• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem caixa-preta de biorreatores em modo descontínuo utilizando modelos polinomiais do tipo NAR e NARMA

Salvatori, Tamara January 2016 (has links)
Biorreatores, que são explorados desde a antiguidade, são sistemas capazes de realizar a fermentação de compostos orgânicos, continuam sendo amplamente utilizados atualmente devido à diversidade de aplicações. Esses sistemas podem operar em diferentes modos de fermentação, entretanto, os mais utilizados são: fermentação contínua, semicontínua e descontínua. Esse último, juntamente com o processo de digestão anaeróbia (ausência de oxigênio), permitem que uma determinada matéria orgânica seja degradada e transformada em biogás, um dos fatores chave para geração de energia limpa. Percebe-se, portanto, que o estudo de biorreatores em modo de operação descontínuo e em processo de digestão anaeróbia é fundamental para o desenvolvimento de pesquisas relacionadas à geração de energia renovável. Para facilitar o entendimento desse processo, alguns autores propuseram estudos baseados na identificação de parâmetros em modelos não-lineares descritivos, do tipo caixa-branca, que hoje são vastamente utilizados na modelagem de biorreatores. A grande limitação dessa abordagem é que o processo de identificação de sistemas utilizando esses modelos pode ser complexo e demorado, ou, ainda, os parâmetros dos sistemas representados podem não ser identificáveis, inviabilizando o procedimento. Tentando amenizar essas dificuldades, propomos neste trabalho a utilização de modelos polinomiais NAR e NARMA do tipo caixa-preta para a modelagem de biorreatores em modo de fermentação descontínua. Modelos caixa-preta representam sistemas reais por meio de sua saída, sem informação sobre os mecanismos internos desse sistema, simplificando a identificação. Frente a esse contexto, o objetivo deste estudo é investigar a predição e, por consequência, realizar o monitoramento da produção de metano utilizando os modelos caixa-preta propostos em sistemas de biorreatores em modo descontínuo e em processo de digestão anaeróbia. Realizamos estudos que abarcam a investigação de dados simulados e de dados reais. Num primeiro momento são propostos modelos polinomiais dos tipos NAR e NARMA. A partir desses modelos são estimados os parâmetros dos sistemas simulados, com e sem ruído na saída, baseados em condições iniciais propostas na literatura, que denominamos Grupo de Controle. Posteriormente realizamos as validações desses modelos. Em seguida, passamos à etapa de investigação do domínio de validade dos modelos caixa-preta propostos, realizando um estudo em que modificamos as condições iniciais do sistema que representa biorreatores em modo de fermentação descontínua. Por fim, utilizamos dados de um experimento real para realizar o processo de estimação de parâmetros e de validação dos modelos. Os resultados mostraram que os modelos polinomiais NAR e NARMA são bastante adequados para predição de metano em biorreatores em modo de fermentação descontínua em processo de digestão anaeróbia, tanto para os dados simulados quanto para os dados reais. / Bioreactors, which are explored since antiquity, are systems that are capable of performing the fermentation of organic compounds. Nowadays, they are widely applied due to its diversity of applications. These systems can operate in different fermentation modes: continuous, fed-batch and batch. This last fermentation method along with the process of anaerobic digestion allow organic matter to be degraded and converted into biogas, which is a key factor for clean energy generation. It is thus realized that the study of bioreactors in batch mode and anaerobic digestion process is crucial to the development of research related to renewable energy generation. For a better understanding of the process, some authors have proposed studies based on parameters identification in descriptive nonlinear models, white-box models, which are widely used in bioreactors modeling. The main limitation of this approach is that the system identification procedure using these models can be complex and time-consuming, or even the parameters of the systems may not be identifiable. In order to overcome these difficulties, we propose in this work the use of black-box polynomial models for bioreactor modeling in batch mode, with NAR and NARMA model structures. Black-box models represent real systems using its output, without explicitly considering the inner mechanisms of the system, simplifying the identification procedure. Thus, the aim of this work is to investigate the prediction and monitoring methane production using the black-box models proposed using bioreactor systems in batch and anaerobic digestion process. The investigation uses numerical simulation and experimental data. At first, polynomial models of the types NAR and NARMA are proposed. The parameters from these models using simulation data with and without noise at the output, based on initial conditions proposed in the literature, are estimated. Subsequently we perform validations of these models. The next step is the study of the validity domain of the proposed black-box models, which is performed by testing many different initial conditions of the system that represents bioreactors in batch fermentation mode. Finally, we used real experimental data to perform the estimation of the parameters from the process and validation of models. The results, both simulated and experimental, indicate that the polynomial models NAR and NARMA are appropriate for prediction of methane fermentation in batch bioreactors.
2

