• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 11
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 17
  • 17
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Soluções eficientes para processos de decisão markovianos baseadas em alcançabilidade e bissimulações estocásticas / Efficient solutions to Markov decision processes based on reachability and stochastic bisimulations

Santos, Felipe Martins dos 09 December 2013 (has links)
Planejamento em inteligência artificial é a tarefa de determinar ações que satisfaçam um dado objetivo. Nos problemas de planejamento sob incerteza, as ações podem ter efeitos probabilísticos. Esses problemas são modelados como Processos de Decisão Markovianos (Markov Decision Processes - MDPs), modelos que permitem o cálculo de soluções ótimas considerando o valor esperado de cada ação em cada estado. Contudo, resolver problemas grandes de planejamento probabilístico, i.e., com um grande número de estados e ações, é um enorme desafio. MDPs grandes podem ser reduzidos através da computação de bissimulações estocásticas, i.e., relações de equivalência sobre o conjunto de estados do MDP original. A partir das bissimulações estocásticas, que podem ser exatas ou aproximadas, é possível obter um modelo abstrato reduzido que pode ser mais fácil de resolver do que o MDP original. No entanto, para problemas de alguns domínios, a computação da bissimulação estocástica sobre todo o espaço de estados é inviável. Os algoritmos propostos neste trabalho estendem os algoritmos usados para a computação de bissimulações estocásticas para MDPs de forma que elas sejam computadas sobre o conjunto de estados alcançáveis a partir de um dado estado inicial, que pode ser muito menor do que o conjunto de estados completo. Os resultados experimentais mostram que é possível resolver problemas grandes de planejamento probabilístico com desempenho superior às técnicas conhecidas de bissimulação estocástica. / Planning in artificial intelligence is the task of finding actions to reach a given goal. In planning under uncertainty, the actions can have probabilistic effects. This problems are modeled using Markov Decision Processes (MDPs), models that enable the computation of optimal solutions considering the expected value of each action when applied in each state. However, to solve big probabilistic planning problems, i.e., those with a large number of states and actions, is still a challenge. Large MDPs can be reduced by computing stochastic bisimulations, i.e., equivalence relations over the original MDP states. From the stochastic bisimulations, that can be exact or approximated, it is possible to get an abstract reduced model that can be easier to solve than the original MDP. But, for some problems, the stochastic bisimulation computation over the whole state space is unfeasible. The algorithms proposed in this work extend the algorithms that are used to compute stochastic bisimulations for MDPs in a way that they can be computed over the reachable set of states with a given initial state, which can be much smaller than the complete set of states. The empirical results show that it is possible to solve large probabilistic planning problems with better performance than the known techniques of stochastic bisimulation.
32

Méthodes de vérification de spécifications comportementales : étude et mise en œuvre

Mounier, Laurent 31 January 1992 (has links) (PDF)
Nous rappelons tout d'abord le principe des procedures de decision classiques,qui reposent sur des algorithmes de raffinement de partitions. Cette approche necessite de construire au prealable les relations de transition des deux systemes a comparer, ce qui constitue une limitation en pratique. Nous proposons par consequent un algorithme original, base sur un parcours en profondeur du produit synchrone des deux systèmes, qui permet d'effectuer la comparaison ``a la volee'', sans jamais construire ni mémoriser explicitementles deux relations de transition. L'algorithme de comparaison ``a la volée'' a ete mis en œuvre au sein du logiciel de verification Aldebaran dans le cas de différentes relations : la bisimulation forte, l'équivalence observationnelle, la tau*a-bisimulation, la delay bisimulation et la bisimulation de branchement, ainsi que le preordre et l'equivalence de surete. Son application a la verification de plusieurs programmes Lotos de taille realiste a confirme l'interet pratique de notre approche par rapport aux methodes classiques. Enfin, nous nous interessons egalement a la generation d'un diagnostic lorsque les deux systemes de transitions etiquetees a comparer ne sont pas equivalents : les procedures de decision implementees dans Aldebaran fournissent le cas echeant un ensemble de sequences d'execution discriminantes, minimales pour une relation d'ordre donnee.
33

Algèbres de Processus Réversibles

Krivine, Jean 16 November 2006 (has links) (PDF)
Nous présentons un système de retour arrière distribué basé sur le Calcul des Systèmes Communicants de Robin Milner. L'algèbre de pro- cessus réversible ainsi définie (RCCS) nous permet de poser les fondements théoriques du retour arrière dans un calcul concurrent. En particulier, étant donné un processus et un passé, nous montrons que RCCS permet de re- venir en arrière dans tout passé causalement équivalent. Nous exprimons aussi l'équivalence comportementale associée aux processus réversibles en utilisant une notion de bisimulation mettant en relation les traces causales des processus. Il en résulte une méthode de programmation déclarative de systèmes transactionnels qui peuvent être efficacement vérifiés à l'aide d'un algorithme basé sur des structures d'événements. Par l'intermédiaire d'une construction catégorique, nous montrons que cette méthode peut être géné- ralisée à une large classe de calculs concurrents.
34

