• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 30
  • 12
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 113
  • 113
  • 113
  • 36
  • 24
  • 22
  • 20
  • 18
  • 18
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Probability Density Function Estimation Applied to Minimum Bit Error Rate Adaptive Filtering

Phillips, Kimberly Ann 28 May 1999 (has links)
It is known that a matched filter is optimal for a signal corrupted by Gaussian noise. In a wireless environment, the received signal may be corrupted by Gaussian noise and a variety of other channel disturbances: cochannel interference, multiple access interference, large and small-scale fading, etc. Adaptive filtering is the usual approach to mitigating this channel distortion. Existing adaptive filtering techniques usually attempt to minimize the mean square error (MSE) of some aspect of the received signal, with respect to the desired aspect of that signal. Adaptive minimization of MSE does not always guarantee minimization of bit error rate (BER). The main focus of this research involves estimation of the probability density function (PDF) of the received signal; this PDF estimate is used to adaptively determine a solution that minimizes BER. To this end, a new adaptive procedure called the Minimum BER Estimation (MBE) algorithm has been developed. MBE shows improvement over the Least Mean Squares (LMS) algorithm for most simulations involving interference and in some multipath situations. Furthermore, the new algorithm is more robust than LMS to changes in algorithm parameters such as stepsize and window width. / Master of Science
72

Analog and Digital Array Processor Realization of a 2D IIR Beam Filter for Wireless Applications

Joshi, Rimesh M. 01 February 2012 (has links)
No description available.
73

The Effectiveness Of Data Codes And Hardware Selection To Mitigate Scintillation Effects On Free Space Optical Data Transmission

Stein, Keith 01 January 2006 (has links)
The design of an optical communication link must plan for the random effects of atmospheric turbulence. This study analyses data from an experiment which transmitted from a laser located 8 meters above ground over a 13 Km range to coherent detection devices approximately 162 meters above ground. The effects of a fading and surging beam wave were considered in regards to code techniques for error correction, amplitude modulation and hardware architecture schemes. This study simulated the use of arrays and large apertures for the receiving devices, and compared the resultant scintillation index with the theoretical calculations.
74

Ambient Backscatter Communication Systems: Design, Signal Detection and Bit Error Rate Analysis

