• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 202
  • 129
  • 23
  • 21
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 473
  • 473
  • 106
  • 90
  • 76
  • 68
  • 67
  • 46
  • 46
  • 46
  • 43
  • 38
  • 38
  • 36
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Batch Aqueous-phase Reforming of Lignocellulosic Biomass for Hydrogen Production

Valenzuela, Mariefel Bayta 11 July 2006 (has links)
Aqueous-phase reforming (APR) is reported for the first time for the production of H2 from actual biomass. The experiments are carried out in batch using a 100mL Parr microreactor heated to 225C. In this one-pot, two-step process, acid hydrolysis is used to break down the polymeric constituents of biomass to smaller soluble molecules and these species are reformed using a Pt/Al2O3 catalyst. The experiments show that increasing the acid concentration from 1% to 5% causes more than a twelve-fold increase in H2 concentration, with hydrogen a minor product accounting for 18% of the non-condensable gas phase and CO2 as the major product. In the presence of the Pt/Al2O3 reforming catalyst, both the selectivity and yield of hydrogen in the gas phase increase. This is accompanied by a noticeable decrease in carbon monoxide production. Comparison with other feeds such as glucose, wastepaper and ethylene glycol showed that the amount of hydrogen produced from biomass is of a comparable magnitude per gram of feed, although biomass yields more hydrogen per gram of carbohydrate than either glucose or wastepaper. Baseline experiments with only the catalysts in the absence of any biomass show no increase in the reactor system pressure when only water and helium are present, indicating that the observed hydrogen produced is sourced form the biomass.
362

Reverse-selective zeolite/polymer nanocomposite hollow fiber membranes for pervaporative biofuel/water separation

McFadden, Kathrine D. 08 April 2010 (has links)
Pervaporation with a "reverse-selective" (hydrophobic) membrane is a promising technology for the energy-efficient separation of alcohols from dilute alcohol-water streams, such as those formed in the production of biofuels. Pervaporation depends on the selectivity and throughput of the membrane, which in turn is highly dependent on the membrane material. A nanocomposite approach to membrane design is desirable in order to combine the advantages and eliminate the individual limitations of previously-reported polymeric and zeolitic membranes. In this work, a hollow-fiber membrane composed of a thin layer of polymer/zeolite nanocomposite material on a porous polymeric hollow fiber support is developed. The hollow fiber geometry offers considerable advantages in membrane surface area per unit volume, allowing for easier scaling and higher throughput than flat-film membranes. Poly(dimethyl siloxane) (PDMS) and pure-silica MFI zeolite (silicalite-1) were investigated for these membranes. Iso-octane was used to dilute the dope solution to provide thinner coatings. Previously-spun non-selective Torlon hollow fibers were used as the support layer for the nanocomposite coatings. To determine an acceptable method for coating fibers with uniform, defect-free coatings, flat-film membranes (0 to 60 wt% MFI on a solvent-free basis) and hollow-fiber membranes (0 and 20 wt% MFI) were fabricated using different procedures. Pervaporation experiments were run for all membranes at 65C with a 5 wt% ethanol feed. The effects of membrane thickness, fiber pretreatment, coating method, zeolite loading, and zeolite surface treatment on membrane pervaporation performance were investigated.
363

Base-catalyzed depolymerization of lignin and hydrodeoxygenation of lignin model compounds for alternative fuel production

