• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 12
  • 6
  • 5
  • 1
  • Tagged with
  • 61
  • 61
  • 17
  • 15
  • 12
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Aerosol profiling with lidar in the Amazon Basin during the wet and dry season 2008

Baars, Holger 12 November 2012 (has links) (PDF)
Im Rahmen der vorliegenden Arbeit wurden die Eigenschaften von atmosphärischen Aerosolpartikeln im tropischen Regenwald des Amazonasgebietes bestimmt. Dazu wurden die Daten einer fast einjährigen Lidarmesskampagne ausgewertet und diskutiert. Die Messungen wurden mit einem automatischen Mehrwellenlängen-Polarisations-Raman-Lidar im zentralen Amazonasbecken nahe Manaus, Brasilien, im Zeitraum von Januar bis November 2008 durchgeführt. Somit konnten erstmalig optische und mikrophysikalische Aerosoleigenschaften im Amazonasgebiet während der Regenzeit (ca. Dezember-Mai) und Trockenzeit (ca. Juni-November) höhenaufgelöst charakterisiert werden. Einleitend werden die meteorologischen Bedingungen im Amazonasgebiet erläutert und eine Literaturübersicht über Aerosolforschung in dieser Region gegeben. Das Messgerät sowie verschiedene Kalibrier- und Korrekturschemen, die zur Datenauswertung notwendig sind, werden vorgestellt. Auch Vergleiche mit anderen Messgeräten werden diskutiert. Diese zeigen, dass die aus den Lidarmessungen abgeleiteten Parameter von hoher Qualität sind. Anhand von Fallstudien werden mit Hilfe von Rückwärtstrajektorien und Satellitenmessungen typische Aerosolbedingungen am Messstandort diskutiert. Um die generellen Unterschiede zwischen Regen- und Trockenzeit zu quantifizieren, wird eine statistische Auswertung aller analysierten Lidarmessungen präsentiert. Die Analyse der Lidardaten zeigt, dass während der Regenzeit im Amazonasgebiet in ca. der Hälfte aller Fälle sehr saubere Bedingungen mit einer Aerosol Optischen Dicke (AOD) von weniger als 0.05 (bei 532 nm) vorherrschen können. Allerdings wurde in ca. 30% aller analysierten Fälle im Zeitraum von Januar bis Mai auch afrikanisches Aerosol, vornehmlich Saharastaub und Biomasseverbrennungsaerosol (BBA), am Messstandort detektiert. Dabei dominierte meist BBA die Aerosolpopulation, wie die Depolarisationsmessungen zeigten. In der Trockenzeit ist die Atmosphäre im Amazonasbecken hauptsächlich mit BBA aus Südamerika belastet. Daher ist die AOD im Durchschnitt um einen Faktor drei größ er als in der Regenzeit. BBA wurde zu dieser Jahreszeit regelmäßig bis zu einer Höhe von 4-6 km detektiert. Basierend auf den vorgestellten Langzeitmessungen werden erstmalig die optischen Eigenschaften von südamerikanischem BBA statistisch analysiert und diskutiert. / Continuous lidar measurements were performed in the Amazon rain forest for almost one year in 2008. The results of the automated multiwavelength-Raman-polarization lidar observations were presented in this dissertation. These measurements are the first long-term observations of the vertical aerosol structure ever made in the Amazon Basin. The advanced lidar observations were conducted 60 km north of Manaus in the central northern part of Amazonia. The area is widely covered with pristine rain forest. A HYSPLIT backward-trajectory analysis showed that the observations were representative on a regional scale for the central northern part of the Amazon rain forest. The general weather conditions in this region are characterized by a wet (December-June) and a dry season (July-November). During the dry season, a high fire activity occurs in Amazonia, which heavily influences the atmospheric conditions. With the lidar instrument, vertical profiles of the particle backscatter coefficient at 355, 532, and 1064 nm, of the particle extinction coefficient at 355 and 532 nm, and of the particle linear depolarization ratio at 355 nm can be determined. The results from the long-term lidar observations performed in Brazil contain a lot of new information about the aerosol conditions in the central northern Amazon Basin and corroborate certain findings from former aerosol measurements in Amazonia. It was shown for the first time that advection of Saharan dust together with biomass burning aerosol (BBA) from Africa occurred regularly throughout the wet season. In about one third (32%) of all lidar observations during the wet season, African aerosol was dominating the optical aerosol properties in Amazonia. The analysis of the vertical aerosol structure during such events revealed that the African aerosol arriving in the central northern Amazon Basin was usually trapped in the lowermost 3-3.5 km of the troposphere. To quantify the amount of Saharan dust and African smoke transported towards the lidar site, the dust contribution to the measured optical aerosol properties was separated by means of the measured particle depolarization ratio. This study led to the result that in about one half of the cases with African aerosol advection, smoke particles contributed to more than 50% to the total Aerosol Optical Depth (AOD). The smoke transport from Africa towards Amazonia occurred predominantly between January and April when the fire activity in Central Africa was highest. BBA is thus a major constituent of the aerosol plumes that are regularly transported from Africa towards Amazonia. This is a key finding of the presented study. During clean conditions, an AOD (532 nm) of less than 0.05 was observed and the aerosol was trapped in the lowermost 2 km of the troposphere. However, the analysis of the long-term data set revealed that these clean atmospheric conditions occurred in only 48% of all wet-season cases. One example for such background conditions was intensively discussed and it was shown that a major meso-scale rain event occurred in the Amazon region at the same time. This precipitation event was possibly partly responsible for the very low aerosol load. Two case studies from the dry season were presented for which BBA dominated the optical properties. In the first case, a comparable high aerosol load (AOD of 0.41) prevailed while in the second one, a medium aerosol load (AOD of 0.15) was observed. Aged BBA advected from regions south of the lidar site were identified to be the dominant aerosol species for both cases. However, very different geometrical, optical and microphysical properties of BBA (e.g., vertical layering, lidar ratio, Ångström exponent, effective radius, SSA) were observed on both days. In the first case, aerosol was present up to about 4.5 km. Extinction-related Ångström exponent s of about 1 and lidar ratios between 70 and 90 sr were found at different heights for the smoke aerosol. The BBA was highly absorbing (SSA of 0.81) at heights of the highest RH (85%), whereas above under dry conditions (RH=50%) only moderate absorption (SSA of 0.93) was detected. In the second case, smoke was detected up to 4.5 km, and Ångström exponent of about 2 and lidar ratios of 45-55 sr were measured in the aerosol layers. The BBA was only moderately absorbing indicated by SSA values between 0.92 and 0.94. The reason for the differences in the smoke properties could be the shorter travel time to the lidar site (<24 h), different aging processes (e.g., cloud/rain processing), or different burning conditions. In both cases, no depolarizing effects of the BBA could be observed. The strong contrast between the aerosol conditions in the dry season and the wet season were confirmed by the statistical analysis of all lidar observations in 2008. Due to the high BBA concentration in the atmosphere, the mean AOD of the dry season was found to be a factor of 3 higher than the mean AOD of the wet season (0.26 compared to 0.08 at 532 nm). Maximum AOD values were less than 0.55 (at 532 nm) and hence show that the lidar location was not in the direct vicinity of fire events. In only 7% of all cases in the dry season 2008, an AOD below 0.1 was observed. Also the maximum extinction and backscatter coefficient values in the dry season 2008 were 2-3 times higher than during the wet season of this year. The vertical aerosol distributions differ also significantly between the two seasons. In the wet season, the aerosol was mostly trapped in the lowermost 2.5 km, while in the dry season aerosol typically reached up to 4.5 km. Aerosol was occasionally detected up to 6.14 km in the dry season. The majority of the aerosol (95% of the AOD), however, was found to be on average below 2.3 km in the wet season and below 3 km in the dry season. During the wet season, lofted aerosol layers and multiple aerosol stratification was less frequent than in the dry season. The extent of BBA plumes during the dry season showed no correlation to the ML top height. Virtually uniform smoke haze layers were observed up to the AL top. Thus, pyro-convection and/or cloud-related mixing seem to be the major processes for the vertical distribution of BBA.
32

