Spelling suggestions: "subject:"boîte quantique"" "subject:"boîtes quantique""
11 |
Spectroscopie Optique de boîtes quantiques uniques: effets de l'environnementKammerer, Cécile 17 October 2002 (has links) (PDF)
Nous avons étudié les mécanismes responsables de la perte de cohérence dans des boîtes quantiques uniques auto-organisées InAs/GaAs. Dans un premier temps, une étude sous excitation continue de ces systèmes nous a permis d'observer un signal de photoluminescence anti-Stokes c'est à dire de la photoluminescence à plus haute énergie que l'énergie d'excitation. l'étude de ce signal a mis en évidence l'existence d'un continuum d'états descendant depuis la couche de mouillage jusqu'aux transitions des boîtes. Ce continuum d'états couplé à la fois aux niveaux discrets des boîtes et au continuum bidimensionnel de la couche de mouillage est en fait une propriété intrinsèque de ces systèmes car il provient de l'existence de transitions mixtes entre un état discret de la boîte et un état du continuum de la couche de mouillage. Dans une deuxième partie, nous nous sommes intéressés aux propriétés de cohérence des excitations électroniques grâce à des mesures de largeur spectrale des transitions. Pour atteindre la résolution nécessaire à cette étude, nous avons mis au point un dispositif de spectroscopie de la photoluminescence par transformée de Fourier. La résolution ainsi atteinte est de 0,5 microeV. Nous avons alors mis en évidence que, pour les transitions excitées des boîtes, le couplage aux phonons acoustiques, contrairement aux prédictions théoriques de goulot d'étranglement de phonons, est très efficace, aussi efficace que dans les puits quantiques InGaAs/GaAs. Cette efficacité est due à la présence du continuum des états mixtes mentionné précédemment. A l'inverse, la transition fondamentale des boîtes présente bien une inhibition du couplage aux phonons acoustiques pour des boîtes dont la transition fondamentale est bien isolée énergétiquement de ce même continuum. Enfin, nous avons montré qu'une excitation non-résonante des boîtes est responsable d'un élargissement des transitions et qu'une excitation résonante permet de limiter les interactions des boîtes avec leur environnement pour atteindre la limite ultime d'un temps de décohérence limité par le temps de vie radiatif.
|
12 |
Interférences Raman et NanostructuresCazayous, Maximilien 27 October 2002 (has links) (PDF)
Les structurations de la matière à l'échelle nanométrique ont ouvert de larges champs d'étude. L'analyse des propriétés structurales des nanostructures, de leur degré d'organisation ainsi que leur influence sur les propriétés électroniques représentent actuellement un défi de première importance. Pour accéder à ces informations, il est souvent nécessaire de faire appel à un ensemble de techniques expérimentales et numériques souvent complexes dans leur mise en oeuvre. Dans cette contribution, nous étudions l'organisation et le confinement électronique dans des multiplans de boîtes quantiques, en nous appuyant à la fois sur une étude expérimentale et un travail de modélisation. Les interférences Raman, observées dans la gamme des phonons acoustiques, résultent de l'interaction entre ces derniers et les états électroniques localisés dans les nanostructures. Parce qu'ils explorent une gamme allant de quelques nanomètres à plusieurs centaines de nanomètres, les phonons acoustiques représentent une sonde particulièrement efficace pour l'étude des nanosystèmes. Les interférences Raman utilisent leur sensibilité pour la mesure des propriétés structurales et électroniques. Elles permettent de mesurer les effets de corrélation verticale et latérale dans les multiplans de boîtes quantiques. Nous avons développé un modèle général dont le domaine d'application s'étend des systèmes contenant quelques plans au super-réseaux. En utilisant l'analyse de Fourier des interférences, on détermine la fonction d'auto-corrélation de la densité de probabilité électronique selon l'axe de croissance. Sensible à la taille et à la forme de la densité électronique, les interférences Raman ouvrent la voie à une imagerie optique de la densité électronique.