Devineni, Jaya Kartheek 21 September 2021 (has links)
The success of the Internet-of-Things (IoT) paradigm relies on, among other things, developing energy-efficient communication techniques that can enable information exchange among billions of battery-operated IoT devices. With its technological capability of simultaneous information and energy transfer, ambient backscatter is quickly emerging as an appealing solution for this communication paradigm, especially for the links with low data rate requirements. However, many challenges and limitations of ambient backscatter have to be overcome for widespread adoption of the technology in future wireless networks. Motivated by this, we study the design and implementation of ambient backscatter systems, including non-coherent detection and encoding schemes, and investigate techniques such as multiple antenna interference cancellation and frequency-shift backscatter to improve the bit error rate performance of the designed ambient backscatter systems. First, the problem of coherent and semi-coherent ambient backscatter is investigated by evaluating the exact bit error rate (BER) of the system. The test statistic used for the signal detection is based on the averaging of energy of the received signal samples. It is important to highlight that the conditional distributions of this test statistic are derived using the central limit theorem (CLT) approximation in the literature. The characterization of the exact conditional distributions of the test statistic as non-central chi-squared random variable for the binary hypothesis testing problem is first handled in our study, which is a key contribution of this particular work. The evaluation of the maximum likelihood (ML) detection threshold is also explored which is found to be intractable. To overcome this, alternate strategies to approximate the ML threshold are proposed. In addition, several insights for system design and implementation are provided both from analytical and numerical standpoints. Second, the highly appealing non-coherent signal detection is explored in the context of ambient backscatter for a time-selective channel. Modeling the time-selective fading as a first-order autoregressive (AR) process, we implement a new detection architecture at the receiver based on the direct averaging of the received signal samples, which departs significantly from the energy averaging-based receivers considered in the literature. For the proposed setup, we characterize the exact asymptotic BER for both single-antenna (SA) and multi-antenna (MA) receivers, and demonstrate the robustness of the new architecture to timing errors. Our results demonstrate that the direct-link (DL) interference from the ambient power source leads to a BER floor in the SA receiver, which the MA receiver can avoid by estimating the angle of arrival (AoA) of the DL. The analysis further quantifies the effect of improved angular resolution on the BER as a function of the number of receive antennas. Third, the advantages of utilizing Manchester encoding for the data transmission in the context of non-coherent ambient backscatter have been explored. Specifically, encoding is shown to simplify the detection procedure at the receiver since the optimal decision rule is found to be independent of the system parameters. Through extensive numerical results, it is further shown that a backscatter system with Manchester encoding can achieve a signal-to-noise ratio (SNR) gain compared to the commonly used uncoded direct on-off keying (OOK) modulation, when used in conjunction with a multi-antenna receiver employing the direct-link cancellation. Fourth, the BER performance of frequency-shift ambient backscatter, which achieves the self-interference mitigation by spatially separating the reflected backscatter signal from the impending source signal, is investigated. The performance of the system is evaluated for a non-coherent receiver under slow fading in two different network setups: 1) a single interfering link coming from the ambient transmission occurring in the shifted frequency region, and 2) a large-scale network with multiple interfering signals coming from the backscatter nodes and ambient source devices transmitting in the band of interest. Modeling the interfering devices as a two dimensional Poisson point process (PPP), tools from stochastic geometry are utilized to evaluate the bit error rate for the large-scale network setup. / Doctor of Philosophy / The emerging paradigm of Internet-of-Things (IoT) has the capability of radically transforming the human experience. At the heart of this technology are the smart edge devices that will monitor everyday physical processes, communicate regularly with the other nodes in the network chain, and automatically take appropriate actions when necessary. Naturally, many challenges need to be tackled in order to realize the true potential of this technology. Most relevant to this dissertation are the problems of powering potentially billions of such devices and enabling low-power communication among them. Ambient backscatter has emerged as a useful technology to handle the aforementioned challenges of the IoT networks due to its capability to support the simultaneous transfer of information and energy. This technology allows devices to harvest energy from the ambient signals in the environment thereby making them self-sustainable, and in addition provide carrier signals for information exchange. Using these attributes of ambient backscatter, the devices can operate at very low power which is an important feature when considering the reliability requirements of the IoT networks. That said, the ambient backscatter technology needs to overcome many challenges before its widespread adoption in IoT networks. For example, the range of backscatter is limited in comparison to the conventional communication systems due to self-interference from the power source at a receiver. In addition, the probability of detecting the data in error at the receiver, characterized by the bit error rate (BER) metric, in the presence of wireless multipath is generally poor in ambient backscatter due to double path loss and fading effects observed for the backscatter link. Inspired by this, the aim of this dissertation is to come up with new architecture designs for the transmitter and receiver devices that can improve the BER performance. The key contributions of the dissertation include the analytical derivations of BER which provide insights on the system design and the main parameters impacting the system performance. The exact design of the optimal detection technique for a communication system is dependent on the channel behavior, mainly the time-varying nature in the case of a flat fading channel. Depending on the mobility of devices and scatterers present in the wireless channel, it can either be described as time-selective or time-nonselective. In the time-nonselective channels, coherent detection that requires channel state information (CSI) estimation using pilot signals can be implemented for ambient backscatter. On the other hand, non-coherent detection is preferred when the channel is time-selective since the CSI estimation is not feasible in such scenarios. In the first part of this dissertation, we analyze the performance of ambient backscatter in a point-to-point single-link system for both time-nonselective and time-selective channels. In particular, we determine the BER performance of coherent and non-coherent detection techniques for ambient backscatter systems in this line of work. In addition, we investigate the possibility of improving the BER performance using multi-antenna and coding techniques. Our analyses demonstrate that the use of multi-antenna and coding can result in tremendous improvement of the performance and simplification of the detection procedure, respectively. In the second part of the dissertation, we study the performance of ambient backscatter in a large-scale network and compare it to that of the point-to-point single-link system. By leveraging tools from stochastic geometry, we analytically characterize the BER performance of ambient backscatter in a field of interfering devices modeled as a Poisson point process.
75