Production and properties of atmospheric organic particulate matter / Παραγωγή και ιδιότητες ατμοσφαιρικών οργανικών σωματιδίων

Λούβαρης, Ευάγγελος 30 April 2014 (has links)
Atmospheric aerosol contains a variety of both inorganic and organic species and plays a significant role in atmospheric chemistry and physics. Organic compounds are usually the dominant component of the submicrometer particles contributing around 50% of its mass. One of the most important physical properties of organic aerosol is volatility which determines its gas-to particle partitioning and provides both direct information about its origin and indirect information about its chemical composition and age. The objectives of the Thesis are to measure the volatility distributions of OA produced from olive tree branches burning and of ambient organic aerosol mainly attributed to residential wood burning in Athens. A thermodenuder system operating in a range of residence times was used to measure the aerosol fraction that remains after partial heating. The operation of the thermodenuder system was tested with ammonium sulfate model aerosol. Ammonium sulfate particles are easily produced and behave as non-volatile at lower temperature (25-75oC), as semivolatile at intermediate temperatures (75-120o) and evaporate completely at higher temperatures (T≥ 150oC). Thermodenuder wall losses were determined for our system using sodium chloride particles which are non-volatile even at 500oC. These results are used to post correct the thermodenuder measurements. Fifty percent of the OA produced during olive tree branches burning evaporated at 113oC at 15.8 s in our thermodenuder. For temperatures higher than 150oC no evaporation occurred. This was attributed to reactions that probably took place inside the thermodenuder at such high temperatures. The post correction of measurement resulted on average in 15-20% increase of the Mass Fraction Remaining values. Fitting our measurements with a thermodenuder dynamic model resulted in a wide volatility distribution including OA with effective saturation concentrations from 10-2-102 μg m-3, vaporization enthalpy of 68±18 kJ mol-1 and mass accommodation coefficient in the range 0.01-0.14. The gas-to-particle partitioning behavior of the produced aerosol from olive tree branches burning was consistent with recent studies for a range of fuels. Ambient organic aerosol volatility was also determined for wood burning periods in Athens. The estimated volatility distribution of ambient organic aerosol from the thermodenuder dynamic model showed that almost 80% of ambient organic aerosol during the burning periods can be characterized as semivolatile while the other 20% has low volatility. The gas-to-particle partitioning determination showed that the ambient organic aerosol during burning periods in Athens is a little more volatile than both the organic aerosol of wild fires of recent studies in the US and the organic aerosol of olive tree branches burning. The volatility distributions and enthalpies of vaporization obtained in this study can be used as inputs to Chemical Transport Models simulating the emission, dispersion, and chemical evolution of OA from wood burning. / Το ατμοσφαιρικό αεροζόλ περιέχει πληθώρα τόσο ανόργανων όσο και οργανικών στοιχείων παίζοντας σημαντικό ρόλο στην χημεία και την φυσική της Ατμόσφαιρας.