• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Twisted Particle Control and Transfer

Bawazir, Abdullah 02 June 2022 (has links)
Twisted particles carry Orbital Angular Momentum (OAM), an important property utilized to encode quantum information. The OAM of twisted photons can be trans- ferred onto condensed matter systems in the form of twisted excitons. Numerical solutions of the time-dependent Schr ̈odinger equation for a 3-arm molecular chain are used to demonstrate the manipulation of twisted excitons via an external magnetic field. We present the first design for an OAM transistor in a quasi-1D system that can be used to control the flow of OAM using the magnetic field. The underlying mechanism is the interaction between OAM and the magnetic field which leads to a orbit-resolved Bloch oscillation (ORBO). We present the semi-classical equations of motion for this phenomenon in a one-dimensional system. Unlike classical Bloch oscil- lation, an important effect in ultrafast electron dynamics, the magnet driven ORBO is not limited by electrical breakdown and can easily be observed in natural solids.
2

Light Localization in Coupled Optical Waveguides

Joushaghani, Arash 25 August 2011 (has links)
This thesis analyzes different light localization phenomena in waveguide arrays. We report on the observation of quasi-Bloch oscillations, a new type of dynamic localization in the spatial evolution of light in curved, coupled optical waveguides. The delocalization and final relocalization of an optical beam in a waveguide array is shown by spatially resolving the optical intensity at various propagation distances. Through comparison to different structures, quasi-Bloch oscillations are shown to be robust beyond the nearest-neighbor tight-binding approximation.
3

Light Localization in Coupled Optical Waveguides

Joushaghani, Arash 25 August 2011 (has links)
This thesis analyzes different light localization phenomena in waveguide arrays. We report on the observation of quasi-Bloch oscillations, a new type of dynamic localization in the spatial evolution of light in curved, coupled optical waveguides. The delocalization and final relocalization of an optical beam in a waveguide array is shown by spatially resolving the optical intensity at various propagation distances. Through comparison to different structures, quasi-Bloch oscillations are shown to be robust beyond the nearest-neighbor tight-binding approximation.
4

Charge dynamics in coupled semiconductor superlattices

Matharu, Satpal January 2015 (has links)
In this thesis, we investigate the collective electron dynamics in single and coupled superlattice systems under the influence of a DC electric field. Firstly, we illustrate that Bloch oscillations suppress electron transport and the resulting charge domains form self-sustained current oscillations. Upon the application of a tilted magnetic field, stochastic web structures are shown to form in the phase space of the electron trajectory. This occurs only when the Bloch and cyclotron frequencies are commensurate allowing the electrons to demonstrate chaotic unbounded trajectories, leading to an increase in transport. The charge domain dynamics also present additional peaks during such resonances. The rapid changes in the dynamical states found is an example of non-KAM chaos. We show then the amplitude and frequency of current oscillations in a single superlattice can be controlled. Secondly, two models are designed to mutually couple two semiconductor superlattices by a common resistive load. We examine the effects of coupling strength and frequency detuning on the collective current dynamics. The devices are considered to be arranged together on a single substrate as well as on individual substrates. Large AC power is witnessed during anti-phase and in-phase synchronization between current oscillations. Finally, two superlattices are coupled through a resonance circuit incorporating single mode resonances from external influences in the circuit. In this system, chaotic current dynamics are induced with regions of chaos separating different regions of synchronization. High frequency oscillations with minimal phase difference cause the largest power generation. In all three coupling models high frequency components are found in the Fourier power spectra. The power generated in the coupled systems is found greater and at times more than double the power generated in the autonomous superlattice. Thus this thesis provides innovative methods of enhancing and controlling powerful high-frequency signals. This effectively gives manipulation over the intensity of the electromagnetic radiation produced by the superlattice.
5

Spatial Dynamics of Wave Packets in Semiconductor Heterostructures / Räumliche Wellenpaketdynamik in Halbleiterheterostrukturen

Meinhold, Dirk 11 June 2005 (has links) (PDF)
This thesis presents the first study of the damping of a Bloch oscillating wave packet by Zener tunneling to above-barrier states [1]. We investigate the time evolution of an below-barrier subband Wannier-Stark wave packet in a strongly coupled GaAs/AlGaAs superlattice (SL) with shallow quantum well barriers by optical interband spectroscopy. We use a sub-100 fs homodyne pump-probe technique which is sensitive to the intraband polarization. The presented experimental data unambiguously show an electric field-dependent continuous decrease of the intraband coherence time. Besides the continuous field-induced damping of the intraband polarization, we observe the signature of resonant Zener tunneling of a Bloch oscillating wave packet between discrete states belonging to below and above-barrier bands. This coupling manifests itself as a revival of the intraband polarization [2]. The experiment is modelled in two aspects. First, in a 1D single-particle calculation the wave functions the BO wave packet is composed of are derived. Here, the inter-subband dynamics are found to be given by the energetic splitting between nearly-degenerate below and above-barrier states. The wave packet tunnels from the below-barrier band to the above-barrier band while remaining coherently oscillating. At this time, it is spatially spread over more than 100 nm...
6

Spatial Dynamics of Wave Packets in Semiconductor Heterostructures

Meinhold, Dirk 13 May 2005 (has links)
This thesis presents the first study of the damping of a Bloch oscillating wave packet by Zener tunneling to above-barrier states [1]. We investigate the time evolution of an below-barrier subband Wannier-Stark wave packet in a strongly coupled GaAs/AlGaAs superlattice (SL) with shallow quantum well barriers by optical interband spectroscopy. We use a sub-100 fs homodyne pump-probe technique which is sensitive to the intraband polarization. The presented experimental data unambiguously show an electric field-dependent continuous decrease of the intraband coherence time. Besides the continuous field-induced damping of the intraband polarization, we observe the signature of resonant Zener tunneling of a Bloch oscillating wave packet between discrete states belonging to below and above-barrier bands. This coupling manifests itself as a revival of the intraband polarization [2]. The experiment is modelled in two aspects. First, in a 1D single-particle calculation the wave functions the BO wave packet is composed of are derived. Here, the inter-subband dynamics are found to be given by the energetic splitting between nearly-degenerate below and above-barrier states. The wave packet tunnels from the below-barrier band to the above-barrier band while remaining coherently oscillating. At this time, it is spatially spread over more than 100 nm...

Page generated in 0.1136 seconds