Olarte, Mariefel Valenzuela 04 April 2011 (has links)
This study considered the potential use of lignin as possible renewable fuel and chemical feedstock source. Among the various polymers present in lignocellulosic biomass, the polyaromatic lignin is the one component that is most chemically similar to petroleum. However, it still contains a much larger amount of oxygen compared to crude oil. As such, two strategies were employed in this study: (1) studying the lignin depolymerization in the presence of high temperature and base catalysts; and, (2) employing hydrodeoxygenation as a means to decrease the O/C ratio in lignin-derived model compounds. The base-catalyzed depolymerization (BCD) of organosolv lignin was done in a 500-mL Monel Parr reactor at temperatures ranging from 165°C to 350°C. Complete solubilization of lignin derivatives was possible in the presence of NaOH and KOH, except at 350°C. NMR experiments revealed formation of oxidized groups (carboxylic and hydroxyl groups) as well as alkyl groups. On the other hand, the use of NH4OH showed N incorporation. Identified and quantified DCM-soluble monomeric compounds were at most 6% of the starting material and are mainly phenolic. This study revealed the apparent susceptibility of syringyl units over guaiacyl units in BCD. This could in turn guide the choice of substrate on which base-catalyzed depolymerization could be applied. Syringaldehyde was used as the starting material to study batch hydrodeoxygenation (HDO) using several non-cobalt/molybdenum based catalysts. A 50-ml Parr reactor was used, pressurized by 1000 psig of H2 and heated to 300°C. Nickel based catalysts (nickel phosphide, nickel oxide and nickel phosphate) as well as supported precious metals (Pt and Pd) were tested as HDO catalysts. Of the three O-containing functional groups of syringaldehyde, the aldehydic group was found to be the most susceptible. In the presence of the Al2O3-supported catalysts, the methyl groups liberated were found to be incorporated back into the aromatic ring, forming alkylated compounds. In the last section of this dissertation, hydrothermally synthesized supported Ni on mesoporous silica (MCF) and acid catalysts (HY and H-Al-MCF) were used for probing the effect of bifunctional metal-acid catalysis on phenol hydrodeoxygenation/hydrogenation. Catalyst configurations were varied from the previously studied wet-impregnated Pt/HY catalyst. Based on a hypothesis that coking catalyzed by the acidic zeolite in the wet impregnated Pt/HY catalyst was the main cause of catalyst deactivation and decreased phenol conversion, separately synthesized metal and acid catalyst systems were tested. Complete phenol conversion was sustained for at least three times longer in a continuous flow reactor operated at 200°C and 0.79 MPa of flowing H2. The separation of the metal and acid sites generated a tunable system capable of producing cyclohexanol, cyclohexane or cyclohexene at very high selectivities, even achieving 99% selectivities for cyclohexane.
364

Cationic polymer enhanced hydrolysis of cornstarch for the production of biofuels

Maxwell, Kendra Elaine 29 March 2012 (has links)
The mechanism through which a charged polymer cationic polyacrylamide (C-PAM) operates to increase the rate of cornstarch hydrolysis was investigated. The main objective was to determine the major factors that affect the mechanism so that these parameters may be adjusted to achieve optimal hydrolysis rates. A combination of analytical methods including dynamic light scattering, optical imaging, and uv-vis spectroscopy were used to study polymer, starch, and enzyme interactions as a function of process conditions. It was found that C-PAM binds strongly to starch granules, increasing solubilization and decreasing onset gelatinization temperature. Granule swelling was unaffected by C-PAM. Both binding of enzyme to cornstarch, and rate of cornstarch hydrolysis were found to increase in the presence of C-PAM. By analogy to previous work on cationic polymer promoted hydrolysis of cellulose, it was proposed that the polymer reduces the charge on the starch surface through a "charge-patch" mechanism. Because both enzyme and substrate are negatively charged, the positively charged polymer reduces the charge repulsion experienced by the approaching enzyme. This leads to stronger enzyme-substrate binding, and faster hydrolysis. There is a mirror image relationship between viscosity of the medium and hydrolysis rate, which allows optimization of these parameters with enzyme and C-PAM dosage. Overall, the polymer addition reduced enzyme dose by 62% depending on the conditions used, so this method could have significant economic impact on the industrial conversion of starch to ethanol.
365