Οι οργανικές ενώσεις αποτελούν συνήθως το κυρίαρχο συστατικό των σωματιδίων διαμέτρου μικρότερης της τάξεως του μm, συνεισφέροντας περίπου το 50% της συνολικής τους μάζας. Μια από τις σημαντικότερες φυσικές ιδιότητες των οργανικών αεροζόλ είναι η πτητικότητά τους , η οποία καθορίζει την κατανομή τους στην αέρια και τη σωματιδιακή φάση καθώς επίσης παρέχει τόσο άμεσες πληροφορίες για την πηγή προέλευσής τους όσο και έμμεσες πληροφορίες σχετικά με τη χημική σύσταση και την ηλικία τους. Οι στόχοι της Μεταπτυχιακής αυτής διατριβής είναι η μέτρηση της πτητικότητας οργανικών αεροζόλ προερχόμενων από την καύση ελαιοκλάδων καθώς και ατμοσφαιρικών οργανικών αεροζόλ κυριώς προερχόμενων από καύση ξύλων για οικιακή θέρμανση στην Αθήνα. Ένα σύστημα θερμοαπογυμνωτή που μπορεί να λειτουργεί σε ένα εύρος χρόνων παραμονής χρησιμοποιήθηκε για τη μέτρηση του κλάσματος των οργανικών αεροζόλ που παραμένουν στη σωματιδιακή φάση μετά από μερική θέρμανσή τους. Η λειτουργία του θερμοαπογυμνωτή δοκιμάστηκε αρχικά χρησιμοποιώντας αεροζόλ προερχόμενο από διάλυμα Θειϊκού Αμμωνίου. Τα σωματίδια Θειϊκού Αμμωνίου δημιουργούνται έυκολα και συμπεριφέρονται ως μη πτητκά σε χαμηλότερες θερμοκαρασίες (25-75oC), ως ημι-πτητικά σε ενδιάμεσες θερμοκρασίες (75-120oC) και εξατμίζονται πλήρως σε υψηλότερες θερμοκρασίες (T≥150οC). Οι απώλειες σωματιδίων στα τοιχώματα του θερμοαπογυμνωτή καθορίστηκαν χρησιμοποιώντας σωματίδια παραγόμενα από διάλυμα Χλωριούχου Νατρίου τα οποία είναι μη πτητικά ακόμη και σε θερμοκρασίες που αγγίζουν τους 500οC. Τα αποτελέσματα των απωλειών σωματιδίων στα τοιχώματα του θερμοαπογυμνωτή χρησιμοποιούνται για διόρθωση των πειραματικών αποτελεσμάρων του θερμοαπογυμνωτή. Το 50% του παραγόμενου οργανικού αεροζόλ λόγω καύσης ελαιοκλάδων εξατμίστηκε στους 113οC για χρόνο παραμονής στο θερμοαπογυμνωτή 15.8 s. Σε θερμοκρασίες μεγαλύτερες των 150οC δεν παρατηρήθηκε επιπλέον εξάτμιση. Αυτό αποδόθηκε σε αντιδράσεις που πιθανόν να λαμβάνουν χώρα μέσα στον θερμοαπογυμνωτή σε τόσο υψηλές θερμοκρασίες. Η διόρθωση των μετρήσεων του θερμοαπογυμνωτή για απώλειες σωματιδίων επάνω στα τοιχώματα του είχε ως αποτέλεσμα την αύξηση του απομένωντος κλάσματος μάζας των οργανικών αεροζόλ στην σωματιδιακή φάση κατά μέσο όρο 15-20%. Προσαρμόζοντας τις μετρήσεις μας σε ένα δυναμικό μοντέλο για τον θερμοαπογυμνωτή είχε ως αποτέλεσμα μια ευρεία κατανομή πτητικότητας η οποία περιείχε οργανικό αεροζόλ με εύρος ενεργών συγκεντρώσεων κορεσμού από 10-2-102 μg m-3, ενθαλπία εξάτμισης 68±18 kJ mol-1 και συντελεστή διαμονής εύρους 0.01-0.14. Ο διαχωρισμός του παραγόμενου οργανικού αεροζόλ από την καύση ελαιοκλάδων σε αέρια και σωματιδική φάση είναι συνεπής με συγχρονες έρευνες που έχουν γίνει για διάφορους τύπους ξύλων που χρησιμοποιούνται ως κάυσιμο. Καθορισμός πτητικότητας ατμοσφαιρικών οργανικών αεροζόλ έγινε επίσης για περιόδους που χαρακτηρίστηκαν ως περίοδοι καύσης ξύλων για οικιακή θέρμαση κατά τη διάρκεια εντατικών μετρήσεων στην Αθήνα το χειμώνα του 2013. Η εκτιμώμενη κατανομή πτητικότητας του ατμοσφαιρικού οργανικού αεροζόλ από το δυναμικό μοντέλο του θερμοαπογυμνωτή έδειξε ότι περίπου ένα ποσοστό 80% του παραγόμενου ατμοσφαιρικού οργανικού αεροζόλ κατά τις περιόδους κάυσης μπορεί να χαρακτηριστεί ως ημι-πτητικό ενώ το υπόλοιπο 20% έχει χαμηλή πτητικότητα. Ο διαχωρισμός του ατμοσφαιρικού οργανικού αεροζόλ κατά τις περιόδους καύσης σε αέρια και σωματιδιακή φάση εμφανίζει το ατμοσφαιρικό οργανικό αεροζόλ ως ελάχιστα πιο πτητικό από τα οργανικά αεροζόλ προερχόμενα από τις έρευνες με τους διάφορους τύπους ξύλων ως καύσιμα που πραγματοποιήθηκαν στις Η.Π.Α καθώς και από το παραγόμενο οργανικό αεροζόλ προερχόμενο από την καύση ελαιοκλάδων. Οι κατανομές πτητικότητας καθώς και οι ενθαλπίες εξάτμισης που βρέθηκαν στην παρούσα εργασία μπορούν να χρησιμοποιηθούν ως δεδομένα εισαγωγής σε μοντέλα χημικής μεταφοράς προσομοιώνοντας τις εκπομπές, τη διασπορά και τη χημική εξέλιξη του οργανικού αεροζόλ προερχόμενο από καύση ξύλων.
33

