter 4: a research article on the application of IREDs in a biocatalytic cascade for the synthesis of chiral piperidine and pyrrolidine frameworks; Chapter 5: aims of the PhD project; Chapter 6: a research article on the discovery and investigation of a reductive aminase (RedAm) found within the IRED family; Chapter 7: a research article on the screening of a diverse set of novel IREDs for their ability to facilitate reductive amination; Chapter 8: a research article on the synthesis of complex bulky dibenz[c,e]azepine compounds using IRED and transaminase biocatalysts; Chapter 9: a summary and outlook; Chapter 10: manuscript supporting information further detailing experimental work; Appendix: list of other publications resulting from this doctoral research.
44

Síntese de organo-seleno aminas e sua resolução cinética via reação de acetilação enantiosseletiva mediada por lipases / Synthesis of organoselenium amines and their kinetic resolution by enantioselective acetylation mediated by lipases

Silva, Alexandre Vieira 05 June 2008 (has links)
Nesse trabalho foi desenvolvido um método de síntese quimioenzimática de organo-seleno aminas (1-((2, 3 ou 4 selenocianato)fenil)etanonas) e amidas (N-(1-(2, 3 ou 4-(etilseleno)fenil)etil)acetamida) enantiomericamente enriquecidas. Inicialmente, as organo-seleno aminas, na forma racêmica, foram sintetizadas a partir das orto-, meta- e para- aminoacetofenonas. A incorporação do átomo de selênio nas cetonas aromáticas foi realizada através da reação de selenocianato de potássio com sais de diazônio, preparados a partir das aminoacetofenonas, para levar as o, m ou p-selenocianato acetofenonas (28-65 %). Reações desses compostos com NaBH4, formaram os intermediários organo-selenoboro, que foram posteriormente alquilados com haletos de alquila de modo a formar as organo-seleno acetofenonas (1-(2, 3 ou 4-(etilseleno)fenil)etanona) (63-78 %). As Organo-seleno aminas racêmicas foram preparadas por aminação redutiva das cetonas correspondentes (39-73 %). Após desenvolvido o protocolo de síntese das organo-seleno aminas, nós estudamos a resolução cinética desses compostos através de reação de acetilação mediada por lipases. Um estudo inicial foi conduzido com a amina para substituído, como substrato modelo, de modo a buscar a lipase, solvente, temperatura, razão lipase/substrato e acilante apropriados para a resolução cinética. De acordo com os resultados obtidos, as condições ideais para se conduzir a resolução cinética foi CAL-B como biocatalisador, hexano como solvente e acetato de etila ou metóxi-acetato de etila como acilante a 30°C. Utilizando esse protocolo, as organo-seleno amidas foram preparadas com excelentes excessos enantioméricos (99 %). / In this work, we have developed a chemoenzymatic method to enantiomerically synthesize enriched organoselenium amines (1-(2, 3 or 4 -(ethylselanyl)phenyl)ethanamine) and amides (N-(1-(2, 3 or 4-(ethylselanyl)phenyl)ethyl)acetamide). Initially, the organoselenium amines, in the racemic form, were synthesized from ortho-, meta- and para- aminoacetophenones. The incorporation of the selenium atom into the aromatic ketones was achieved by the use of reaction of potassium selenocyanate and diazonium salts, prepared from aminoacetophenones, to afford selenocyanate acetophenones (28-65 %). These compounds were alkylated with alkyl halide to yield the organoselenium acetophenones (1-(2, 3 or 4-(ethylselanyl)phenyl)ethanone) (63-78 %) which were converted into their corresponding racemic organoselenium amines by reductive amination (39-73 %). After developing the protocol for the synthesis of racemic organoselenium amines, we studied the kinetic resolution of these compounds by their acetylation mediated by lipases. An initial study was carried out with the organoselenium amine para substituted, as a model substrate, in order to screen for appropriate lipase, solvent, temperature, lipase/substrate ratio and acylant. This study showed that the ideal condition to conduct the kinetic resolution was CAL-B as biocatalyst, hexane as solvent and ethyl acetate or ethyl methoxyacetate as acylant at 30°C. By using this protocol, the organoselenium amides were prepared in excellent enantiomeric excess (99 %).
45