Modelagem caixa-preta de biorreatores em modo descontínuo utilizando modelos polinomiais do tipo NAR e NARMA

Salvatori, Tamara January 2016 (has links)
Biorreatores, que são explorados desde a antiguidade, são sistemas capazes de realizar a fermentação de compostos orgânicos, continuam sendo amplamente utilizados atualmente devido à diversidade de aplicações. Esses sistemas podem operar em diferentes modos de fermentação, entretanto, os mais utilizados são: fermentação contínua, semicontínua e descontínua. Esse último, juntamente com o processo de digestão anaeróbia (ausência de oxigênio), permitem que uma determinada matéria orgânica seja degradada e transformada em biogás, um dos fatores chave para geração de energia limpa. Percebe-se, portanto, que o estudo de biorreatores em modo de operação descontínuo e em processo de digestão anaeróbia é fundamental para o desenvolvimento de pesquisas relacionadas à geração de energia renovável. Para facilitar o entendimento desse processo, alguns autores propuseram estudos baseados na identificação de parâmetros em modelos não-lineares descritivos, do tipo caixa-branca, que hoje são vastamente utilizados na modelagem de biorreatores. A grande limitação dessa abordagem é que o processo de identificação de sistemas utilizando esses modelos pode ser complexo e demorado, ou, ainda, os parâmetros dos sistemas representados podem não ser identificáveis, inviabilizando o procedimento. Tentando amenizar essas dificuldades, propomos neste trabalho a utilização de modelos polinomiais NAR e NARMA do tipo caixa-preta para a modelagem de biorreatores em modo de fermentação descontínua. Modelos caixa-preta representam sistemas reais por meio de sua saída, sem informação sobre os mecanismos internos desse sistema, simplificando a identificação. Frente a esse contexto, o objetivo deste estudo é investigar a predição e, por consequência, realizar o monitoramento da produção de metano utilizando os modelos caixa-preta propostos em sistemas de biorreatores em modo descontínuo e em processo de digestão anaeróbia. Realizamos estudos que abarcam a investigação de dados simulados e de dados reais. Num primeiro momento são propostos modelos polinomiais dos tipos NAR e NARMA. A partir desses modelos são estimados os parâmetros dos sistemas simulados, com e sem ruído na saída, baseados em condições iniciais propostas na literatura, que denominamos Grupo de Controle. Posteriormente realizamos as validações desses modelos. Em seguida, passamos à etapa de investigação do domínio de validade dos modelos caixa-preta propostos, realizando um estudo em que modificamos as condições iniciais do sistema que representa biorreatores em modo de fermentação descontínua. Por fim, utilizamos dados de um experimento real para realizar o processo de estimação de parâmetros e de validação dos modelos. Os resultados mostraram que os modelos polinomiais NAR e NARMA são bastante adequados para predição de metano em biorreatores em modo de fermentação descontínua em processo de digestão anaeróbia, tanto para os dados simulados quanto para os dados reais. / Bioreactors, which are explored since antiquity, are systems that are capable of performing the fermentation of organic compounds. Nowadays, they are widely applied due to its diversity of applications. These systems can operate in different fermentation modes: continuous, fed-batch and batch. This last fermentation method along with the process of anaerobic digestion allow organic matter to be degraded and converted into biogas, which is a key factor for clean energy generation. It is thus realized that the study of bioreactors in batch mode and anaerobic digestion process is crucial to the development of research related to renewable energy generation. For a better understanding of the process, some authors have proposed studies based on parameters identification in descriptive nonlinear models, white-box models, which are widely used in bioreactors modeling. The main limitation of this approach is that the system identification procedure using these models can be complex and time-consuming, or even the parameters of the systems may not be identifiable. In order to overcome these difficulties, we propose in this work the use of black-box polynomial models for bioreactor modeling in batch mode, with NAR and NARMA model structures. Black-box models represent real systems using its output, without explicitly considering the inner mechanisms of the system, simplifying the identification procedure. Thus, the aim of this work is to investigate the prediction and monitoring methane production using the black-box models proposed using bioreactor systems in batch and anaerobic digestion process. The investigation uses numerical simulation and experimental data. At first, polynomial models of the types NAR and NARMA are proposed. The parameters from these models using simulation data with and without noise at the output, based on initial conditions proposed in the literature, are estimated. Subsequently we perform validations of these models. The next step is the study of the validity domain of the proposed black-box models, which is performed by testing many different initial conditions of the system that represents bioreactors in batch fermentation mode. Finally, we used real experimental data to perform the estimation of the parameters from the process and validation of models. The results, both simulated and experimental, indicate that the polynomial models NAR and NARMA are appropriate for prediction of methane fermentation in batch bioreactors.
3