Evaluation of emission uncertainties and their impacts on air quality modeling: applications to biomass burning

Tian, Di 20 November 2006 (has links)
Air pollution has changed from an urban environmental problem to a phenomenon spreading to state, country and even global scales. In response, a variety of regulations, standards, and policies have been enacted world-wide. Policy-making and development of efficient and effective control strategies requires understanding of air quality impacts from different sources, which are usually estimated using source-oriented air quality models and their corresponding uncertainties should be addressed. This thesis evaluates emission uncertainties and their impacts on air quality modeling (Models-3/Community Multiscale Air Quality Model (CMAQ)), with special attention to biomass burning. Impacts of uncertainties in ozone precursors (mainly NOX and VOC) emissions from different sources and regions on ozone formation and emission control efficiencies are evaluated using Monte Carlo methods. Instead of running CMAQ multiple of times, first and higher order ozone sensitivities calculated by Higher-order Decoupled Direct method in Three Dimensions (CMAQ-HDDM-3D) are employed to propagate emission uncertainties. Biomass burning is one of the major sources for PM2.5. Impacts of uncertainties in biomass burning emissions, including total amount, temporal and spatial characteristics, and speciation on air quality modeling are investigated to identify emission shortcomings. They are followed by estimation of seasonal PM2.5 source contributions over the southeastern US focusing on Georgia. Results show that prescribed forest fires are the largest individual biomass burning source. Forest fire emissions under different forest management practices and ensuing air quality impacts are further studied. Forest management practices considered here include different burning seasons, fire-return intervals (FRIs), and controlling emissions during smoldering. Finally, uncertainties in prescribed forest fire emissions are quantified by propagation of uncertainties in burned area, fuel consumption and emission factors, which are required inputs for emissions estimation and quantified by various fire behavior models and methods. In summary, this thesis has provided important insights regarding emission uncertainties and their impacts on air quality modeling.
34