Experimental multiuser secure quantum communications

Bogdanski, Jan January 2009 (has links)
We are currently experiencing a rapid development of quantum information, a new branch of science, being an interdisciplinary of quantum physics, information theory, telecommunications, computer science, and many others. This new science branch was born in the middle of the eighties, developed rapidly during the nineties, and in the current decade has brought a technological breakthrough in creating secure quantum key distribution (QKD), quantum secret sharing, and exciting promises in diverse technological fields. Recent QKD experiments have achieved high rate QKD at 200 km distance in optical fiber. Significant QKD results have also been achieved in free-space. Due to the rapid broadband access deployment in many industrialized countries and the standing increasing transmission security treats, the natural development awaiting quantum communications, being a part of quantum information, is its migration into commercial switched telecom networks. Such a migration concerns both multiuser quantum key distribution and multiparty quantum secret sharing that have been the main goal of my PhD studies. They are also the main concern of the thesis. Our research efforts in multiuser QKD has led to a development of the five-user setup for transmissions over switched fiber networks in a star and in a tree configuration. We have achieved longer secure quantum information distances and implemented more nodes than other multi-user QKD experiments. The measurements have shown feasibility of multiuser QKD over switched fiber networks, using standard fiber telecom components. Since circular architecture networks are important parts of both intranets and the Internet, Sagnac QKD has also been a subject of our research efforts. The published experiments in this area have been very few and results were not encouraging, mainly due to the single mode fiber (SMF) birefringence. Our research has led to a development of a computer controlled birefringence compensation in Sagnac that open the door to both classical and quantum Sagnac applications. On the quantum secret sharing side, we have achieved the first quantum secret sharing experiment over telecom fiber in a five-party implementation using the "plug & play" setup and in a four-party implementation using Sagnac configuration. The setup measurements have shown feasibility and scalability of multiparty quantum communication over commercial telecom fiber networks.
76

Linear MMSE Receivers for Interference Suppression & Multipath Diversity Combining in Long-Code DS-CDMA Systems