Modelagem caixa-preta de biorreatores em modo descontínuo utilizando modelos polinomiais do tipo NAR e NARMA

Salvatori, Tamara January 2016 (has links)
Biorreatores, que são explorados desde a antiguidade, são sistemas capazes de realizar a fermentação de compostos orgânicos, continuam sendo amplamente utilizados atualmente devido à diversidade de aplicações. Esses sistemas podem operar em diferentes modos de fermentação, entretanto, os mais utilizados são: fermentação contínua, semicontínua e descontínua. Esse último, juntamente com o processo de digestão anaeróbia (ausência de oxigênio), permitem que uma determinada matéria orgânica seja degradada e transformada em biogás, um dos fatores chave para geração de energia limpa. Percebe-se, portanto, que o estudo de biorreatores em modo de operação descontínuo e em processo de digestão anaeróbia é fundamental para o desenvolvimento de pesquisas relacionadas à geração de energia renovável. Para facilitar o entendimento desse processo, alguns autores propuseram estudos baseados na identificação de parâmetros em modelos não-lineares descritivos, do tipo caixa-branca, que hoje são vastamente utilizados na modelagem de biorreatores. A grande limitação dessa abordagem é que o processo de identificação de sistemas utilizando esses modelos pode ser complexo e demorado, ou, ainda, os parâmetros dos sistemas representados podem não ser identificáveis, inviabilizando o procedimento. Tentando amenizar essas dificuldades, propomos neste trabalho a utilização de modelos polinomiais NAR e NARMA do tipo caixa-preta para a modelagem de biorreatores em modo de fermentação descontínua. Modelos caixa-preta representam sistemas reais por meio de sua saída, sem informação sobre os mecanismos internos desse sistema, simplificando a identificação. Frente a esse contexto, o objetivo deste estudo é investigar a predição e, por consequência, realizar o monitoramento da produção de metano utilizando os modelos caixa-preta propostos em sistemas de biorreatores em modo descontínuo e em processo de digestão anaeróbia. Realizamos estudos que abarcam a investigação de dados simulados e de dados reais. Num primeiro momento são propostos modelos polinomiais dos tipos NAR e NARMA. A partir desses modelos são estimados os parâmetros dos sistemas simulados, com e sem ruído na saída, baseados em condições iniciais propostas na literatura, que denominamos Grupo de Controle. Posteriormente realizamos as validações desses modelos. Em seguida, passamos à etapa de investigação do domínio de validade dos modelos caixa-preta propostos, realizando um estudo em que modificamos as condições iniciais do sistema que representa biorreatores em modo de fermentação descontínua. Por fim, utilizamos dados de um experimento real para realizar o processo de estimação de parâmetros e de validação dos modelos. Os resultados mostraram que os modelos polinomiais NAR e NARMA são bastante adequados para predição de metano em biorreatores em modo de fermentação descontínua em processo de digestão anaeróbia, tanto para os dados simulados quanto para os dados reais. / Bioreactors, which are explored since antiquity, are systems that are capable of performing the fermentation of organic compounds. Nowadays, they are widely applied due to its diversity of applications. These systems can operate in different fermentation modes: continuous, fed-batch and batch. This last fermentation method along with the process of anaerobic digestion allow organic matter to be degraded and converted into biogas, which is a key factor for clean energy generation. It is thus realized that the study of bioreactors in batch mode and anaerobic digestion process is crucial to the development of research related to renewable energy generation. For a better understanding of the process, some authors have proposed studies based on parameters identification in descriptive nonlinear models, white-box models, which are widely used in bioreactors modeling. The main limitation of this approach is that the system identification procedure using these models can be complex and time-consuming, or even the parameters of the systems may not be identifiable. In order to overcome these difficulties, we propose in this work the use of black-box polynomial models for bioreactor modeling in batch mode, with NAR and NARMA model structures. Black-box models represent real systems using its output, without explicitly considering the inner mechanisms of the system, simplifying the identification procedure. Thus, the aim of this work is to investigate the prediction and monitoring methane production using the black-box models proposed using bioreactor systems in batch and anaerobic digestion process. The investigation uses numerical simulation and experimental data. At first, polynomial models of the types NAR and NARMA are proposed. The parameters from these models using simulation data with and without noise at the output, based on initial conditions proposed in the literature, are estimated. Subsequently we perform validations of these models. The next step is the study of the validity domain of the proposed black-box models, which is performed by testing many different initial conditions of the system that represents bioreactors in batch fermentation mode. Finally, we used real experimental data to perform the estimation of the parameters from the process and validation of models. The results, both simulated and experimental, indicate that the polynomial models NAR and NARMA are appropriate for prediction of methane fermentation in batch bioreactors.
4