Verification of Parameterized and Timed Systems : Undecidability Results and Efficient Methods

Deneux, Johann January 2006 (has links)
<p>Software is finding its way into an increasing range of devices (phones, medical equipment, cars...). A challenge is to design <i>verification</i> methods to ensure correctness of software. </p><p>We focus on <i>model checking</i>, an approach in which an abstract model of the implementation and a specification of requirements are provided. The task is to answer automatically whether the system conforms with its specification.We concentrate on (i) timed systems, and (ii) parameterized systems.</p><p><i>Timed systems </i>can be modeled and verified using the classical model of timed automata. Correctness is translated to language inclusion between two timed automata representing the implementation and the specification. We consider variants of timed automata, and show that the problem is at best highly complex, at worst undecidable.</p><p>A <i>parameterized system</i> contains a variable number of components. The problem is to verify correctness regardless of the number of components. <i>Regular model checking</i> is a prominent method which uses finite-state automata. We present a semi-symbolic minimization algorithm combining the partition refinement algorithm by Paige and Tarjan with decision diagrams.</p><p>Finally, we consider systems which are both timed and parameterized: <i>Timed Petri Nets</i> (<i>TPNs</i>), and <i>Timed Networks</i> (<i>TNs</i>). We present a method for checking safety properties of TPNs based on forward reachability analysis with acceleration. We show that verifying safety properties of TNs is undecidable when each process has at least two clocks, and explore decidable variations of this problem.</p>
35

Verification of Parameterized and Timed Systems : Undecidability Results and Efficient Methods

Deneux, Johann January 2006 (has links)
Software is finding its way into an increasing range of devices (phones, medical equipment, cars...). A challenge is to design verification methods to ensure correctness of software. We focus on model checking, an approach in which an abstract model of the implementation and a specification of requirements are provided. The task is to answer automatically whether the system conforms with its specification.We concentrate on (i) timed systems, and (ii) parameterized systems. Timed systems can be modeled and verified using the classical model of timed automata. Correctness is translated to language inclusion between two timed automata representing the implementation and the specification. We consider variants of timed automata, and show that the problem is at best highly complex, at worst undecidable. A parameterized system contains a variable number of components. The problem is to verify correctness regardless of the number of components. Regular model checking is a prominent method which uses finite-state automata. We present a semi-symbolic minimization algorithm combining the partition refinement algorithm by Paige and Tarjan with decision diagrams. Finally, we consider systems which are both timed and parameterized: Timed Petri Nets (TPNs), and Timed Networks (TNs). We present a method for checking safety properties of TPNs based on forward reachability analysis with acceleration. We show that verifying safety properties of TNs is undecidable when each process has at least two clocks, and explore decidable variations of this problem.
36

Static analysis of numerical properties in the presence of pointers

Fu, Zhoulai 22 July 2013 (has links) (PDF)
The fast and furious pace of change in computing technology has become an article of faith for many. The reliability of computer-based systems cru- cially depends on the correctness of its computing. Can man, who created the computer, be capable of preventing machine-made misfortune? The theory of static analysis strives to achieve this ambition. The analysis of numerical properties of programs has been an essential research topic for static analysis. These kinds of properties are commonly modeled and handled by the concept of numerical abstract domains. Unfor- tunately, lifting these domains to heap-manipulating programs is not obvious. On the other hand, points-to analyses have been intensively studied to an- alyze pointer behaviors and some scale to very large programs but without inferring any numerical properties. We propose a framework based on the theory of abstract interpretation that is able to combine existing numerical domains and points-to analyses in a modular way. The static numerical anal- ysis is prototyped using the SOOT framework for pointer analyses and the PPL library for numerical domains. The implementation is able to analyze large Java program within several minutes. The second part of this thesis consists of a theoretical study of the com- bination of the points-to analysis with another pointer analysis providing information called must-alias. Two pointer variables must alias at some pro- gram control point if they hold equal reference whenever the control point is reached. We have developed an algorithm of quadruple complexity that sharpens points-to analysis using must-alias information. The algorithm is proved correct following a semantics-based formalization and the concept of bisimulation borrowed from the game theory, model checking etc.
37

A Class of Stochastic Petri Nets with Step Semantics and Related Equivalence Notions

Buchholz, Peter, Tarasyuk, Igor V. 15 January 2013 (has links) (PDF)
This paper presents a class of Stochastic Petri Nets with concurrent transition firings. It is assumed that transitions occur in steps and that for every step each enabled transition decides probabilistically whether it wants to participate in the step or not. Among the transitions which what to participate in a step, a maximal number is chosen to perform the firing step. The observable behavior is defined and equivalence relations are introduced. The equivalence relations extend the well-known trace and bisimulation equivalences for systems with step semantics to Stochastik Petri Nets with concurrent transition firing. It is shown that the equivalence notions form a lattice of interrelations.
38