Utilization of switchgrass as a biofuel feedstock

Hu, Zhoujian 05 1900 (has links)
Secondary generation biofuels such as cellulosic biofuels rely on large portions of cellulosic bioresources, which may include forests, perennial grasses, wood and agricultural residues. Switchgrass is one promising feedstock for biofuel production. In the present study, thesis work focused on the chemical and structural profiles and hydrothermal pretreatment of switchgrass. Four populations of switchgrass were investigated for their chemical properties among populations and morphological portions, including the compositions of lignin and carbohydrates, extractives content, higher heating value (HHV), and syringyl:guaiacyl (S:G) ratio. The results demonstrate similar chemical profiles and lignin structure among the four populations of switchgrass. Morphological fractions of switchgrass including leaves, internodes, and nodes differ significantly in chemical profiles and S:G ratios of lignin. The structure of isolated cellulose from switchgrass SW9 is similar between leaves and internodes. The structure of isolated lignin from leaves and internodes of switchgrass SW9 differs in S:G ratio and molecular weight. Hydrothermal pretreatment of leaves and internodes indicates that a similar chemical composition and chemical structure for pretreated leaves and internodes. The degree of polymerization (DP) for cellulose of the pretreated internodes is 23.4% greater than that of the pretreated leaves. The accessibility of pretreated leaves measured by Simons' Staining technique is greater than that of pretreated internodes. Pretreated leaves have a 32.5-33.8% greater cellulose-to-glucose conversion yield than do pretreated internodes.
366

Economic and policy perspectives of biofuel as an emerging use of forest biomass in Mississippi

Guo, Zhimei, January 2007 (has links)
Thesis (M.S.)--Mississippi State University. Department of Forestry. / Title from title screen. Includes bibliographical references.
367

Constraints on algal biofuel production

Beal, Colin McCartney 31 May 2011 (has links)
The aspiration for producing algal biofuel is motivated by the desire to replace conventional petroleum fuels, produce fuels domestically, and reduce greenhouse gas emissions. Although, in theory, algae have the potential to produce a large amount of petroleum fuel substitutes and capture carbon emissions, in practice, profitable algal biofuel production has proven quite challenging. This dissertation characterizes the production pathways for producing petroleum fuel substitutes from algae and evaluates constraints on algal biofuel production. Chapter 8 provides a summary of the entire dissertation. The first chapter provides a framework for reporting the production of renewable diesel from algae in a consistent way by using data that are specific and by presenting information with relevant metrics. The second chapter presents a review of analytical tools (i.e., microscopy, spectroscopy, and chromatography) that can be used to analyze the structure and composition of intermediate products in an algal biofuel production pathway. In chapters 3 through 6, the energy return on investment, water intensity, and financial return on investment are presented for three cases: 1) an Experimental Case in which data were measured during five batches of algal biocrude production with a combined processed volume of about 7600 L, 2) a hypothetical Reduced Case that assumes the same energy output as the Experimental Case, with reduced energy and material inputs, and 3) a Highly Productive Case that assumes higher energy outputs than the Experimental Case, with reduced energy and material inputs, similar to the Reduced Case. For all three cases, the second-order energy return on investment was determined to be significantly less than 1, which means that all three cases are energy negative. The water intensity (consumption and withdrawal) for all cases was determined to be much greater than that of conventional petroleum fuels and biofuels produced from non-irrigated crops. The financial return on investment was also found to be significantly less than 1 for all cases, indicating production would be unprofitable. Additionally, it was determined that large-scale algal biofuel production would be constrained by the availability of critical energy and material inputs (e.g., nitrogen and carbon dioxide). The final part of this dissertation presents a first-principles thermodynamic analysis that represents an initial attempt at characterizing the thermodynamic limits for algal biofuel production. In that analysis, the energy, entropy, and exergy is calculated for each intermediate product in the algal biofuel production pathway considered here. Based on the results presented in this body of work, game-changing technology and biotechnology developments are needed for sustainable and profitable algal biofuel production. / text
368

Evaluating the uncertainty of life cycle assessments : estimating the greenhouse gas emissions for Fischer-Tropsch fuels

Denton, Rachel Marie 08 July 2011 (has links)
Environmental regulations have historically been focused on individual emission points, facilities, or industrial sectors. However, recent and emerging regulations for greenhouse gas (GHG) emissions such as those contained in the Energy Independence and Security Act (EISA) of 2007 have introduced the concept of product life cycle limits on the emissions of transportation fuels. Thus, a complete life cycle assessment (LCA) of the transportation fuel must be completed where all emissions from field to the vehicle’s fuel tank and from tank to the vehicle’s exhaust must be assessed. However, although there have been extensive analysis of the GHG emissions associated with transportation fuels, there are substantial uncertainties associated with these estimates that can be attributed to poor data quality, inconsistent methodological choices, and model uncertainties, among others. This thesis evaluates the uncertainties present in LCA through the case study of fuel production using Fischer-Tropsch (F-T) synthesis of fuels derived from coal and biomass. Specifically, GHG emission estimates for F-T synthesis process scenarios are presented and the uncertainties in the estimates are discussed. Overall uncertainties in GHG emissions due to changes in the details of the process configurations in the F-T process can be up to 11%. This finding suggests that the details of fuel refining conditions will need to be specified in determining whether fuels meet GHG emission requirements, complicating the implementation of life cycle GHG regulations. / text
369