Black-Box Modeling and Attitude Control of a Quadcopter

Kugelberg, Ingrid January 2016 (has links)
In this thesis, black-box models describing the quadcopter system dynamics for attitude control have been estimated using closed-loop data. A quadcopter is a naturally unstable multiple input multiple output (MIMO) system and is therefore an interesting platform to test and evaluate ideas in system identification and control theory on. The estimated attitude models have been shown to explain the output signals well enough during simulations to properly tune a PID controller for outdoor flight purposes. With data collected in closed loop during outdoor flights, knowledge about the controller and IMU measurements, three decoupled models have been estimated for the angles and angular rates in roll, pitch and yaw. The models for roll and pitch have been forced to have the same model structure and orders since this reflects the geometry of the quadcopter. The models have been validated by simulating the closed-loop system where they could explain the output signals well. The estimated models have then been used to design attitude controllers to stabilize the quadcopter around the hovering state. Three PID controllers have been implemented on the quadcopter and evaluated in simulation before being tested during both indoor and outdoor flights. The controllers have been shown to stabilize the quadcopter with good reference tracking. However, the performance of the pitch controller could be improved further as there have been small oscillations present that may indicate a stronger correlation between the roll and pitch channels than assumed.
5

Modeling and Temperature Control of an Industrial Furnace

Carlborg, Hampus, Iredahl, Henrik January 2016 (has links)
A linear model of an annealing furnace is developed using a black-box system identification approach, and used when testing three different control strategies to improve temperature control. The purpose of the investigation was to see if it was possible to improve the temperature control while at the same time  decrease the switching frequency of the  burners. This will lead to a more efficient process as well as less maintenance, which has both economic and environmental benefits. The estimated model has been used to simulate the furnace with both the existing controller and possible new controllers such as a split range controller and a model predictive controller (MPC). A split range controller is a control strategy which can be used when more than one control signal affect the output signal, and the control signals have different range. The main advantage with MPC is that it can take limitations and constraints into account for the controlled process, and with the use of integer programming, explicitly account for the discrete switching behavior of the burners. In simulation both new controllers succeed in decreasing the switching and the MPC also improved the temperature control. This suggest that the control of the furnace can be improved by implementing one of the evaluated controllers.
6