Soluções eficientes para processos de decisão markovianos baseadas em alcançabilidade e bissimulações estocásticas / Efficient solutions to Markov decision processes based on reachability and stochastic bisimulations

Felipe Martins dos Santos 09 December 2013 (has links)
Planejamento em inteligência artificial é a tarefa de determinar ações que satisfaçam um dado objetivo. Nos problemas de planejamento sob incerteza, as ações podem ter efeitos probabilísticos. Esses problemas são modelados como Processos de Decisão Markovianos (Markov Decision Processes - MDPs), modelos que permitem o cálculo de soluções ótimas considerando o valor esperado de cada ação em cada estado. Contudo, resolver problemas grandes de planejamento probabilístico, i.e., com um grande número de estados e ações, é um enorme desafio. MDPs grandes podem ser reduzidos através da computação de bissimulações estocásticas, i.e., relações de equivalência sobre o conjunto de estados do MDP original. A partir das bissimulações estocásticas, que podem ser exatas ou aproximadas, é possível obter um modelo abstrato reduzido que pode ser mais fácil de resolver do que o MDP original. No entanto, para problemas de alguns domínios, a computação da bissimulação estocástica sobre todo o espaço de estados é inviável. Os algoritmos propostos neste trabalho estendem os algoritmos usados para a computação de bissimulações estocásticas para MDPs de forma que elas sejam computadas sobre o conjunto de estados alcançáveis a partir de um dado estado inicial, que pode ser muito menor do que o conjunto de estados completo. Os resultados experimentais mostram que é possível resolver problemas grandes de planejamento probabilístico com desempenho superior às técnicas conhecidas de bissimulação estocástica. / Planning in artificial intelligence is the task of finding actions to reach a given goal. In planning under uncertainty, the actions can have probabilistic effects. This problems are modeled using Markov Decision Processes (MDPs), models that enable the computation of optimal solutions considering the expected value of each action when applied in each state. However, to solve big probabilistic planning problems, i.e., those with a large number of states and actions, is still a challenge. Large MDPs can be reduced by computing stochastic bisimulations, i.e., equivalence relations over the original MDP states. From the stochastic bisimulations, that can be exact or approximated, it is possible to get an abstract reduced model that can be easier to solve than the original MDP. But, for some problems, the stochastic bisimulation computation over the whole state space is unfeasible. The algorithms proposed in this work extend the algorithms that are used to compute stochastic bisimulations for MDPs in a way that they can be computed over the reachable set of states with a given initial state, which can be much smaller than the complete set of states. The empirical results show that it is possible to solve large probabilistic planning problems with better performance than the known techniques of stochastic bisimulation.
39

A Class of Stochastic Petri Nets with Step Semantics and Related Equivalence Notions

Buchholz, Peter, Tarasyuk, Igor V. 15 January 2013 (has links)
This paper presents a class of Stochastic Petri Nets with concurrent transition firings. It is assumed that transitions occur in steps and that for every step each enabled transition decides probabilistically whether it wants to participate in the step or not. Among the transitions which what to participate in a step, a maximal number is chosen to perform the firing step. The observable behavior is defined and equivalence relations are introduced. The equivalence relations extend the well-known trace and bisimulation equivalences for systems with step semantics to Stochastik Petri Nets with concurrent transition firing. It is shown that the equivalence notions form a lattice of interrelations.
40

Redukcija dinamičkih modela elektroenergetskog sistema primenom teorije balansnih realizacija i aproksimativnih bisimulacionih relacija i funkcija / Reduction of power system dynamic models based on the balanced realization theory and approximate bisimulation relations and functions

Đukić Savo 14 March 2014 (has links)
<p>Disertacijom su opisane postojeće tehnike redukcije dinamičkih modela koje se koriste u teoriji upravljanja i postojeće tehnike za redukciju dinamičkih modela i ekvivalentiranje elektroenergetskih sistema. Predložen je nov pristup na fizici problema zasnovanoj redukciji dinamičkog modela elektroenergetskog sistema korišćenjem teorije balansnih realizacija. Takođe se predlaže korišćenje aproksimativnih bisimulacionih relacija za redukciju dinamičkih modela elektroenergetskog sistema. Postojeće tehnike i predloženi pristupi i algoritmi su primenjeni za redukciju dinamičkih modela dva razmatrana test sistema.</p> / <p>Dissertation describes the existing dynamic model reduction techniques used in control theory and existing techniques that are used for the reduction (equivalencing) of power system dynamic models. A new approach to physics-based reduction of power system dynamic model based on the balanced realization theory is proposed. Use of approximate bisimulation relations for reduction of power system dynamic models is also proposed. Existing techniques and proposed approaches and algorithms are applied to reduce the dynamic models of two considered test systems.<br />&nbsp;</p>

Page generated in 0.1321 seconds