Análise da profundidade ótica de aerossóis no cerrado mato-grossense

Palácios, Rafael da Silva 23 September 2014 (has links)
Submitted by Valquíria Barbieri (kikibarbi@hotmail.com) on 2018-04-12T20:05:18Z No. of bitstreams: 1 DISS_2014_Rafael da Silva Palácios.pdf: 2215346 bytes, checksum: b8216273fda68ffc2a56fff1d9183dc4 (MD5) / Approved for entry into archive by Jordan (jordanbiblio@gmail.com) on 2018-04-27T13:56:10Z (GMT) No. of bitstreams: 1 DISS_2014_Rafael da Silva Palácios.pdf: 2215346 bytes, checksum: b8216273fda68ffc2a56fff1d9183dc4 (MD5) / Made available in DSpace on 2018-04-27T13:56:10Z (GMT). No. of bitstreams: 1 DISS_2014_Rafael da Silva Palácios.pdf: 2215346 bytes, checksum: b8216273fda68ffc2a56fff1d9183dc4 (MD5) Previous issue date: 2014-09-23 / CAPES / Estudos das propriedades óticas de aerossóis em escalas locais e suas relações com a radiação solar são de grande importância para a pesquisa atmosférica. Essas pesquisas contribuem para o entendimento das propriedades radiativas e seu processo de transmissão à superfície. Uma das formas de se avaliar os efeitos provocados pelos aerossóis é através da análise de suas propriedades óticas. Desta forma o presente trabalho desenvolve uma análise da Profundidade Ótica de Aerossóis (AOD) e do coeficiente de Angstrom (), assim como estima a Forçante Radiativa de Aerossóis (ARF) sobre a superfície em uma região de Cerrado no Estado de Mato Grosso. A região de estudo é acometida, todos os anos na estação seca, por inúmeros registros de focos de incêndios. Os dados adquiridos junto a AERONET (Aerosol Robotic Network) foram analisados e correlacionados com variáveis micrometeorológicas de precipitação, temperatura de superfície e umidade relativa. A AOD total para o comprimento de onda de 500nm e suas respectivas parcelas devido à fração fina e grossa de material particulado foi correlacionada, concluindose que a AOD nessa região possui uma alta correlação com a fração a moda fina de aerossóis, apresentando um coeficiente de correlação de Spearman de 0,975 com um intervalo de confiança na faixa de 0,996 a 0,981. Os valores obtidos para o coeficiente de Angstrom () indicaram grande relação do aumento da AOD com as partículas emitidas por queima de biomassa. Buscou-se investigar quantitativamente os valores de ARF em um período de transição de seca-úmida. Os valores de ARF foram obtidos através de medidas simultâneas de Profundidade Ótica de Aerossóis (AOD) para a faixa de 500nm e radiação solar na faixa do visível (Sw). Os picos para AOD 500nm chegaram a 1,6 no mês de setembro onde foram registrados 5.576 focos de incêndio no Estado de Mato Grosso. O valor da ARF para o dia 13-08-12 atingiu (-93,01 ± 8,46) Wm-2, sendo que a variação da AOD 500nm em 0,1 provocou uma queda de aproximadamente 80 Wm-2 sobre a superfície, durante o fim do mês de agosto e começo do mês de setembro os picos de ARF atingiram -120 Wm-2 para valores de profundidade ótica acima de 1,0. / Studies of the optical properties of aerosols on local scales and their relationship with solar radiation are of great importance for atmospheric research. These studies contribute to the understanding of the radiative properties and the process of transmission to the surface. One of the ways to assess the effects caused by aerosols is by analyzing their optical properties. Thus this paper provides an analysis of Aerosol Optical Depth (AOD) and the Angstrom coefficient () and estimates the Forcing Radiative of Aerosols (ARF) on the surface in a region of Cerrado in Mato Grosso. The study area is affected every year in the dry season by numerous records of outbreaks of fire. The data acquired from AERONET (Aerosol Robotic Network) were analyzed and correlated with micrometeorological variables precipitation, surface temperature and Relative Humidity. The total AOD to the wavelength of 500nm and their plots due to the fine and coarse fraction of particulate matter was correlated, concluding that the AOD in this region has a high correlation with the fine fraction of aerosols fashion, with a coefficient Spearman correlation of 0.975 with a confidence interval ranging from 0.996 to 0.981. The values obtained for the Angstrom coefficient () showed a large increase in the ratio of AOD to the particles emitted by biomass burning. We attempted to quantitatively investigate the values of ARF in a period of transition from dry-moist. The ARF values were obtained by simultaneous measurements of Aerosol Optical Depth (AOD) for the range of 500nm and solar radiation in the visible range (Sw). The peaks for AOD 500nm reached 1.6 in September where 5,576 fires in Mato Grosso were recorded. The value of ARF for the day reached 8.12.13 (-93.01 ± 8.46) Wm-2, with the variation of the AOD 500 nm in 0.1 caused a decrease of about 80 Wm-2 on the surface during the end of August and beginning of September peak ARF reached -120 Wm-2 for values above 1.0 optical depth.
35

Identificação dos Principais Fatores de Controle do Aporte Atmosférico de Substâncias Inorgânicas no Maciço do itatiaia - RJ