Exploring the mechanism of bioelectrocatalytic production of ammonia with whole cell Anabaena variabilis

Lyon, Jacob Daniel 15 December 2017 (has links)
Ammonia is an important compound to many industries around the world. Most of the fertilizers used by crop growers have ammonia as an essential ingredient. It can also be useful as a fuel source, offering greater energy density per unit than hydrogen and greater safety. Currently, the predominant method for producing ammonia on an industrial scale is by the Haber-Bosch process. This process uses steam evolution of methane to provide H2 gas, which is then combined with N2 gas over an iron catalyst to form NH3. This process requires large amounts of energy as well as high temperatures and pressures. Here, an alternative method for ammonia production is explored. With Anabaena Variabilis, a photosynthetic cyanobacteria, on a carbon electrode, ammonia can be generated at ambient temperatures and pressures at little energy cost, a few tenths of a volt. A bioelectrocatalytic device has been constructed by immobilizing whole cell a. variabilis in a Nafion film modified with a trimethyl octadecyl ammonium bromide (TMODA) salt at an electrode surface [3]. The polymer modified electrode provides the driving force and reductive microenvironment to facilitate production of NH3 by nitrogenase and nitrate/nitrite reductase enzymes present in a. variabilis. Ammonia production by cyanobacteria were increased from basal levels of 2.8 ± 0.4 µM produced over a two week period, to 22 ± 8 µM produced in 20 minutes under mild voltage perturbation, roughly 104% increase in rate. Control of ammonia producing structures (nitrogenase in heterocystic cells or nitrate/nitrite reductase in vegetative cells) can be accomplished by growing the algae with and without fixed sources of nitrogen in the growth media. With the addition of various nitrogen-containing gases to the electrolyte solution during cyclic voltammetry, there is evidence that biofilms containing a mixture of cell types increases ammonia production above controls when the nitrogen is present as NO2-, NO, or N2O. Chronoamperometric perturbation studies show increased ammonia production at near +600 mV and -300 mV vs SCE. In cyclic voltammetric studies, nitrate/nitrite reductase in vegetative-only biofilms responds favorably to positive voltage ranges, while isolated heterocyst biofilms containing nitrogenase can be effectively targeted with the application of a negative voltage profile. References: [1] Johna Leddy and Timothy M. Pashkewitz, Ammonia Production Using Bioelectrocatalytic Devices, US Patent Application 20140011252 [2] Timothy M. Paschkewitz, Ammonia Production at Ambient Temperature and Pressure: An Electrochemical and Biological Approach, Ph.D., University of Iowa, 2012.
46

A novel spray-drying process to stabilize glycolate oxidase and catalase in Pichia pastoris and optimization of pyruvate production from lactate using the spray-dried biocatalyst