Mirbagheri, Arash January 2003 (has links)
This thesis studies the design and implementation of a linear minimum mean-square error (LMMSE) receiver in asynchronous bandlimited direct-sequence code-division multiple-access (DS-CDMA) systems that employ long-code pseudo-noise (PN) sequences and operate in multipath environments. The receiver is shown to be capable of multiple-access interference (MAI) suppression and multipath diversity combining without the knowledge of other users' signature sequences. It outperforms any other linear receiver by maximizing output signal-to-noise ratio (SNR) with the aid of a new chip filter which exploits the cyclostationarity of the received signal and combines all paths of the desired user that fall within its supported time span. This work is motivated by the shortcomings of existing LMMSE receivers which are either incompatible with long-code CDMA or constrained by limitations in the system model. The design methodology is based on the concept of linear/conjugate linear (LCL) filtering and satisfying the orthogonality conditions to achieve the LMMSE filter response. Moreover, the proposed LMMSE receiver addresses two drawbacks of the coherent Rake receiver, the industry's current solution for multipath reception. First, unlike the Rake receiver which uses the chip-matched filter (CMF) and treats interference as additive white Gaussian noise (AWGN), the LMMSE receiver suppresses interference by replacing the CMF with a new chip pulse filter. Second, in contrast to the Rake receiver which only processes a subset of strongest paths of the desired user, the LMMSE receiver harnesses the energy of all paths of the desired user that fall within its time support, at no additional complexity. The performance of the proposed LMMSE receiver is analyzed and compared with that of the coherent Rake receiver with probability of bit error, <i>Pe</i>, as the figure of merit. The analysis is based on the accurate improved Gaussian approximation (IGA) technique. Closed form conditional <i>Pe</i> expressions for both the LMMSE and Rake receivers are derived. Furthermore, it is shown that if quadriphase random spreading, moderate to large spreading factors, and pulses with small excess bandwidth are used, the widely-used standard Gaussian Approximation (SGA) technique becomes accurate even for low regions of <i>Pe</i>. Under the examined scenarios tailored towards current narrowband system settings, the LMMSE receiver achieves 60% gain in capacity (1. 8 dB in output SNR) over the selective Rake receiver. A third of the gain is due to interference suppression capability of the receiver while the rest is credited to its ability to collect the energy of the desired user diversified to many paths. Future wideband systems will yield an ever larger gain. Adaptive implementations of the LMMSE receiver are proposed to rid the receiver from dependence on the knowledge of multipath parameters. The adaptive receiver is based on a fractionally-spaced equalizer (FSE) whose taps are updated by an adaptive algorithm. Training-based, pilot-channel-aided (PCA), and blind algorithms are developed to make the receiver applicable to both forward and reverse links, with or without the presence of pilot signals. The blind algorithms are modified versions of the constant modulus algorithm (CMA) which has not been previously studied for long-code CDMA systems. Extensive simulation results are presented to illustrate the convergence behavior of the proposed algorithms and quantify their performance loss under various levels of MAI. Computational complexities of the algorithms are also discussed. These three criteria (performance loss, convergence rate, and computational complexity) determine the proper choice of an adaptive algorithm with respect to the requirements of the specific application in mind.
77

Linear MMSE Receivers for Interference Suppression & Multipath Diversity Combining in Long-Code DS-CDMA Systems

Mirbagheri, Arash January 2003 (has links)
This thesis studies the design and implementation of a linear minimum mean-square error (LMMSE) receiver in asynchronous bandlimited direct-sequence code-division multiple-access (DS-CDMA) systems that employ long-code pseudo-noise (PN) sequences and operate in multipath environments. The receiver is shown to be capable of multiple-access interference (MAI) suppression and multipath diversity combining without the knowledge of other users' signature sequences. It outperforms any other linear receiver by maximizing output signal-to-noise ratio (SNR) with the aid of a new chip filter which exploits the cyclostationarity of the received signal and combines all paths of the desired user that fall within its supported time span. This work is motivated by the shortcomings of existing LMMSE receivers which are either incompatible with long-code CDMA or constrained by limitations in the system model. The design methodology is based on the concept of linear/conjugate linear (LCL) filtering and satisfying the orthogonality conditions to achieve the LMMSE filter response. Moreover, the proposed LMMSE receiver addresses two drawbacks of the coherent Rake receiver, the industry's current solution for multipath reception. First, unlike the Rake receiver which uses the chip-matched filter (CMF) and treats interference as additive white Gaussian noise (AWGN), the LMMSE receiver suppresses interference by replacing the CMF with a new chip pulse filter. Second, in contrast to the Rake receiver which only processes a subset of strongest paths of the desired user, the LMMSE receiver harnesses the energy of all paths of the desired user that fall within its time support, at no additional complexity. The performance of the proposed LMMSE receiver is analyzed and compared with that of the coherent Rake receiver with probability of bit error, <i>Pe</i>, as the figure of merit. The analysis is based on the accurate improved Gaussian approximation (IGA) technique. Closed form conditional <i>Pe</i> expressions for both the LMMSE and Rake receivers are derived. Furthermore, it is shown that if quadriphase random spreading, moderate to large spreading factors, and pulses with small excess bandwidth are used, the widely-used standard Gaussian Approximation (SGA) technique becomes accurate even for low regions of <i>Pe</i>. Under the examined scenarios tailored towards current narrowband system settings, the LMMSE receiver achieves 60% gain in capacity (1. 8 dB in output SNR) over the selective Rake receiver. A third of the gain is due to interference suppression capability of the receiver while the rest is credited to its ability to collect the energy of the desired user diversified to many paths. Future wideband systems will yield an ever larger gain. Adaptive implementations of the LMMSE receiver are proposed to rid the receiver from dependence on the knowledge of multipath parameters. The adaptive receiver is based on a fractionally-spaced equalizer (FSE) whose taps are updated by an adaptive algorithm. Training-based, pilot-channel-aided (PCA), and blind algorithms are developed to make the receiver applicable to both forward and reverse links, with or without the presence of pilot signals. The blind algorithms are modified versions of the constant modulus algorithm (CMA) which has not been previously studied for long-code CDMA systems. Extensive simulation results are presented to illustrate the convergence behavior of the proposed algorithms and quantify their performance loss under various levels of MAI. Computational complexities of the algorithms are also discussed. These three criteria (performance loss, convergence rate, and computational complexity) determine the proper choice of an adaptive algorithm with respect to the requirements of the specific application in mind.
78