Marcelo Dominguez de Almeida 01 January 2001 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este trabalho teve como objetivo avaliar o aporte atmosférico dos principais constituintes iônicos, em região pouco impactada do estado do Rio de Janeiro. Para tal, fez-se uso de dois coletores automáticos de deposição seca e úmida. Os coletores foram instalados no Parque Nacional do Itatiaia (PNI). Um próximo à Sede, a 820 m de altitude e outro no Planalto, a 2400 m de altitude no PNI. A amostragem foi realizada semanalmente, e as análises dos íons Na+, K+, Mg2+, Ca2+, NH4 +, Cl-, NO3 - e SO42-, além de pH e condutividade foram feitos no dia seguinte à amostragem. As maiores concentrações e taxas de deposição ocorreram na Sede do PNI, com exceção da concentração do Cl- que não foi diferenciada (p > 0,05). De forma geral, as concentrações apresentaram-se baixas, porém as taxas de deposição úmida foram relativamente altas, de modo particular, para NH4 +, NO3 - e SO4 2-. A deposição úmida de NO3 - (189 eq ha-1 ano- 1) na Sede chegou a ser superior ao valor registrado na cidade de Niterói &#8211; RJ. A fonte marinha se fez presente nos dois pontos, porém, no Planalto apresentou um excesso de Cl-, provocado pela volatilização de Cl- do aerossol de NaCl, que possibilitou o transporte do gas a uma maior distância. Apenas 3% do SO4 2- presente na deposição do PNI teve como origem o oceano. A média ponderada pelo volume do pH foi 5,35 e 5,00 para Planalto e Sede do PNI, respectivamente. Utilizou-se análise de agrupamentos para identificar eventos outliers. Estes eventos foram influenciados pelo transporte de material de queimadas provavelmente originárias no interior do país.A análise de regressão linear múltipla indicou o H2SO4 e os compostos de Ca2+ como os principais responsáveis pelo controle do pH no Planalto. Na Sede, o H2SO4 também teve papel fundamental na acidificação da precipitação, auxiliado de forma secundária pelo HNO3 e HCl. A neutralização foi principalmente realizada pela NH3. A análise de regressão múltipla possibilitou também, a reconstituição dos compostos de SO4 -2 e NO3 -. No Planalto, os compostos mais importantes de SO4 -2 e NO3- foram (NH4)2SO4 e NH4NO3. Já na Sede foram H2SO4 e NH4NO3. Análise de componentes principais foi aplicada aos dados obtidos das análises químicas da chuva. Tres fatores reproduziram a concentração observada na Sede. Este fatores representaram fontes ácidas, marinhas e aerossol. No Planalto as principais fontes foram gas &#8211; aerossol, biogênica e fonte marinha. / The aim this work was to evaluate the atmospheric deposition of main ions in a remote site of Rio de Janeiro State (RJ). Dry/wet deposition were sampled weekly through automatic precipitation collectors in two sites in the Itatiaia National Park,during a complete seasonal cycle (January 1999 to January 2000). Sampling sites were located at the Itatiaia National Park headquarters (Sede site, at 820 m asl)and at the Itatiaia Plateau (Planalto site, at 2400 m asl). Samples were analyzed for Na+, K+, Mg2+, Ca2+, NH4 +, Cl-, NO3 -, SO4 2-, pH and conductivity. Ion concentrations in Sede were high than in Planalto, except for Cl- (p > 0.05). In general, concentrations were low, but wet deposition rates were high, particularly for NH4 +, NO3 - and SO4 2-. NO3 - wet deposition (189 eq ha-1year-1) in Sede was higher than the value reported for Niterói city, RJ. The marine source influenced both sites, but Planalto site presented Cl- excess (non sea salt). Only 3% of the SO4-2 deposition was marine. Volume weighted average pH was 5.35 and 5.00 for Planalto and Sede sites, respectively. Cluster analysis was used to identify outlier events. Multiple linear regression was conducted to identify the main compounds of NO3 - and SO4 2-. Principal component analysis was applied to identify possible sources of rainwater ions. Three factors explained most of the rain concentration variability observed in each site. In the Sede site, these factors represent the acidgas sources, marine source and aerosol sources, while in Planato site the main sources were gas-aerosol, biogenic and marine.
36

Estudo do efeito das partículas de aerossol emitidas por queimadas sobre a radiação solar incidente em superfície a partir de medições efetuadas na Reserva Biológica do Jaru / Study of the effect of aerosol particles emitted by biomass burning on surface solar radiation from measurements made in the Jaru Biological Reserve