Glenn, James Huston 01 December 2009 (has links)
Pyruvate is a valuable chemical intermediate in the production of fine chemicals used by agrochemical, pharmaceutical, and food industries. Current technology for production of pyruvic acid is based on conversion from tartaric acid and results in environmentally incompatible byproducts. An enzymatic approach to making pyruvate was developed by cloning the glycolate oxidase (GO) gene from spinach into Pichia pastoris (Payne, et al., (1995). High-level production of spinach glycolate oxidase in the methylotrophic yeast Pichia pastoris: Engineering a biocatalyst. Gene, 167(1-2), 215-219). GO is a flavoprotein (FMN dependent) which catalyzes the conversion of lactate to pyruvate with the equimolar production of hydrogen peroxide. Hydrogen peroxide can lower GO activity and make non-catalytic byproducts, so catalase was also cloned into P. pastoris to create a double transformant. Process development work was completed at the University of Iowa's Center for Biocatalysis and Bioprocessing. High-density P. pastoris fermentation (7.2 kg cells/L) was completed at the 100 L scale. Critical fermentation set-points were confirmed at 14 h glycerol feeding followed by methanol induction at 2 - 10 g/L for 30 h. After fermentation, these cells were permeabilized with benzalkonium chloride (BAC) to enable whole-cell biocatalysis and increase enzyme activity, yielding 100 U/g for GO. In 30 L enzyme reactions, permeabilized cells were recycled three times for over 92% conversion of 0.5 M lactate with an "enzyme to product" ratio of approximately 1:2 (Gough, et al., (2005). Production of pyruvate from lactate using recombinant Pichia pastoris cells as catalyst. Process Biochemistry, 40(8), 2597-2601). Though effective, the post-fermentation process for GO recovery involved several unit-operations, including multiple washing steps to remove residual BAC. The present work has focused on minimizing unit-operations by spray-drying the fermentation product to create a powdered biocatalyst. Optimal spray-drying conditions for the Buchi B-190 instrument were 150°C drying air, 15 mL/min liquid feed rate, and 600 mg cells/mL liquid feed. These conditions resulted in P. pastoris biocatalyst with activities of 80 - 100 U/g for GO and 180,000 - 220,000 U/g for catalase. The spray-dried cells retained nearly 100% of the enzyme activity compared to BAC treated cells as reported by Gough et al. Additionally, the spray-dried biocatalyst was stable at room temperature for 30 days, and no measurable enzyme leaching was observed. Then, P. pastoris was spray-dried under optimal conditions and tested for conversion of lactate to pyruvate for an improved "enzyme to product" ratio. Enzyme reaction optimization was done at the one-liter scale in DASGIP reactors. The DASGIP system contained four parallel reactors with control of temperature, pH, and dissolved oxygen. Other key variables included substrate loading, conducting the reaction in buffer or water, minimizing enzyme concentration, and maximizing the number of enzyme recycles. Optimal performance was achieved in water at pH 7.0 with an operating temperature of 25°C and 1.0 M substrate loading. Enzyme loading was at 12 g/L for the first two cycles, and subsequently, 2 - 3 g/L of fresh cells were added every alternate cycle to reach 15 cycles. Under these conditions, 75 - 95% conversion of lactate to pyruvate was accomplished for every 12 - 16 h reaction cycle. Based on these parameters, an "enzyme to product" ratio of 1:41 was achieved.
47

Quantum Chemical Modeling of Asymmetric Enzymatic Reactions

Lind, Maria E. S. January 2015 (has links)
Computational methods are very useful tools in the study of enzymatic reactions, as they can provide a detailed understanding of reaction mechanisms and the sources of various selectivities. In this thesis, density functional theory has been employed to examine four different enzymes of potential importance for biocatalytic applications. The enzymes considered are limonene epoxide hydrolase, soluble epoxide hydrolase, arylmalonate decarboxylase and phenolic acid decarboxylase. Besides the reaction mechanisms, the enantioselectivities in three of these enzymes have also been investigated in detail. In all studies, quite large quantum chemical cluster models of the active sites have been used. In particular, the models have to account for the chiral environment of the active site in order to reproduce and rationalize the experimentally observed selectivities. For both epoxide hydrolases, the calculated enantioselectivities are in good agreement with experiments. In addition, explanations for the change in stereochemical outcome for the mutants of limonene epoxide hydrolase, and for the observed enantioconvergency in the soluble epoxide hydrolase are presented. The reaction mechanisms of the two decarboxylases are found to involve the formation of an enediolate- or a quinone methide intermediate, supporting thus the main features of the proposed mechanisms in both cases. For arylmalonate decarboxylase, an explanation for the observed enantioselectivity is also presented. In addition to the obtained chemical insights, the results presented in this thesis demonstrate that the quantum chemical cluster approach is indeed a valuable tool in the field of asymmetric biocatalysis. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p><p> </p>
48

Investigations into the biocatalytic potential of modular polyketide synthase ketoreductases