Low-power discrete Fourier transform and soft-decision Viterbi decoder for OFDM receivers

Suh, Sangwook 31 August 2011 (has links)
The purpose of this research is to present a low-power wireless communication receiver with an enhanced performance by relieving the system complexity and performance degradation imposed by a quantization process. With an overwhelming demand for more reliable communication systems, the complexity required for modern communication systems has been increased accordingly. A byproduct of this increase in complexity is a commensurate increase in power consumption of the systems. Since the Shannon's era, the main stream of the methodologies for promising the high reliability of communication systems has been based on the principle that the information signals flowing through the system are represented in digits. Consequently, the system itself has been heavily driven to be implemented with digital circuits, which is generally beneficial over analog implementations when digitally stored information is locally accessible, such as in memory systems. However, in communication systems, a receiver does not have a direct access to the originally transmitted information. Since the received signals from a noisy channel are already continuous values with continuous probability distributions, we suggest a mixed-signal system in which the received continuous signals are directly fed into the analog demodulator and the subsequent soft-decision Viterbi decoder without any quantization involved. In this way, we claim that redundant system complexity caused by the quantization process is eliminated, thus gives better power efficiency in wireless communication systems, especially for battery-powered mobile devices. This is also beneficial from a performance perspective, as it takes full advantage of the soft information flowing through the system.
79

Multiuser Transmission in Code Division Multiple Access Mobile Communications Systems