Ion Current Dependence on Operating Condition and Ethanol Ratio

Gustafsson, Karin January 2006 (has links)
<p>This masters thesis investigates the possibility to estimate the ethanol content in the fuel using ion currents. Flexible fuel cars can be run on gasoline-ethanol blends with an ethanol content from0 to 85 percentage. It is important for the engine control system to have information about the fuel. In todays cars the measurements of the fuel blend are done by a sensor. If it is possible to do this with ion currents this can be used to detect if the sensor is broken, and then estimate the ethanol content until the sensor gets fixed. The benefit</p><p>of using ion currents is that the signal is measured directly from the spark plug and therefore no extra hardware is needed. To be able to see how the ethanol ratio affects the ion currents, the dependencies of the operating point have been investigated. This has been done by a literature review and by measurements in a Saab 9-3. Engine speed, load, ignition timing, lambda and spark plugs effects on the ion currents are especially studied. A black box model for the ion currents dependence on operating point is developed. This model describes the engine speed, load and ignition timing dependencies well, but it can not be used to estimate the ethanol ratio.</p>
7

Ion Current Dependence on Operating Condition and Ethanol Ratio

Gustafsson, Karin January 2006 (has links)
This masters thesis investigates the possibility to estimate the ethanol content in the fuel using ion currents. Flexible fuel cars can be run on gasoline-ethanol blends with an ethanol content from0 to 85 percentage. It is important for the engine control system to have information about the fuel. In todays cars the measurements of the fuel blend are done by a sensor. If it is possible to do this with ion currents this can be used to detect if the sensor is broken, and then estimate the ethanol content until the sensor gets fixed. The benefit of using ion currents is that the signal is measured directly from the spark plug and therefore no extra hardware is needed. To be able to see how the ethanol ratio affects the ion currents, the dependencies of the operating point have been investigated. This has been done by a literature review and by measurements in a Saab 9-3. Engine speed, load, ignition timing, lambda and spark plugs effects on the ion currents are especially studied. A black box model for the ion currents dependence on operating point is developed. This model describes the engine speed, load and ignition timing dependencies well, but it can not be used to estimate the ethanol ratio.
8

Empirical modeling of the thermal systems in an apartment : A study of the relationship between household electricity consumption and indoor temperature

Wallentinsson, Måns, Jacob, Rutfors January 2020 (has links)
In this study, linear and non-linear models were trained on real data to mimic the relationship between household electricity consumption and indoor temperature, in the rooms of an apartment in downtown Stockholm. The aim was to better understand this relationship and to distinguish any divergence between the different rooms. With data from two weeks of measurements, the models proved to perform well when tested on validation data for almost all rooms, only showing performance dips for the middle room. A noticeable correlation between the electricity consumption and the indoor temperature was observed for all rooms except the bedroom. However, the benefits of using this information to predict the indoor temperature are limited and differ between the rooms. The household electricity consumption primarily brought beneficial information to the kitchen models, where most of the heat generating appliances were located. It was found that linear models were sufficient to represent the thermal systems of the rooms, performing equally well and often better than non-linear models.
9