Piasecki, Shawn Kristen 04 October 2013 (has links)
The production of new drugs as potential pharmaceutical targets is arguably one of the most important avenues of medicine, as existing diseases not only require treatment, but it is also certain that new diseases will appear in the future which will need treatment. Indeed, existing medicines such as antibiotics and immunosuppressants maintain their current activities in their respective realms, yet the molecular and stereochemical complexity of these compounds cause a burden on organic synthetic chemists that may prohibit the high yields required to manufacture a drug. The enzyme systems that naturally manufacture these compounds are incredibly efficient in doing so, and also do not use environmentally harmful solvents, chiral auxiliaries, or metals that are utilized in the current syntheses of these compounds; therefore utilizing these enzymes' machinery for the biocatalysis of new medicinally-relevant compounds, as researchers have in the past, is undeniably a rewarding endeavor. In order to harness these systems' biocatalytic potential, we must understand the processes which they operate. This work focuses on ketoreductase domains, since they are responsible for setting most of the stereocenters found within these complex secondary metabolites. We have supplied a library of substrates to multiple ketoreductases to test their limits of stereospecificity and found that, for the most part, they maintain their natural product stereospecificity seen in nature. We were even able to convert a previously nonstereospecific ketoreductase to a stereospecific catalyst. We have also developed a new technique to follow ketoreductase catalysis in real-time, which can also differentiate between which diastereomeric product is being produced. Finally, we have elucidated the structure of a ketoreductase that reduces non-canonically at the [alpha]- and [beta]- position, and functionally characterized its activities on shortened substrate analogs. With the knowledge gained from this dissertation we hope that the use of ketoreductases as biocatalysts in the biosynthesis of new natural product-based medicines is a much nearer reality than before. / text
49

Influence of recombinant passenger properties and process conditions on surface expression using the AIDA-I autotransporter

Gustavsson, Martin January 2013 (has links)
Surface expression has attracted much recent interest, and it has been suggested for a variety of applications. Two such applications are whole-cell biocatalysis and the creation of live vaccines. For successful implementation of these applications there is a need for flexible surface expression systems that can yield a high level of expression with a variety of recombinant fusion proteins. The aim of this work was thus to create a surface expression system that would fulfil these requirements.   A novel surface expression system based on the AIDA-I autotransporter was created with the key qualities being are good, protein-independent detection of the expression through the presence of two epitope tags flanking the recombinant protein, and full modularity of the different components of the expression cassette. To evaluate the flexibility of this construct, 8 different model proteins with potential use as live-vaccines or biocatalysts were expressed and their surface expression levels were analysed.   Positive signals were detected for all of the studied proteins using antibody labelling followed by flow cytometric analysis, showing the functionality of the expression system. The ratio of the signal from the two epitope tags indicated that several of the studied proteins were present mainly in proteolytically degraded forms, which was confirmed by Western blot analysis of the outer membrane protein fraction. This proteolysis was suggested to be due to protein-dependent stalling of translocation intermediates in the periplasm, with indications that larger size and higher cysteine content had a negative impact on expression levels. Process design with reduced cultivation pH and temperature was used to increase total surface expression yield of one of the model proteins by 400 %, with a simultaneous reduction of proteolysis by a third. While not sufficient to completely remove proteolysis, this shows that process design can be used to greatly increase surface expression. Thus, it is recommended that future work combine this with engineering of the bacterial strain or the expression system in order to overcome the observed proteolysis and maximise the yield of surface expressed protein. / <p>QC 20130516</p>
50

Development of an amine dehydrogenase

Abrahamson, Michael J. 13 August 2012 (has links)
Biocatalysts are increasingly prevalent in the large-scale synthesis of enantiomerically pure compounds. However, many sought-after reactions lack a suitable enzymatic production route. This work describes the development of a novel amine dehydrogenase through the application of directed evolution altering the substrate specificity of an existing leucine dehydrogenase scaffold. Eleven rounds of directed evolution completely altered the enzyme’s specificity and successfully created amination activity. The resulting amine dehydrogenase asymmetrically catalyzes methyl isobutyl ketone and free ammonia to 1, 3-dimethyl butyl amine. The enantioselectivity of the wild-type enzyme was maintained despite the drastic changes to the binding pocket and yielded (R)-1,3-DMBA with nearly complete conversion making it an attractive catalyst in the synthesis of chiral amines. This was the first example of a cofactor-dependent amine dehydrogenase capable of selectively synthesizing chiral amines from a prochiral ketone and free ammonia. Additionally, knowledge gained altering the specificity of the leucine dehydrogenase scaffold was applied to an analogous phenylalanine dehydrogenase scaffold allowing for rapid evolution of novel activity. A single mutational library resulted in a second amine dehydrogenase with enhanced activity toward significantly different substrates, while maintaining comparable conversion and enantioselectivity. These two scaffolds provide examples of the broad applicability of the identified mutations in creating amine dehydrogenase activity.

Page generated in 0.042 seconds