|
13 |
High frequency quantum noise of mesoscopic systems and current-phase relation of hybrid junctions.Basset, Julien 14 October 2011 (has links) (PDF)
Cette thèse est consacrée à l'étude de deux aspects de la physique mésoscopique que sont le bruit quantique haute fréquence et l'effet de proximité supraconducteur en se focalisant toutefois sur un système modèle: le nanotube de carbone.Ainsi la première partie de cette thèse est dédiée à la mesure de bruit quantique haute fréquence. Afin de mesurer ces fluctuations nous avons développé un système de détection "on-chip" original dans lequel la source de bruit et le détecteur, une jonction Supraconducteur/Isolant/Supraconducteur, sont couplés par un circuit résonant. Cela nous a permis dans un premier temps de mesurer le bruit à l'équilibre du résonateur. Son bruit comporte une forte asymétrie entre émission et absorption reliée aux fluctuations de point zéro. Une seconde étape a été de mesurer le bruit hors équilibre d'émission du passage tunnel de quasi-particules dans une jonction Josephson. Ce bruit comporte une forte dépendance en fréquence en accord avec les prédictions théoriques et nous a permis de valider le principe de détection. Finalement, nous avons pu mesurer le bruit associé au régime Kondo hors équilibre d'une boîte quantique à nanotube de carbone (énergie caractéristique kBTK avec TK la température Kondo). Ce bruit d'émission à kBTK~hν possède une forte singularité à la tension V=hν/e (ν étant la fréquence de mesure). Cette singularité est reliée aux résonances Kondo dans la densité d'états de la boîte associés aux niveaux de Fermi de chaque réservoir. A plus haute fréquence hν~3kBTK, la singularité disparaît, ce qui est compris par des effets de décohérence induits par la tension.Dans la seconde partie, nous avons développé une technique permettant de mesurer à la fois la relation courant/phase et la caractéristique courant/tension d'un lien faible séparant deux supraconducteurs. Nous avons ainsi caractérisé une jonction à base de nanotube de carbone au travers de laquelle une relation courant-phase modulable par une tension de grille a été observée. Cette relation courant/phase exhibe une forte anharmonicité lorsque le supercourant présente une relativement grande amplitude.
|
14 |
Contrôle cohérent des états électroniques d'une boîte quantique uniqueEnderlin, Alexandre 29 June 2010 (has links) (PDF)
Nous avons étudié les propriétés de cohérence d'une paire électron-trou confinée dans une boîte quantique (BQ) unique. Ce travail a été réalisé sur deux types de BQs : d'une part, des BDs de GaAs sur GaAlAs obtenues par fluctuations d'épaisseur aux interfaces, et d'autre part, des BQs auto-organisées d'InAs sur GaAs. Afin d'exciter de manière résonnante la transition fondamentale de BQs, celles-ci sont insérées dans un guide d'onde unidimensionnel. La luminescence des BQs est collectée par la surface du guide d'onde, de telle façon à séparer la luminescence du laser diffusé. Tout d'abord, nous avons observé des oscillations de Rabi sur l'intensité de la micro-photoluminescence en fonction de l'aire de l'impulsion lumineuse d'excitation. Ceci démontre l'existence d'une régime de couplage fort entre une BQ unique et l'impulsion. Deuxièmement, une paire électron-trou peut être manipuler par un train de deux impulsions, dans une expérience dite de contrôle cohérent. En fonction de la différence de phase entre les deux impulsions, des interférences constructives ou destructives entrainent, respectivement, une augmentation ou une diminution de l'intensité de la luminescence de la BQ. Nous avons montré que deux impulsions π permettent de mesurer le temps de vie, T1, de l'état excité et deux impulsions π/2 sont utilisées pour mesurer le temps de cohérence, T2. Les résultats expérimentaux montrent que le temps de décohérence total, T2 (170 ps), est du même ordre de grandeur que le temps de vie T1 (200 ps) bien que le limite supérieure de 2T1 ne soit pas atteinte. Nous en concluons que la perte de cohérence est autant dû à l'émission spontanée qu'aux processus de déphasage pur.