Bianca Lobo Silva 13 December 2012 (has links)
Durante a estação seca, é comum se observar um grande número de queimadas ocorrendo no Brasil. A fumaça proveniente da queima intensa é facilmente vista em imagens de satélite, principalmente na região de Cerrado e na Bacia Amazônica, e é responsável pela injeção de uma grande quantidade de partículas na atmosfera. Essas partículas de aerossol irão interagir diretamente com a radiação solar incidente, pelos processos de absorção e espalhamento, o que afetará a irradiância solar global incidente em superfície, a fração entre componente direto e difuso e a distribuição espectral. A modelagem precisa dessa interação ainda requer investigação científica. Nesse contexto, os resultados apresentados neste trabalho buscaram avaliar o desempenho de modelos ópticos para o aerossol de queimadas propostos por Rosário (2011) para a região da Reserva Biológica do Jaru (ou Rebio Jaru), Rondônia, durante a estação seca de 2007. Os modelos ópticos foram separados em intervalos de albedo simples, resultando em três grupos ou regimes: um mais absorvedor, um moderadamente absorvedor e um mais espalhador. Os dados simulados utilizando o código de transferência radiativa SBDART foram comparados com medidas feitas in situ na Rebio Jaru. Os dados foram obtidos entre os dias 24 de agosto e 31 de outubro de 2007. Foram analisados dados medidos por um Multifilter Rotating Shadowband Radiometer (MFRSR - canais de 670, 870 e 1036 nm e da irradiância solar total), por um sensor PAR (irradiância fotossinteticamente ativa) e dados de um pirânometro (irradiância solar total). A irradiância fotossinteticamente ativa compreende o intervalo entre 400 e 700 nm e corresponde à energia solar utilizada na fotossíntese realizada pelas plantas. Ela foi utilizada para avaliar o desempenho dos modelos propostos por Rosário (2011). Para esse intervalo espectral, o modelo óptico mais espalhador é o que melhor representou o período analisado. Estudos de caso foram feitos para avaliar o comportamento dos demais dados para dias com valores distintos da profundidade óptica do aerossol em 550nm. Os resultados obtidos pela análise das medidas feitas pelo MFRSR divergiram com relação ao do sensor PAR e do Piranômetro. As divergências observadas podem estar associadas à degradação instrumental. Sugere-se que sejam realizados estudos mais detalhados levando em consideração o conteúdo integrado de vapor dágua, entre outras variáveis meteorológicas, com a finalidade de definir um método eficiente para determinar o melhor modelo óptico para o aerossol de queimadas e para diferentes regiões da Bacia Amazônica, como efetuado por Rosário (2011) na região de Alta Floresta. / During the dry season biomass burning activities are frequent in Brazil. The smoke from these intense fires can easily be seen with satellite imaging, mostly in the centermost region of Brazil and the Amazon, and it is responsible for the input of large amounts of particles to the atmosphere. These aerosol particles interact directly with the incoming solar radiation, through absorption and scattering processes, which will affect the incoming global solar irradiation reaching the surface, the fraction between the direct and diffuse components and the spectral distribution. The accurate modeling of these interactions requires further scientific investigation. In this context, the present work evaluated the performance of biomass burning aerosol optical models proposed by Rosario (2011) for the southern Amazon, in the Jaru Biological Reserve, Rondônia, during the dry season of 2007. The proposed models were classified according to single scattering albedo intervals, and three distinct groups or regimes were identified: one for more absorbing particles, one for moderately absorbing particles and one for more scattering particles. Simulated data using the Radiative Transfer code SBDART were compared with in situ measurements performed at Rebio Jaru. The data were collected between August 24th and October 31st 2007. Data measured by a Multifilter Shadowband Rotating Radiometer (MFRSR - channels 670, 870 and 1036 nm and the total solar irradiance) from a PAR sensor (photosynthetically active radiation) and from a pyranometer (total solar irradiance) were included in the analysis. Photosynthetically active irradiance spectral interval spans between 400 and 700 nm, and corresponds to the solar energy used on the vegetation photosynthesis. This spectral region was chosen to evaluate the performance of the optical models. For this spectral interval, the more scattering optical model better represented the measured values. Case studies were conducted to evaluate the performance of the radiative transfer code and the optical models on days with distinct values of the aerosol optical depth at 550nm. The results showed that simulations for MFRSR channels diverged from the PAR sensor and the pyranometer. These divergences could be associated to instrumental degradation. It is suggested that further studies be conducted taking into account water vapor content variability, and other meteorological variables, in order to define an efficient method to determine the best optical model for the smoke aerosol and for different regions in the Amazon Basin, as performed by Rosario (2011) for Alta Floresta.
37

A global analysis of biomass burning organic aerosol

Jolleys, Matthew January 2013 (has links)
Organic aerosols represent one of the main sources of uncertainty affecting attempts to quantify anthropogenic climate change. The diverse physical and chemical properties of organic aerosols and the varied pathways involved in their formation and aging form the basis of this uncertainty, preventing extensive and accurate representation within regional and global scale models. This inability to constrain the radiative forcings produced by organic aerosols within the atmosphere consequently acts as a limitation to the wider objective of providing reliable projections of future climate. Biomass burning constitutes one of the main anthropogenic contributions to the global atmospheric organic aerosol (OA) burden, particularly in tropical regions where the potential for perturbations to the climate system is also enhanced due to higher average levels of solar irradiance. Emissions from biomass burning have been the subject of an intense research focus in recent years, involving a combination of field campaigns and laboratory studies. These experiments have aimed to improve the limited understanding of the processes involved in the evolution of biomass burning organic aerosol (BBOA) and contribute towards the development of more robust parameterisations for climate and chemical transport models. The main objective of this thesis was to use datasets acquired from several different global regions to perform a broad analysis of the BBOA fraction, with the extensive temporal and spatial scales provided by such measurements enabling investigation of a number of key uncertainties, including regional variability in emissions and the role of secondary organic aerosol (SOA) formation in aging smoke plumes. Measurements of BBOA mass concentration obtained using Aerodyne Research Inc. Aerosol Mass Spectrometers (AMS) were used to calculate characteristic ΔOA/ΔCO ratios for different environments, accounting for the effects of dilution and contrasting fire sizes to give a proportional representation of OA production. High levels of variability in average ΔOA/ΔCO were observed both between and within different regions. The scale of this variability consistently exceeded any differences between plumes of different ages, while a widespread absence of any sustained increase in ΔOA/ΔCO with aging indicates that SOA formation does not provide a net increase in OA mass. Despite this lack of OA enhancement, increasing proportions of oxygenated OA components in aged plumes highlight the chemical transformations occurring during the evolution of BBOA, and the additional influence of OA loss through evaporation or deposition. Potential drivers of variability in ΔOA/ΔCO at source, such as changes in fuel types and combustion conditions, were investigated for controlled fires carried out within a combustion chamber. These laboratory experiments revealed a number of complex relationships between BB emissions and source conditions. Although ΔOA/ΔCO was shown to be influenced by both fuel properties and transitions between flaming and smouldering combustion phases, the extent of these effects was limited, while variability between fires exceeded levels observed for ambient measurements. These findings emphasise the complexity of the BBOA lifecycle and the need to address the extensive uncertainties associated with its various constituent processes, in order to improve understanding of eventual climate impacts from biomass burning.
38