Are farmers changing from food production to biofuel production? : a case study of the northern agricultural region of KwaZulu-Natal.

Mbele, Fezeka Faith. January 2009 (has links)
A study was conducted to establish whether farmers are changing land use from growing food crops for human consumption to biofuel production to an extent that could significantly affect food security. Following concerns in the recent years about the excessive global demand for fossil fuel that drove prices to very high levels, biofuel alternatives derived mainly from agricultural food crops such as soybean, maize and sugarcane are being pursued in many countries. This study targeted a sample emerging farmers in the Northern Agricultural Region, one of the four administrative areas for agricultural extension services in the province of KwaZulu-Natal. Biophysical suitability for change from maize food crop to soybean for biofuel land use was assessed using the locally developed Bio-resource spatial database. A sample of 11 emerging farmers was interviewed regarding land use change of food to biofuel production, farming operations, inputs and yields. Emerging farmers are black African farmers who were previously deprived of land and institutional support in developing into commercial farmers, but who are now recipients of land as well as financial and technical agricultural support services. This group of farmers arguably comes from vulnerable communities who depend on food crops for subsistence and who could influence change in land use with food security implications in their communities. Further information was obtained from an agricultural consultant regarding 7 commercial farms producing soybean biofuel. The study revealed that the Northern Agricultural Region had adequate suitability for profitable soybean production for biofuel. Furthermore, the majority of farmers interviewed had changed from maize production for human consumption to soybean production for biofuel. All the farmers interviewed applied farming operations with modern technology including land preparation and planting, fertilisation, irrigation, crop protection and harvesting. The majority interviewed farmers reported varied total earnings from soybean derived biofuel ranging from R 50, 000 to R 500, 000. The variability in earnings is consistent with the varied range of ages as attributable to experience and with the varied levels of education which may be related to management skills. Although the sample of farmers interviewed was too small to provide statistically valid conclusions, they represent an important sector in the farming community that shows future directions of food versus biofuel productions. The farmers indicated that they are fully aware of food production requirements and will endeavour to balance the two through soybean-maize crop rotation, a practice that not only ensures food security but also improves soil quality. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2009.
370

Thermal conversion of biomass and biomass components to biofuels and bio-chemicals

Ben, Haoxi 04 January 2012 (has links)
This thesis examined the conversions of biomass and biomass components to petrochemicals and total aliphatic gasoline like products. There are three major projects of the thesis. Since biomass is very complicated, to understand the thermal decomposition pathways of biomass, the pyrolytic behaviors of various biomass components including lignin and cellulose under different reaction were investigated in the first phase. Due to complexity and limited volatility, the thermal decomposition products from biomass bring insurmountable obstacles to the traditional analysis methods such as GC-MS, UV and FT-IR. Therefore, precise characterization of the whole portion of thermal decomposition products has significant impacts on providing insight into the pyrolysis pathways and evaluating the upgrading processes. Various NMR methods to characterize different functional groups presented in liquid and solid pyrolysis products by 1H, 13C, 31P, 2D-HSQC and solid state 13C-NMR were introduced in the second phase. Nevertheless, the major drawback towards commercialization of pyrolysis oils are their challenging properties including poor volatility, high oxygen content, molecular weight, acidity and viscosity, corrosiveness and cold flow problems. In situ upgrading the properties of pyrolysis oils during thermal conversion process by employing zeolites has been discussed in the third phase. The further hydrogenation of pyrolysis oils to total aliphatic gasoline like products by heterogeneous catalysis in “green medium” – water has also been examined in the third project.

Page generated in 0.0709 seconds