Irmer, Ralf 28 June 2005 (has links) (PDF)
Code Division Multiple Access (CDMA) is the technology used in all third generation cellular communications networks, and it is a promising candidate for the definition of fourth generation standards. The wireless mobile channel is usually frequency-selective causing interference among the users in one CDMA cell. Multiuser Transmission (MUT) algorithms for the downlink can increase the number of supportable users per cell, or decrease the necessary transmit power to guarantee a certain quality-of-service. Transmitter-based algorithms exploiting the channel knowledge in the transmitter are also motivated by information theoretic results like the Writing-on-Dirty-Paper theorem. The signal-to-noise ratio (SNR) is a reasonable performance criterion for noise-dominated scenarios. Using linear filters in the transmitter and the receiver, the SNR can be maximized with the proposed Eigenprecoder. Using multiple transmit and receive antennas, the performance can be significantly improved. The Generalized Selection Combining (GSC) MIMO Eigenprecoder concept enables reduced complexity transceivers. Methods eliminating the interference completely or minimizing the mean squared error exist for both the transmitter and the receiver. The maximum likelihood sequence detector in the receiver minimizes the bit error rate (BER), but it has no direct transmitter counterpart. The proposed Minimum Bit Error Rate Multiuser Transmission (TxMinBer) minimizes the BER at the detectors by transmit signal processing. This nonlinear approach uses the knowledge of the transmit data symbols and the wireless channel to calculate a transmit signal optimizing the BER with a transmit power constraint by nonlinear optimization methods like sequential quadratic programming (SQP). The performance of linear and nonlinear MUT algorithms with linear receivers is compared at the example of the TD-SCDMA standard. The interference problem can be solved with all MUT algorithms, but the TxMinBer approach requires less transmit power to support a certain number of users. The high computational complexity of MUT algorithms is also an important issue for their practical real-time application. The exploitation of structural properties of the system matrix reduces the complexity of the linear MUT mthods significantly. Several efficient methods to invert the ystem matrix are shown and compared. Proposals to reduce the omplexity of the Minimum Bit Error Rate Multiuser Transmission mehod are made, including a method avoiding the constraint by pase-only optimization. The complexity of the nonlinear methods i still some magnitudes higher than that of the linear MUT lgorithms, but further research on this topic and the increasing processing power of integrated circuits will eventually allow to exploit their better performance. / Der codegeteilte Mehrfachzugriff (CDMA) wird bei allen zellularen Mobilfunksystemen der dritten Generation verwendet und ist ein aussichtsreicher Kandidat für zukünftige Technologien. Die Netzkapazität, also die Anzahl der Nutzer je Funkzelle, ist durch auftretende Interferenzen zwischen den Nutzern begrenzt. Für die Aufwärtsstrecke von den mobilen Endgeräten zur Basisstation können die Interferenzen durch Verfahren der Mehrnutzerdetektion im Empfänger verringert werden. Für die Abwärtsstrecke, die höhere Datenraten bei Multimedia-Anwendungen transportiert, kann das Sendesignal im Sender so vorverzerrt werden, dass der Einfluß der Interferenzen minimiert wird. Die informationstheoretische Motivation liefert dazu das Writing-on-Dirty-Paper Theorem. Das Signal-zu-Rausch-Verhältnis ist ein geeignetes Kriterium für die Performanz in rauschdominierten Szenarien. Mit Sende- und Empfangsfiltern kann das SNR durch den vorgeschlagenen Eigenprecoder maximiert werden. Durch den Einsatz von Mehrfachantennen im Sender und Empfänger kann die Performanz signifikant erhöht werden. Mit dem Generalized Selection MIMO Eigenprecoder können Transceiver mit reduzierter Komplexität ermöglicht werden. Sowohl für den Empfänger als auch für den Sender existieren Methoden, die Interferenzen vollständig zu eliminieren, oder den mittleren quadratischen Fehler zu minimieren. Der Maximum-Likelihood-Empfänger minimiert die Bitfehlerwahrscheinlichkeit (BER), hat jedoch kein entsprechendes Gegenstück im Sender. Die in dieser Arbeit vorgeschlagene Minimum Bit Error Rate Multiuser Transmission (TxMinBer) minimiert die BER am Detektor durch Sendesignalverarbeitung. Dieses nichtlineare Verfahren nutzt die Kenntnis der Datensymbole und des Mobilfunkkanals, um ein Sendesignal zu generieren, dass die BER unter Berücksichtigung einer Sendeleistungsnebenbedingung minimiert. Dabei werden nichtlineare Optimierungsverfahren wie Sequentielle Quadratische Programmierung (SQP) verwendet. Die Performanz linearer und nichtlinearer MUT-Verfahren MUT-Algorithmen mit linearen Empfängern wird am Beispiel des TD-SCDMA-Standards verglichen. Das Problem der Interferenzen kann mit allen untersuchten Verfahren gelöst werden, die TxMinBer-Methode benötigt jedoch die geringste Sendeleistung, um eine bestimmt Anzahl von Nutzern zu unterstützen. Die hohe Rechenkomplexität der MUT-Algorithmen ist ein wichtiges Problem bei der Implementierung in Real-Zeit-Systemen. Durch die Ausnutzung von Struktureigenschaften der Systemmatrizen kann die Komplexität der linearen MUT-Verfahren signifikant reduziert werden. Verschiedene Verfahren zur Invertierung der Systemmatrizen werden aufgezeigt und verglichen. Es werden Vorschläge gemacht, die Komplexität der Minimum Bit Error Rate Multiuser Transmission zu reduzieren, u.a. durch Vermeidung der Sendeleistungsnebenbedingung durch eine Beschränkung der Optimierung auf die Phasen des Sendesignalvektors. Die Komplexität der nichtlinearen Methoden ist um einige Größenordungen höher als die der linearen Verfahren. Weitere Forschungsanstrengungen an diesem Thema sowie die wachsende Rechenleistung von integrierten Halbleitern werden künftig die Ausnutzung der besseren Leistungsfähigkeit der nichtlinearen MUT-Verfahren erlauben.
80