|
15 |
Nanostructures Al(Ga)N/GaN pour l'optoélectronique intersousbande dans l'infrarouge proche et moyenKandaswamy, Prem Kumar 29 June 2010 (has links) (PDF)
Ce travail a porté sur la modélisation, l'épitaxie et la caractérisation de puits quantiques et de boîtes quantiques Al(Ga)N/GaN, qui forment la région active de composants intersousbande (ISB) opérant dans l'infrarouge proche (NIR) et l'infrarouge moyen (MIR). La croissance de ces structures a été réalisée par épitaxie par jets moléculaires. La caractérisation optique infrarouge montre que les champs électriques induits par la polarisation introduisent un décalage vers le bleu des transitions et peuvent modifier de façon critique la magnitude de l'absorption. Les boîtes quantiques (QDs) de GaN/AlN confinées en trois dimensions introduisent de nombreuses nouvelles propriétés pour leur utilisation en tant que région active de composants ISB. La croissance des QDs a été réalisée dans des conditions riche-Ga et riche-N. Les études spectroscopiques révèlent l'absence de recombinaisons non radiatives même dans le cas de QDs ayant des longs temps de vie. Les photodétecteurs fabriqués à partir de superréseaux de QDs de GaN/AlN présentent un photocourant dans le NIR et dans le MIR attribué respectivement aux transitions s-pz et s-pxy. Le courant d'obscurité dépend de la densité des QDs dû au transport hopping. Prévoyant l'importance des composants ISB dans les régions spectrales du MIR et de l'infrarouge lointain, nous avons obtenu une extension de la longueur d'onde ISB jusqu'à ~ 10 µm. Ce résultat a été obtenu en diminuant le champ électrique interne et en réduisant le confinement dans les puits quantiques GaN/AlGaN. Le dopage peut introduire un décalage vers le bleu de plus de 50% de l'énergie de transition ISB dû aux effets des corps multiples.
|
16 |
Détection de spins individuels dans les boîtes quantiques magnétiquesLéger, Yoan 24 September 2007 (has links) (PDF)
Nous avons étudié par micro-spectroscopie des boîtes quantiques de semiconducteurs II-VI contenant une impureté magnétique individuelle (atome de Mn). L'émission optique de ces systèmes est régie par les interactions entre les porteurs confinés et le spin Mn. Des expériences de magnéto-optique ont permis de déterminer les différents paramètres contrôlant ces interactions. L'analyse du spectre d'émission de certaines de ces boîtes quantiques magnétiques permet de détecter directement l'état de spin de l'impureté magnétique. Les conditions de cette détection sont fortement influencées par une anisotropie de forme de la boîte quantique étudiée ou la présence d'un champ de contraintes inhomogène dans l'échantillon. Les effets de ces phénomènes sur les propriétés optiques des boîtes ont été analysés en détail. Nous nous sommes également consacrés à l'étude des différents états de charges des boîtes quantiques magnétiques. Celle-ci révèle la possibilité de contrôler électriquement ou optiquement l'anisotropie magnétique de systèmes magnétiques nanoscopiques. Enfin, nous avons abordé l'étude de la dynamique de spin dans ces systèmes. Les fluctuations temporelles d'un spin individuel ont été mises en évidence en analysant la statistique des photons émis par une boîte quantique.
|
17 |
Etude de la croissance de boîtes quantiques InAs/InP(001) par épitaxie en phase vapeur aux organométalliques pour des applications à 1,55 µmMichon, Adrien 28 September 2007 (has links) (PDF)
Nous avons étudié la croissance de boîtes quantiques InAs/InP(001) par épitaxie en phase vapeur aux organométalliques en vue de la réalisation de composants à 1,55 µm. Les propriétés structurales des boîtes, étudiées par microscopie électronique en transmission, et leurs propriétés optiques, étudiées par photoluminescence, ont été corrélées aux conditions de croissance. Notre étude met en évidence d'une part les influences d'origine thermodynamique et cinétique des paramètres de croissance de l'InAs, et d'autre part une influence de l'étape de recouvrement des boîtes (encapsulation). <br />Nous montrons que la longueur d'onde d'émission des boîtes peut être ajustée soit en modifiant la vitesse d'encapsulation, soit en incorporant volontairement du phosphore (formation de boîtes InAsP). Le bon contrôle de la morphologie et de la longueur d'onde d'émission des boîtes permet d'envisager des applications dans le domaine des télécommunications à 1,55 µm qui ont motivé ce travail. L'encapsulation des boîtes InAs/InP à forte vitesse de croissance nous a par ailleurs permis d'obtenir une émission au delà de 2 µm, ce qui ouvre de nouvelles perspectives d'applications dans la réalisation de sources pour la détection de gaz. <br />Enfin, l'observation à basse température (4 K) de l'exciton et du biexciton d'une boîte quantique InAs/InP(001) unique en micro-photoluminescence montre que ces boîtes pourraient être utilisées pour la réalisation de sources de photons uniques pour la cryptographie quantique à 1,55 µm.