Predictor development for controlling real-time applications over the Internet

Kommaraju, Mallik 25 April 2007 (has links)
Over the past decade there has been a growing demand for interactive multimedia applications deployed over public IP networks. To achieve acceptable Quality of Ser- vice (QoS) without significantly modifying the existing infrastructure, the end-to-end applications need to optimize their behavior and adapt according to network char- acteristics. Most existing application optimization techniques are based on reactive strategies, i.e. reacting to occurrences of congestion. We propose the use of predic- tive control to address the problem in an anticipatory manner. This research deals with developing models to predict end-to-end single flow characteristics of Wide Area Networks (WANs). A novel signal, in the form of single flow packet accumulation, is proposed for feedback purposes. This thesis presents a variety of effective predictors for the above signal using Auto-Regressive (AR) models, Radial Basis Functions (RBF) and Sparse Basis Functions (SBF). The study consists of three sections. We first develop time- series models to predict the accumulation signal. Since encoder bit-rate is the most logical and generic control input, a statistical analysis is conducted to analyze the effect of input bit-rate on end-to-end delay and the accumulation signal. Finally, models are developed using this bit-rate as an input to predict the resulting accu- mulation signal. The predictors are evaluated based on Noise-to-Signal Ratio (NSR) along with their accuracy with increasing accumulation levels. In time-series models, RBF gave the best NSR closely followed by AR models. Analysis based on accu- racy with increasing accumulation levels showed AR to be better in some cases. The study on effect of bit-rate revealed that bit-rate may not be a good control input on all paths. Models such as Auto-Regressive with Exogenous input (ARX) and RBF were used to develop models to predict the accumulation signal using bit-rate as a modeling input. ARX and RBF models were found to give comparable accuracy, with RBF being slightly better.
10

Self-healing RF SoCs: low cost built-in test and control driven simultaneous tuning of multiple performance metrics

Natarajan, Vishwanath 13 October 2010 (has links)
The advent of deep submicron technology coupled with ever increasing demands from the customer for more functionality on a compact silicon real estate has led to a proliferation of highly complex integrated RF system-on-chip (SoC) and system-on-insulator (SoI) solutions. The use of scaled CMOS technologies for high frequency wireless applications is posing daunting technological challenges both in design and manufacturing test. To ensure market success, manufacturers need to ensure the quality of these advanced RF devices by subjecting them to a conventional set of production test routines that are both time consuming and expensive. Typically the devices are tested for parametric specifications such as gain, linearity metrics, quadrature mismatches, phase noise, noise figure (NF) and end-to-end system level specifications such as EVM (error vector magnitude), BER (bit-error-rate) etc. Due to the reduced visibility imposed by high levels of integration, testing for parametric specifications are becoming more and more complex. To offset the yield loss resulting from process variability effects and reliability issues in RF circuits, the use of self-healing/self-tuning mechanisms will be imperative. Such self-healing is typically implemented as a test/self-test and self-tune procedure and is applied post-manufacture. To enable this, simple test routines that can accurately diagnose complex performance parameters of the RF circuits need to be developed first. After diagnosing the performance of a complex RF system appropriate compensation techniques need to be developed to increase or restore the system performance. Moreover, the test, diagnosis and compensation approach should be low-cost with minimal hardware and software overhead to ensure that the final product is economically viable for the manufacturer. The main components of the thesis are as follows: 1) Low-cost specification testing of advanced radio frequency front-ends: Methodologies are developed to address the issue of test cost and test time associated with conventional production testing of advanced RF front-ends. The developed methodologies are amenable for performing self healing of RF SoCs. Test generation algorithms are developed to perform alternate test stimulus generation that includes the artifacts of test signal path such as response capture accuracy, load-board DfT etc. A novel cross loop-back methodology is developed to perform low cost system level specification testing of multi-band RF transceivers. A novel low-cost EVM testing approach is developed for production testing of wireless 802.11 OFDM front-ends. A signal transformation based model extraction technique is developed to compute multiple RF system level specifications of wireless front-ends from a single data capture. The developed techniques are low-cost and facilitate a reduction in the overall contribution of test cost towards the manufacturing cost of advanced wireless products. 2)Analog tuning methodologies for compensating wireless RF front ends: Methodologies for performing low-cost self tuning of multiple impairments of wireless RF devices are developed. This research considers for the first time, multiple analog tuning parameters of a complete RF transceiver system (transmitter and receiver) for tuning purposes. The developed techniques are demonstrated on hardware components and behavioral models to improve the overall yield of integrated RF SoCs.

Page generated in 0.1141 seconds