New signal processing approaches to peak-to-average power ratio reduction in multicarrier systems

Bae, Ki-taek 06 December 2010 (has links)
Multi-carrier systems based on orthogonal frequency division multiplexing (OFDM) are efficient technologies for the implementation of broadband wireless communication systems. OFDM is widely used and has been adopted for current mobile broadband wireless communication systems such as IEEE 802.a/g wireless LANs, WiMAX, 3GPP LTE, and DVB-T/H digital video broadcasting systems. Despite their many advantages, however, OFDM-based systems suffer from potentially high peak-to-average power ratio (PAR). Since communication systems typically include nonlinear devices such as RF power amplifiers (PA) and digital-to-analog converters (DAC), high PAR results in increased symbol error rates and spectral radiation. To mitigate these nonlinear effects and to avoid nonlinear saturation effects of the PA, the operating point of a signal with high peak power must be backed off into the linear region of the PA. This so-called output backoff (OBO) results in a reduced power conversion efficiency which limits the battery life for mobile applications, reduces the coverage range, and increases both the cost of the PA and power consumption in the cellular base station. With the increasing demand for high energy efficiency, low power consumption, and greenhouse gas emission reduction, PAR reduction is a key technique in the design of practical OFDM systems. Motivated by the PAR reduction problem associated with multi-carrier systems, such as OFDM, this research explores the state of the art of PAR reduction techniques and develops new signal processing techniques that can achieve a minimum PAR for given system parameters and that are compatible with the appropriate standards. The following are the three principal contributions of this dissertation research. First, we present and derive the semi-analytical results for the output of asymptotic iterative clipping and filtering. This work provides expressions and analytical techniques for estimating the attenuation factor, error vector magnitude, and bit-error-rate (BER), using a noise enhancement factor that is obtained by simulation. With these semi-analytical results, we obtain a relationship between the BER and the target clipping level for asymptotic iterative clipping and filtering. These results serve as a performance benchmark for designing PAR reduction techniques using iterative clipping and filtering in OFDM systems. Second, we analyze the impact of the selected mapping (SLM) technique on BER performance of OFDM systems in an additive white Gaussian noise channel in the presence of nonlinearity. We first derive a closed-form expression for the envelope power distribution in an OFDM system with SLM. Then, using this derived envelope power distribution, we investigate the BER performance and the total degradation (TD) of OFDM systems with SLM under the existence of nonlinearity. As a result, we obtain the TD-minimizing peak backoff (PBO) and clipping ratio as functions of the number of candidate signals in SLM. Third, we propose an adaptive clipping control algorithm and pilotaided algorithm to address a fundamental issue associated with two lowcomplexity PAR reduction techniques, namely, tone reservation (TR) and active constellation extension (ACE). Specifically, we discovered that the existing low-complexity algorithms have a low clipping ratio problem in that they can not achieve the minimum PAR when the target clipping level is set below the initially unknown optimum value. Using our proposed algorithms, we overcome this problem and demonstrate that additional PAR reduction is obtained for any low value of the initial target clipping ratio. / text

Page generated in 0.0568 seconds