|
18 |
Étude des mécanismes de capture et de fuite des excitons dans les boîtes quantiques d'InAs/InPGélinas, Guillaume January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
19 |
Fabrication de nanoaimants pour le contrôle rapide d'un spin électronique dans une boîte quantique doubleBureau-Oxton, Chloé January 2014 (has links)
Un ordinateur quantique est un ordinateur formé de bits quantiques (qubits) qui tire profit des propriétés quantiques de la matière. Un grand intérêt est porté au développement d’un tel ordinateur depuis qu’il a été montré que le calcul quantique permettrait d’effectuer certains types de calculs exponentiellement plus rapidement qu’avec les meilleurs algorithmes connus sur un ordinateur classique. D’ailleurs, plusieurs algorithmes ont déjà été suggérés pour résoudre efficacement des problèmes tels que la factorisation de grands nombres premiers et la recherche dans des listes désordonnées.
Avant d’en arriver à un ordinateur quantique fonctionnel, certains grands défis doivent être surmontés. Un de ces défis consiste à fabriquer des qubits ayant un temps d’opération nettement inférieur au temps de cohérence (temps durant lequel l’état du qubit est conservé). Cette condition est nécessaire pour parvenir à un calcul quantique fiable. Pour atteindre cet objectif, de nombreuses recherches visent à augmenter le temps de cohérence en choisissant judicieusement les matériaux utilisés dans la fabrication des qubits en plus d’imaginer de nouvelles méthodes d’utiliser ces dispositifs pour diminuer la durée des opérations.
Une manière simple d’implémenter un qubit est de piéger quelques électrons dans l’espace et d’utiliser l’état de spin de cet ensemble d’électrons pour encoder les états du qubit. Ce type de dispositif porte le nom de qubit de spin. Les boîtes quantiques (BQs) latérales fabriquées sur des substrats de GaAs/AlGaAs sont un exemple de qubit de spin et sont les dispositifs étudiés dans ce mémoire.
En 2007, Pioro-Ladrière et al. ont suggéré de placer un microaimant à proximité d’une BQ pour créer un gradient de champ magnétique non-uniforme et permettre d’effectuer des rotations de spin à l’aide d’impulsions électriques rapides. Ce mémoire présente comment modifier la géométrie de ces microaimants pour obtenir un plus grand gradient de champ magnétique dans la BQ. Une nouvelle technique de contrôle de spin menant à des rotations de spin et de phase plus rapides sera aussi détaillée. Enfin, il sera montré que le département de physique de l’Université de Sherbrooke possède tous les outils nécessaires pour implémenter cette méthode.
|
20 |
Manipulation cohérente de l'émission résonnante d'une boîte quantique uniqueTonin, Catherine 21 September 2012 (has links) (PDF)
Le but de cette thèse a été de mettre en évidence notre capacité à utiliser des boîtes quantiques semi-conductrices comme support à la réalisation de bits quantiques, briques élémentaires de l'information quantique. Nous avons ainsi démontré la possibilité de définir un système à deux niveaux, dont l'initialisation et le contrôle est réalisable au moyen d'impulsions lumineuses picosecondes et déterminé le temps durant lequel nous étions en mesure de conserver sa cohérence. Les oscillations de Rabi entre niveau fondamental et niveau excité permettent d'initialiser le système dans une superposition cohérente pouvant être ensuite manipulée par une deuxième impulsion au cours d'expériences de contrôle cohérent. Le temps de cohérence T2 du système n'est pas seulement limité par la durée de vie radiative T1 et reste très inférieur à la valeur théorique T2= 2T1. Les différents mécanismes de décohérence entrant en jeu ont dès lors été étudiés, en particulier le rôle des phonons acoustiques, responsables d'un fort amortissement des oscillations de Rabi et d'une diminution du temps de cohérence pour une partie des boîtes quantiques étudiées. Nous avons cependant dans certains cas mis en évidence la présence de mécanismes supplémentaires, liés aux fluctuations de l'environnement électrostatique des boîtes. Par ailleurs, une étude poussée de la polarisation de la luminescence émise par ces boîtes, dont la croissance a été réalisée en régime Stranski-Krastanov, a révélé une inclinaison des états propres de la structure fine de l'exciton, ainsi qu'une modification de leur intensité d'émission, témoignant d'un fort mélange des états lourds et légers de la bande de valence
|
Page generated in 0.072 seconds