Jednotka pro energetické využití kontaminováné biomasy / Unit for utilization of contaminated biomass for energy production

Votava, Jakub January 2010 (has links)
The purpose of the thesis is to create preliminary design calculations to determine dimensions, weights and pressure losses of individual contaminated biomass combustion gas treatment nodes. The first part of the thesis deals with the definition of biomass as a fuel, legislative determination of allowed emissions and their description. Then the systems for combustion gas treatments are discussed given their brief description. The practical part focuses on shape designs, determining base dimensions of each type. Weights and pressure losses of individual versions are computed too. In the last part the individual versions are solved with real values and compared to each other.
39

Airborne spectral radiation measurements to derive solar radiative forcing of Saharan dust mixed with biomass burning smoke particles

Bauer, Stefan 18 July 2014 (has links)
This dissertation deals with spectral measurements of solar radiation in the visible and near infrared wavelength range. The data were collected during a field campaign on the Cape Verde Islands in January / February 2008 within the DFG research group SAMUM 2 (Saharan Mineral Dust Experiment). During this campaign airborne measurements of upward radiances and irradiances were performed over aerosol layers. Since the Cape Verde Islands are in the advection area of air masses from the Sahara region northeast of the islands and from regions with bush fires from the southeast, the sampled aerosol mainly consists of mineral dust, biomass burning smoke or a mixture of both. These radiation measurements and airborne lidar measurements of aerosol extinction coefficients were used to calculate the dust radiative forcing at the top of atmosphere with an one-dimensional radiative transfer model. This required the spectral surface albedo and aerosol optical properties, determined by model retrievals. The dependence of the calculated dust radiative forcing on the aerosol optical thickness was used to distinguish between aerosol distributions with mineral dust only or mixed with biomass burning smoke. This mainly model-based method was compared with another mainly measurement-based method, which requires the net radiation at the flight altitude and its dependence on the aerosol optical thickness to distinguish between the different aerosol distributions. The mainly model-based method shows no differences between the calculated radiative forcings of aerosols mainly consisting of mineral dust and those mixed with biomass burning smoke due to high uncertainties. In contrast to the mainly model-based method, the mainly measurement-based method shows clear differences between aerosols with and without biomass burning smoke. Thus the mainly measurement-based method is the preferred method, because it omits the retrieval of the aerosol optical properties, which leads to high uncertainties, in contrast to the mainly model-based method.
40

Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

Peng, Zhe, Day, Douglas A., Ortega, Amber M., Palm, Brett B., Hu, Weiwei, Stark, Harald, Li, Rui, Tsigaridis, Kostas, Brune, William H., Jimenez, Jose L. 06 April 2016 (has links)
Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(<sup>1</sup>D), O(<sup>3</sup>P), and O<sub>3</sub>. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to water vapor mixing ratio (H<sub>2</sub>O) and external OH reactivity (OHR<sub>ext</sub>), as both non-OH reactants and OH scale roughly proportionally to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(<sup>1</sup>D), O(<sup>3</sup>P), and O<sub>3</sub> have relative contributions to volatile organic compound (VOC) consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. We define “riskier OFR conditions” as those with either low H<sub>2</sub>O (< 0.1 %) or high OHR<sub>ext</sub> ( ≥  100 s<sup>−1</sup> in OFR185 and > 200 s<sup>−1</sup> in OFR254). We strongly suggest avoiding such conditions as the importance of non-OH reactants can be substantial for the most sensitive species, although OH may still dominate under some riskier conditions, depending on the species present. Photolysis at non-tropospheric wavelengths (185 and 254 nm) may play a significant (> 20 %) role in the degradation of some aromatics, as well as some oxidation intermediates, under riskier reactor conditions, if the quantum yields are high. Under riskier conditions, some biogenics can have substantial destructions by O<sub>3</sub>, similarly to the troposphere. Working under low O<sub>2</sub> (volume mixing ratio of 0.002) with the OFR185 mode allows OH to completely dominate over O<sub>3</sub> reactions even for the biogenic species most reactive with O<sub>3</sub>. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in laboratory studies and by humidification. Photolysis of secondary organic aerosol (SOA) samples is estimated to be significant (> 20 %) under the upper limit assumption of unity quantum yield at medium (1 × 10<sup>13</sup> and 1.5 × 10<sup>15</sup> photons cm<sup>−2</sup> s<sup>−1</sup> at 185 and 254 nm, respectively) or higher UV flux settings. The need for quantum yield measurements of both VOC and SOA photolysis is highlighted in this study. The results of this study allow improved OFR operation and experimental design and also inform the design of future reactors.

Page generated in 0.0791 seconds